
Prolog PSS 2018

Problem Solving and Search

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

[
http://www.illc.uva.nl/~ulle/teaching/pss/

]
Ulle Endriss 1

http://www.illc.uva.nl/~ulle/teaching/pss/

Prolog PSS 2018

Table of Contents

Lecture 1: Basic Prolog . 3

Lecture 2: Working with Lists . 29

Lecture 3: Working with Numbers . 46

Lecture 4: Working with Operators . 57

Lecture 5: Backtracking, Cuts and Negation 73

Lecture 6: Additional Features . 96

Ulle Endriss 2

Prolog PSS 2018

Lecture 1: Basic Prolog

Ulle Endriss 3

Prolog PSS 2018

What is Prolog?

• Prolog is one of two classical programming languages developed

specifically for applications in AI (the other one is Lisp).

• Prolog (programming in log ic) is a logic-based programming

language: programs correspond to sets of logical formulas and the

Prolog interpreter uses logical methods to resolve queries.

• Prolog is a declarative language: you specify what problem you

want to solve rather than how to solve it.

• Prolog often permits very compact solutions. So we can focus on

underlying (mathematical) ideas rather than on software design.

• Prolog is very useful for classical problem solving tasks in AI

(but less so for certain other tasks). Everyone should be familiar

with multiple programming languages/paradigms!

Ulle Endriss 4

Prolog PSS 2018

Plan for Today

The objective of this first lecture is to introduce you to the most basic

concepts of the Prolog programming language.

• Your first Prolog program: big and not so big animals

• Terminology: talking about Prolog programs

• How Prolog works: matching and query resolution

Ulle Endriss 5

Prolog PSS 2018

Facts

A little Prolog program consisting of four facts:

bigger(elephant, horse).

bigger(horse, donkey).

bigger(donkey, dog).

bigger(donkey, monkey).

Ulle Endriss 6

Prolog PSS 2018

Queries

After compilation we can query the Prolog system:

?- bigger(donkey, dog).

Yes

?- bigger(monkey, elephant).

No

Ulle Endriss 7

Prolog PSS 2018

A Problem

The following query does not succeed!

?- bigger(elephant, monkey).

No

The predicate bigger/2 apparently is not quite what we want.

What we really want: a predicate that succeeds whenever you can go

from the first animal to the second by iterating the bigger/2-facts.

Mathematicians call this the transitive closure of bigger/2.

Ulle Endriss 8

Prolog PSS 2018

Rules

The following two rules define the new predicate is_bigger/2 as the

transitive closure of bigger/2 (via recursion):

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

↑ ↑

“if” “and”

Ulle Endriss 9

Prolog PSS 2018

Now it works!

?- is_bigger(elephant, monkey).

Yes

Even better, we can use the variable X:

?- is_bigger(X, donkey).

X = horse ;

X = elephant ;

No

Press ; (semicolon) to find alternative solutions. No at the end

indicates that there are no further solutions.

Ulle Endriss 10

Prolog PSS 2018

Another Example

Are there any animals that are both smaller than a donkey and bigger

than a monkey?

?- is_bigger(donkey, X), is_bigger(X, monkey).

No

Ulle Endriss 11

Prolog PSS 2018

Terms

We need some terminology to talk about the syntax of Prolog programs.

Prolog terms are either

• numbers,

• atoms,

• variables, or

• compound terms.

Atoms start with a lowercase letter or are enclosed in single quotes:

elephant, xYZ, a_123, ’How are you today?’

Variables start with a capital letter or the underscore:

X, Elephant, _G177, MyVariable, _

Ulle Endriss 12

Prolog PSS 2018

Terms (continued)

Compound terms consist of a functor (an atom) and a number of

arguments (terms) enclosed in brackets:

is_bigger(horse, X)

f(g(Alpha, _), 7)

’My Functor’(dog)

Atoms and numbers are also called atomic terms.

Terms without variables are called ground terms.

Ulle Endriss 13

Prolog PSS 2018

Facts and Rules

Facts are compound terms (or atoms), followed by a full stop.

Facts are used to define something as being unconditionally true.

bigger(elephant, horse).

parent(john, mary).

Rules consist of a head and a body separated by :-. The head of a

rule (a compound term or an atom) is true if all goals in the body

(each a compound term or an atom) can be proved to be true.

grandfather(X, Y) :-

father(X, Z),

parent(Z, Y).

Facts and rules are used to define predicates.

Ulle Endriss 14

Prolog PSS 2018

Programs and Queries

Facts and rules are also called clauses. A program is a list of clauses.

You compose your programs in a text editor.

A query consists of one or several compound terms (or atoms),

separated by commas and followed by a full stop.

You type your queries in at the Prolog prompt and expect a response.

?- is_bigger(horse, X), is_bigger(X, dog).

X = donkey

Yes

Ulle Endriss 15

Prolog PSS 2018

Built-in Predicates

Prolog comes with a large number of built-in predicates. Examples:

• Compiling a program file:

?- consult(’big-animals.pl’).

Yes

• Writing something (a term) on the screen:

?- write(’Hello World!’), nl.

Hello World!

Yes

Ulle Endriss 16

Prolog PSS 2018

Matching

The concept of matching is at the core of Prolog’s inner workings:

Two terms match if they are identical or can be made identical

by substituting their variables with suitable ground terms.

We can explicitly ask Prolog whether two given terms match by using

the built-in equality-predicate = (written as an infix operator).

?- born(mary, yorkshire) = born(mary, X).

X = yorkshire

Yes

The variable instantiations are reported in Prolog’s answer.

Ulle Endriss 17

Prolog PSS 2018

Examples

?- f(a, g(X, Y)) = f(X, Z), Z = g(W, h(X)).

X = a

Y = h(a)

Z = g(a, h(a))

W = a

Yes

?- p(X, 2, 2) = p(1, Y, X).

No

Ulle Endriss 18

Prolog PSS 2018

The Anonymous Variable

The variable _ (underscore) is called the anonymous variable.

Every occurrence of _ represents a different variable (which is why

instantiations are not being reported).

?- p(_, 2, 2) = p(1, Y, _).

Y = 2

Yes

Ulle Endriss 19

Prolog PSS 2018

Answering Queries

Answering a query means proving that the goal represented by that

query can be satisfied (given the program currently in memory).

Recall: Programs are lists of facts and rules.

• A fact declares something as being true.

• A rule states conditions for something being true.

Ulle Endriss 20

Prolog PSS 2018

Answering Queries (continued)

To answer a query, Prolog executes this algorithm:

• If a goal matches with a fact, then it is satisfied.

• If a goal matches the head of a rule, then it is satisfied if the goal

represented by the rule’s body is satisfied.

• If a goal consists of several subgoals separated by commas, then it

is satisfied if all its subgoals are satisfied.

• When trying to satisfy goals using built-in predicates (such as

write/1), Prolog also performs the action associated with it

(such as writing something on the screen).

Ulle Endriss 21

Prolog PSS 2018

Example: Mortal Philosophers

Consider the following argument:

All men are mortal.

Socrates is a man.

Hence, Socrates is mortal.

It has two premises and a conclusion.

Ulle Endriss 22

Prolog PSS 2018

Translating it into Prolog

The two premises can be expressed as a little Prolog program:

mortal(X) :- man(X).

man(socrates).

The conclusion can then be formulated as a query:

?- mortal(socrates).

Yes

Ulle Endriss 23

Prolog PSS 2018

Goal Execution

(1) The query mortal(socrates) is made the initial goal.

(2) Prolog looks for the first matching fact or head of rule and finds

mortal(X). Variable instantiation: X = socrates.

(3) This variable instantiation is extended to the rule’s body, so

man(X) becomes man(socrates).

(4) New goal: man(socrates).

(5) Success, because man(socrates) is a fact itself.

(6) Therefore, also the initial goal succeeds.

Ulle Endriss 24

Prolog PSS 2018

Programming Style

It is extremely important that you write programs that are easily

understood by others! Some guidelines:

• Use comments to explain what you are doing:

/* This is a long comment, stretching over several

lines, which explains in detail how I have implemented

the aunt/2 predicate ... */

aunt(X, Z) :-

sister(X, Y), % This is a short comment.

parent(Y, Z).

Ulle Endriss 25

Prolog PSS 2018

Programming Style (continued)

• Separate clauses by one or more blank lines.

• Write only one predicate per line and use indentation:

blond(X) :-

father(Father, X),

blond(Father),

mother(Mother, X),

blond(Mother).

(Very short clauses may also be written in a single line.)

• Insert a space after every comma inside a compound term:

born(mary, yorkshire, ’01/01/1999’)

• Write short clauses with bodies consisting of only a few goals.

If necessary, split into shorter sub-clauses.

• Choose meaningful names for your variables and atoms.

Ulle Endriss 26

Prolog PSS 2018

Summary: Terminology

• All Prolog expressions are made up of terms (which are either

numbers, atoms, variables, or compound terms).

• Atoms start with lowercase letters or are enclosed in single quotes.

Variables start with capital letters or the underscore.

• Prolog programs are lists of facts and rules (a.k.a. clauses).

• Queries are submitted to the system to initiate a computation.

• Some built-in predicates have special meaning.

Ulle Endriss 27

Prolog PSS 2018

Summary: Answering Queries

• When answering a user’s query, Prolog tries to prove that the

corresponding goal can be satisfied (can be made true).

This is done using the rules and facts given in a program.

• The current goal is matched with the first possible fact or rule

head. In the latter case, the rule’s body becomes the new goal.

• The variable instantiations made during matching are carried

along throughout the computation and reported at the end.

• Only the anonymous variable _ can be instantiated differently

whenever it occurs.

Ulle Endriss 28

Prolog PSS 2018

Lecture 2: Working with Lists

Ulle Endriss 29

Prolog PSS 2018

Plan for Today

One of the most useful data structures in Prolog are lists. The aim of

this lecture is to show you how lists are represented in Prolog and to

introduce you to the basic principles of working with lists.

Ulle Endriss 30

Prolog PSS 2018

Lists in Prolog

An example for a Prolog list:

[elephant, horse, donkey, dog]

Lists are enclosed in square brackets. Their elements could be any

Prolog terms (including other lists). The empty list is [].

Another example:

[a, X, [], f(X,y), 47, [a,b,c], bigger(cow,dog)]

Ulle Endriss 31

Prolog PSS 2018

Internal Representation

Internally, the list

[a, b, c]

is represented by the term

.(a, .(b, .(c, [])))

That means, this is just a new notation. Internally, lists are just

compound terms with the functor . (dot) and the special atom [] as

an argument on the innermost level.

We can verify this also within Prolog:

?- X = .(a, .(b, .(c, []))).

X = [a, b, c]

Yes

Remark: Recent versions of SWI-Prolog use ’[|]’ instead of . (dot).

Ulle Endriss 32

Prolog PSS 2018

The Bar Notation

If a bar | is put just before the last term in a list, this means that this

last term denotes a sub-list. Inserting the elements before the bar at

the beginning of the sub-list yields the entire list.

For example, [a, b, c, d] is the same as [a, b | [c, d]].

Ulle Endriss 33

Prolog PSS 2018

Examples

Extract the second element from a given list:

?- [a, b, c, d, e] = [_, X | _].

X = b

Yes

Make sure the first element is a 1 and get the sub-list after the second:

?- MyList = [1, 2, 3, 4, 5], MyList = [1, _ | Rest].

MyList = [1, 2, 3, 4, 5]

Rest = [3, 4, 5]

Yes

Ulle Endriss 34

Prolog PSS 2018

Head and Tail

The first element of a list is called its head . The rest of the list is

called its tail . (The empty list does not have a head.)

A special case of the bar notation—with exactly one element before

the bar—is called the head/tail-pattern. It can be used to extract head

and/or tail from a list. Example:

?- [elephant, horse, tiger, dog] = [Head | Tail].

Head = elephant

Tail = [horse, tiger, dog]

Yes

Ulle Endriss 35

Prolog PSS 2018

Head and Tail (continued)

Another example:

?- [elephant] = [X | Y].

X = elephant

Y = []

Yes

Note: The tail of a list is always a list itself. The head of a list is an

element of that list. In principle, the head can itself be a list as well

(but it typically is not).

Ulle Endriss 36

Prolog PSS 2018

Appending Lists

We now want to write a predicate concat_lists/3 to concatenate

(append) two given lists.

It should work like this:

?- concat_lists([1, 2, 3, 4], [dog, cow, tiger], L).

L = [1, 2, 3, 4, dog, cow, tiger]

Yes

Ulle Endriss 37

Prolog PSS 2018

Solution

The predicate concat_lists/3 is implemented recursively .

The base case applies when the first list happens to be empty.

In every recursion step we take off the head and use the same

predicate again, with the (shorter) tail, until we reach the base case.

concat_lists([], List, List).

concat_lists([Elem|List1], List2, [Elem|List3]) :-

concat_lists(List1, List2, List3).

Ulle Endriss 38

Prolog PSS 2018

We can do more!

We can also use concat_lists/3 to decompose a given list:

?- concat_lists(Begin, End, [1, 2, 3]).

Begin = []

End = [1, 2, 3] ;

Begin = [1]

End = [2, 3] ;

Begin = [1, 2]

End = [3] ;

Begin = [1, 2, 3]

End = [] ;

No

Ulle Endriss 39

Prolog PSS 2018

Built-in Predicates for List Manipulation

append/3: Append two lists (same as our concat_lists/3).

?- append([1, 2, 3], List, [1, 2, 3, 4, 5]).

List = [4, 5]

Yes

length/2: Get the length of a list.

?- length([tiger, donkey, cow, tiger], N).

N = 4

Yes

Ulle Endriss 40

Prolog PSS 2018

Membership

member/2: Test for list membership.

?- member(tiger, [dog, tiger, elephant, horse]).

Yes

Backtracking into member/2:

?- member(X, [dog, tiger, elephant]).

X = dog ;

X = tiger ;

X = elephant ;

No

Ulle Endriss 41

Prolog PSS 2018

Example

Consider the following program:

show(List) :-

member(Element, List),

write(Element),

nl,

fail.

Note: fail/0 is a built-in predicate that always fails.

What happens when you submit a query such as the following one?

?- show([elephant, horse, donkey, dog]).

Ulle Endriss 42

Prolog PSS 2018

Example (continued)

?- show([elephant, horse, donkey, dog]).

elephant

horse

donkey

dog

No

The fail at the end of the rule causes Prolog to backtrack.

The subgoal member(Element, List) is the only choicepoint.

In every backtracking cycle a new element of List is matched with

the variable Element. Eventually, the query fails (No).

Ulle Endriss 43

Prolog PSS 2018

More Built-in Predicates

reverse/2: Reverse the order of elements in a list.

?- reverse([1, 2, 3, 4, 5], X).

X = [5, 4, 3, 2, 1]

Yes

More built-in predicates can be found in the (online) reference manual.

Ulle Endriss 44

Prolog PSS 2018

Summary: Working with Lists

• List notation:

– normal: [Elem1, Elem2, Elem3] (empty list: [])

– internal: .(Elem1, .(Elem2, .(Elem3, [])))

– bar notation: [Elem1, Elem2 | Rest]

– head/tail-pattern: [Head | Tail]

• Many predicates can be implemented recursively, exploiting the

head/tail-pattern. (This is a central concept in Prolog!)

• Built-in predicates: append/3, member/2, length/2, . . .

Ulle Endriss 45

Prolog PSS 2018

Lecture 3: Working with Numbers

Ulle Endriss 46

Prolog PSS 2018

Plan for Today

Prolog comes with a range of predefined arithmetic functions and

operators. Expressions such as 3 + 5 are valid Prolog terms.

So, what’s happening here?

?- 3 + 5 = 8.

No

The objective of this lecture is to clarify this (supposed) problem and

to explain how to work with arithmetic expressions in Prolog.

Ulle Endriss 47

Prolog PSS 2018

Matching vs. Arithmetic Evaluation

The terms 3 + 5 and 8 do not match. In fact, if we are interested in

the sum of the numbers 3 and 5, we cannot get it through matching,

but we need to use arithmetic evaluation.

We have to use the is-operator :

?- X is 3 + 5.

X = 8

Yes

Ulle Endriss 48

Prolog PSS 2018

The is-Operator

The is-operator works as follows:

Evaluate the term to its right as an arithmetic expression and

then match the resulting number with the term to its left.

So the lefthand term should usually (basically: always) be a variable.

Example:

?- Value is 3 * 4 + 5 * 6, OtherValue is Value / 11.

Value = 42

OtherValue = 3.8181818181818183

Yes

Note the small rounding error above.

Ulle Endriss 49

Prolog PSS 2018

A Subtle Detail

Beware that different Prolog systems may deal differently with the

following kind of example:

?- X is 3.5 + 4.5. ?- X is 3.5 + 4.5

X = 8 X = 8.0

Yes Yes

Some systems will try to instantiate X with an integer such as 8

whenever possible; some will instantiate X with a float such as 8.0.

That is, in the second case the following query would fail:

?- X is 3.5 + 4.5, X = 8.

Ulle Endriss 50

Prolog PSS 2018

Example: Length of a List

Instead of using length/2 we can now write our own predicate to

compute the length of a list:

len([], 0).

len([_ | Tail], N) :-

len(Tail, N1),

N is N1 + 1.

Ulle Endriss 51

Prolog PSS 2018

Functions

Prolog provides a number of built-in arithmetic functions that can be

used with the is-operator. See reference manual for details.

Examples:

?- X is max(8, 6) - sqrt(2.25) * 2.

X = 5.0

Yes

?- X is (47 mod 7) ** 3.

X = 125

Yes

Ulle Endriss 52

Prolog PSS 2018

Relations

Arithmetic relations are used to compare two arithmetic values.

Example:

?- 2 * 3 > sqrt(30).

Yes

The following relations are available:

=:= arithmetic equality =\= arithmetic inequality

> greater than >= greater than or equal

< less than =< less than or equal

Ulle Endriss 53

Prolog PSS 2018

Examples

Recall the difference between matching and arithmetic evaluation:

?- 3 + 5 = 5 + 3.

No

?- 3 + 5 =:= 5 + 3.

Yes

Recall the operator precedence of arithmetics:

?- 2 + 3 * 4 =:= (2 + 3) * 4.

No

?- 2 + 3 * 4 =:= 2 + (3 * 4).

Yes

Ulle Endriss 54

Prolog PSS 2018

Programming Style

To check whether 8 equals 3 plus 5, this works, but is extremely ugly:

?- 8 is 3 + 5.

Yes

It works, because evaluating the term 3 + 5 arithmetically yields the

number 8, which indeed matches the term on the left.

It is ugly, because, semantically, what you are trying to do here is to

compare the values of two arithmetic expressions, not evaluate one.

So you should use an arithmetic relation:

?- 8 =:= 3 + 5.

Yes

Ulle Endriss 55

Prolog PSS 2018

Summary: Working with Numbers

• For logical pattern matching continue to use the predicate =, but

for arithmetic evaluation use the is-operator.

• A range of built-in arithmetic functions is available (some of them

are written as infix operators, such as +).

• Arithmetic expressions can be compared using arithmetic relations

such as < or =:= (i.e., not using the is-operator).

Ulle Endriss 56

Prolog PSS 2018

Lecture 4: Working with Operators

Ulle Endriss 57

Prolog PSS 2018

Plan for Today

Operators provide a more convenient way of writing certain expressions

in Prolog that could otherwise be difficult to read for humans.

For example, we can write 3 * 155 instead of *(3, 155), and we can

write N is M + 1 instead of is(N, +(M, 1)).

Both forms of notation are considered equivalent. So matching works:

?- +(1000, 1) = 1000 + 1.

Yes

The main objective of this lecture is to show you how you can define

your own operators in Prolog. In the process, you will learn a few

things about how computers interpret the structure of an expression.

Ulle Endriss 58

Prolog PSS 2018

Operator Precedence

Some operators bind stronger than others. In mathematics, for

example, * (multiplication) binds stronger than + (addition).

The degree to which an operator is binding is called its precedence.

In Prolog, operator precedences are encoded by means of numbers

(in SWI-Prolog between 0 and 1200). The arithmetic operator *, for

example, has precedence 400; + has precedence 500. Thus

the lower an operator’s precedence value, the stronger it binds

This is why Prolog is able to compute the correct result for the

following example (i.e., not 25):

?- X is 2 + 3 * 5.

X = 17

Yes

Ulle Endriss 59

Prolog PSS 2018

Precedence of Terms

The precedence of a term is the precedence of its principal operator .

If the principal functor is not (written as) an operator or if the term is

enclosed in brackets, then the precedence value is defined as 0.

Examples:

• The precedence of 3 + 5 is 500.

• The precedence of 3 * 3 + 5 * 5 is also 500.

• The precedence of sqrt(3 + 5) is 0.

• The precedence of elephant is 0.

• The precedence of (3 + 5) is 0.

• The precedence of 3 * +(5, 6) is 400.

Ulle Endriss 60

Prolog PSS 2018

Operator Types

Operators can be divided into three groups:

• infix operators, like + in Prolog

• prefix operators, like - for negative numbers

• postfix operators, like ! in mathematics (factorial)

Is fixing the type of an operator and its precedence enough for Prolog

to fully “understand” the structure of a term using that operator?

Ulle Endriss 61

Prolog PSS 2018

Example

Consider the following example:

?- X is 25 - 10 - 3.

X = 12

Yes

Why not 18?

So, clearly, precedence and type alone are not enough to fully specify

the structural properties of an operator.

Ulle Endriss 62

Prolog PSS 2018

Operator Associativity

We also have to specify the associativity of an operator: e.g., - is

left-associative. So 25 - 10 - 3 is interpreted as (25 - 10) - 3.

In Prolog, associativity is represented by atoms such as yfx:

f indicates the position of the operator (i.e., yfx denotes an infix

operator) and x and y indicate the positions of the arguments.

A y should be read as:

at this position a term with a precedence less than or equal to

that of the operator has to occur

But x means that:

at this position a term with a precedence strictly less than

that of the operator has to occur

Understand how this makes the interpretation of 25 - 10 - 3

unambiguous (note that - is defined using the pattern yfx)!

Ulle Endriss 63

Prolog PSS 2018

Associativity Patterns

Pattern Associativity Examples

yfx infix left-associative +, -, *

xfy infix right-associative , (for subgoals)

xfx infix non-associative =, is, < (i.e., no nesting)

yfy makes no sense, structuring would be impossible

fy prefix associative

fx prefix non-associative

yf postfix associative

xf postfix non-associative

Ulle Endriss 64

Prolog PSS 2018

Checking Precedence and Associativity

You can use the built-in predicate current op/3 to check precedence

and associativity of currently defined operators.

?- current_op(Prec, Assoc, *).

Prec = 400

Assoc = yfx

Yes

?- current_op(Prec, Assoc, is).

Prec = 700

Assoc = xfx

Yes

Ulle Endriss 65

Prolog PSS 2018

Overloading of Operator Names

The same operator symbol can be used once as a binary and once as a

unary operator. Example:

?- current_op(Prec, Assoc, -).

Prec = 200

Assoc = fy ;

Prec = 500

Assoc = yfx ;

No

Ulle Endriss 66

Prolog PSS 2018

Defining Operators

New operators are defined using the op/3-predicate, submitting the

operator definition as a query. Terms using the new operator will then

be equivalent to terms using the operator as a normal functor.

Example:

?- op(400, xfx, is_bigger).

Yes

?- is_bigger(dog, cat) = dog is_bigger cat.

Yes.

Assuming our big-animal program has been compiled, this will work:

?- elephant is_bigger dog.

Yes

Ulle Endriss 67

Prolog PSS 2018

Aside: Query Execution at Compilation Time

You can add queries to a program file (using :- as a prefix operator).

They are executed whenever the program is compiled.

Suppose the file my-file.pl contains this line:

:- write(’Hello, have a beautiful day!’).

This will have the following effect:

?- consult(’my-file.pl’).

Hello, have a beautiful day!

my-file.pl compiled, 0.00 sec, 224 bytes.

Yes

?-

Ulle Endriss 68

Prolog PSS 2018

Operator Definition at Compilation Time

You can do the same for operator definitions. For example, the line

:- op(200, fy, small).

inside a program file will cause a prefix operator called small to be

declared whenever the file is compiled. It can then be used inside the

program itself, in other programs, and in user queries.

Ulle Endriss 69

Prolog PSS 2018

Term Decomposition

Recall that a compound term consists of a functor and one or more

arguments. (An atomic term has no arguments.)

Given a term T, the predicate =../2 (defined as an infix operator) can

be used to generate a list, the head of which is the functor of T and

the tail of which is the list of arguments of T:

?- loves(john,mary) =.. List.

List = [loves, john, mary]

Yes

?- elephant =.. List.

List = [elephant]

Yes

?- 5 + 3 =.. List.

List = [+, 5, 3].

Yes

Ulle Endriss 70

Prolog PSS 2018

Composing Terms

You can also use =../2 to compose new terms:

?- member(X, [f,g,h]), Y =.. [X,a,b].

X = f

Y = f(a, b) ;

X = g

Y = g(a, b) ;

X = h

Y = h(a, b) ;

No

This is very useful, because using a variable in the position of a functor

would cause a syntax error (for most Prolog systems):

?- member(X, [f,g,h]), Y = X(a,b).

ERROR: Syntax error: Operator expected

Ulle Endriss 71

Prolog PSS 2018

Summary: Working with Operators

• The structural properties of an operator are determined by its

precedence (a number) and its associativity pattern (e.g., yfx).

• Use current op/3 to check operator definitions.

• Use op/3 to make your own operator definitions.

• Operator definitions are usually included inside a program file as

queries (using :-, i.e., like a rule without a head).

• The built-in predicate =../2 can be used to de/compose terms.

It is declared as a (non-associative) infix operator.

Ulle Endriss 72

Prolog PSS 2018

Lecture 5: Backtracking, Cuts and Negation

Ulle Endriss 73

Prolog PSS 2018

Plan for Today

In this lecture, we are going to look in more detail into how Prolog

evaluates queries, in particular into the process of backtracking .

We are going to discuss both the benefits of backtracking and some of

the problems it creates, and see how to control backtracking (via cuts).

We are also going to discuss the closely related subject of negation.

Ulle Endriss 74

Prolog PSS 2018

Backtracking

Subgoals that can be satisfied in more than one way are choicepoints.

..., member(X, [a, b, c]), ...

This is an example for a choicepoint, because the variable X could be

matched with either a, b, or c.

During goal execution Prolog keeps track of choicepoints. If one path

turns out to be a failure, it jumps back to the most recent choicepoint

and tries the next alternative. This is known as backtracking .

Ulle Endriss 75

Prolog PSS 2018

Smart Use of Backtracking

Given a list in the first argument position, permutation/2 generates

all possible permutations of that list in the second argument through

enforced backtracking (if the user presses ; after every solution):

permutation([], []).

permutation(List, [Element | Permutation]) :-

select(Element, List, Rest),

permutation(Rest, Permutation).

Recall that select/3 checks whether the element in the first

argument position can be matched with an element of the list in the

second argument position; if so, the term in the third argument

position is matched with the remainder of that list.

Ulle Endriss 76

Prolog PSS 2018

Example

?- permutation([1, 2, 3], X).

X = [1, 2, 3] ;

X = [1, 3, 2] ;

X = [2, 1, 3] ;

X = [2, 3, 1] ;

X = [3, 1, 2] ;

X = [3, 2, 1] ;

No

Ulle Endriss 77

Prolog PSS 2018

Problems with Backtracking

Asking for alternative solutions generates wrong answers for this first

attempt at implementing a predicate to remove duplicates from a list:

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail),

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Ulle Endriss 78

Prolog PSS 2018

Example

?- remove_duplicates([a, b, b, c, a], List).

List = [b, c, a] ;

List = [b, b, c, a] ;

List = [a, b, c, a] ;

List = [a, b, b, c, a] ;

No

Do you recognise the pattern of what goes wrong?

Ulle Endriss 79

Prolog PSS 2018

Introducing Cuts

Sometimes we want to prevent Prolog from backtracking into certain

choicepoints, to either eliminate wrong solutions or improve efficiency .

This is possible by using a cut, written as !. This built-in predicate

always succeeds and prevents Prolog from backtracking into subgoals

placed before the cut inside the same rule body.

Ulle Endriss 80

Prolog PSS 2018

Example

The correct program for removing duplicates from a list:

remove_duplicates([], []).

remove_duplicates([Head | Tail], Result) :-

member(Head, Tail), !,

remove_duplicates(Tail, Result).

remove_duplicates([Head | Tail], [Head | Result]) :-

remove_duplicates(Tail, Result).

Ulle Endriss 81

Prolog PSS 2018

Cuts

When executing the subgoals in a rule’s body the so-called parent goal

is the goal that caused the matching of the head of the current rule.

Definition of the functionality of a cut:

Whenever a cut is encountered in a rule’s body, all choices

made between the time that rule’s head has been matched

with the parent goal and the time the cut is passed are final,

i.e., any choicepoints are being discarded.

Ulle Endriss 82

Prolog PSS 2018

Exercise

Using cuts (but without using negation), implement a predicate add/3

to add an element to a list, unless that element already is a member

of the list. Make sure there are no wrong alternative solutions.

Examples:

?- add(elephant, [dog, donkey, rabbit], List).

List = [elephant, dog, donkey, rabbit] ;

No

?- add(donkey, [dog, donkey, rabbit], List).

List = [dog, donkey, rabbit] ;

No

Ulle Endriss 83

Prolog PSS 2018

Solution

add(Element, List, List) :-

member(Element, List), !.

add(Element, List, [Element | List]).

Ulle Endriss 84

Prolog PSS 2018

Problems with Cuts

The predicate add/3 does not work as expected when the last

argument is already instantiated! Example:

?- add(dog, [dog, cat, bird], [dog, dog, cat, bird]).

Yes

We could use the following implementation of add/3 instead:

add(Element, List, Result) :-

member(Element, List), !,

Result = List.

add(Element, List, [Element | List]).

While this solves the problem, it also emphasises that using cuts can

be tricky and affects the declarative character of Prolog . . .

Ulle Endriss 85

Prolog PSS 2018

Summary: Backtracking and Cuts

• Backtracking is the mechanism by which Prolog can find all

alternative solutions to a given query.

• So: Prolog provides the search strategy, not the programmer!

This is why Prolog is called a declarative language.

• Carefully placed cuts (!) can be used to prevent Prolog from

backtracking into certain subgoals. This may make a program

more efficient and/or avoid (wrong) alternative answers.

• But: Cuts destroy the declarative character of a Prolog program

(which, for instance, makes finding mistakes a lot harder).

So use them sparingly!

Ulle Endriss 86

Prolog PSS 2018

Example

Consider the following Prolog program:

animal(elephant).

animal(donkey).

animal(tiger).

And now observe the system’s reaction to the following queries:

?- animal(donkey).

Yes

?- animal(duckbill).

No

Wrong answer? Why?

Ulle Endriss 87

Prolog PSS 2018

The Closed World Assumption

In Prolog, Yes means the statement in question is provably true.

So No just means the statement is not provably true.

This is not the same as to say that the statement is false. We can

only infer that the statement is false if we are willing to assume that

all relevant information is present in our Prolog program.

For the semantics of Prolog programs we usually make this so-called

Closed World Assumption: we assume that nothing outside of the

world described by a given Prolog program exists (is true).

Ulle Endriss 88

Prolog PSS 2018

The \+-Operator

If what we want to know is not whether a given goal succeeds, but

rather whether it fails, we can use the \+-operator (negation).

The goal \+ Goal succeeds if and only if Goal fails. Example:

?- \+ member(17, [1, 2, 3, 4, 5]).

Yes

This is known as negation as failure: Prolog’s negation is defined via

its failure to provide a proof.

Ulle Endriss 89

Prolog PSS 2018

Negation as Failure: Example

Consider the following program:

married(peter, lucy).

married(paul, mary).

married(bob, juliet).

married(harry, geraldine).

single(Person) :-

\+ married(Person, _),

\+ married(_, Person).

Ulle Endriss 90

Prolog PSS 2018

Example (continued)

After compilation, Prolog reacts as follows (recall that Mary is married

to Paul, while our little database does not mention Claudia at all):

?- single(mary).

No

?- single(claudia).

Yes

In the closed world described by our Prolog program, Claudia has to

be single, because she is not known to be married.

Ulle Endriss 91

Prolog PSS 2018

Where to use \+
Note that the \+-operator can only be used to negate goals. These are

either (sub)goals in the body of a rule or (sub)goals of a query .

We cannot negate facts or the heads of rules, because this would

actually constitute a redefinition of the \+-operator (in other words:

an explicit definition of Prolog’s negation, which would not be

compatible with the closed world assumption).

Ulle Endriss 92

Prolog PSS 2018

Connection: Cuts and Negation as Failure

We can implement our own version of the \+-operator by using a cut:

neg(Goal) :- call(Goal), !, fail.

neg(_).

Recall that fail/0 is a built-in predicate that always fails.

The built-in predicate call/1 takes a goal as argument and executes it.

Examples:

?- neg(member(17, [1, 2, 3, 4, 5])).

Yes

?- neg(member(4, [1, 2, 3, 4, 5])).

No

Ulle Endriss 93

Prolog PSS 2018

Disjunction

We have seen conjunction (“and”, comma) and negation (“not”, \+).

We actually also know about disjunction (“or”) already, given that

several rules with the same head amount to a disjunction.

But disjunction can also be implemented directly within one rule by

using the operator ; (semicolon). Example:

parent(X, Y) :- father(X, Y); mother(X, Y).

This is equivalent to the following program:

parent(X, Y) :- father(X, Y).

parent(X, Y) :- mother(X, Y).

Use the disjunction operator sparingly. It tends to make programs

harder to read.

Ulle Endriss 94

Prolog PSS 2018

Summary: Negation and Disjunction

• Closed World Assumption: In Prolog everything that cannot be

proven from the given facts and rules is considered false.

• Negation as Failure: Prolog’s negation operator is implemented as

the failure to provide a proof for a given statement.

• Goals can be negated using the \+-operator .

Always use \+, not the not-operator, as the latter may mean

different things in different Prolog systems.

• A disjunction of goals can be expressed by using ; (semicolon).

(The comma between two subgoals denotes a conjunction.)

Ulle Endriss 95

Prolog PSS 2018

Lecture 6: Additional Features

Ulle Endriss 96

Prolog PSS 2018

Plan for Today

The purpose of this lecture is to introduce some additional features,

going beyond the core of the Prolog language we have covered so far.

• Collecting answers: findall/3 etc.

• Dynamic predicates: assert/1 and retract/1

• Input/output and file handling

The first are control features (just like cuts and negation as failure),

while the other two are often useful for larger programming projects

(important, but not the focus of this course).

Ulle Endriss 97

Prolog PSS 2018

Backtracking and Alternative Answers

Next we are going to see how to collect all alternative answers to a

given query (or goal) in a list.

Assume the following program has been consulted:

student(ann, 44711, pass).

student(bob, 50815, pass).

student(pat, 41018, fail).

student(sue, 41704, pass).

We can get all the answers to a query by forcing Prolog to backtrack:

?- student(Name, _, pass).

Name = ann ;

Name = bob ;

Name = sue ;

No

Ulle Endriss 98

Prolog PSS 2018

Collecting Answers in a List

Instead, the findall/3 predicate can be used to collect these answers

in a single list. Examples:

?- findall(Name, student(Name,_,pass), List).

List = [ann, bob, sue]

Yes

?- findall(Name, student(Name,_,dunno), List).

List = []

Yes

Ulle Endriss 99

Prolog PSS 2018

Specification of findall/3

Schema: findall(+Template, +Goal, -List)

Prolog will search for all possible solutions to the Goal (backtracking).

For every solution found, the necessary instantiations to Template are

made, and these instantiations are collected in the list List.

So Template and Goal should (usually) share one or more variables.

Variables occurring in Goal but not in Template can have any value

(these are not being reported).

Ulle Endriss 100

Prolog PSS 2018

Another Example

Here is again our program:

student(ann, 44711, pass).

student(bob, 50815, pass).

student(pat, 41018, fail).

student(sue, 41704, pass).

An example with a complex goal and a template with two variables:

?- Goal = (student(Name,ID,Grade), ID < 50000),

findall(Name/Grade, Goal, List).

Goal = (student(Name, ID, Grade), ID<50000),

List = [ann/pass, pat/fail, sue/pass]

Yes

Ulle Endriss 101

Prolog PSS 2018

Collecting Answers with bagof/3

The bagof/3 predicate is similar to findall/3, but now the values

taken by variables occurring in the goal but not the template do

matter and a different list is created for every possible instantiation of

these variables. Example:

?- bagof(Name/ID, student(Name,ID,Grade), List).

Grade = fail

List = [pat/41018] ;

Grade = pass

List = [ann/44711, bob/50815, sue/41704] ;

No

Ulle Endriss 102

Prolog PSS 2018

Example with an Unbound Variable

In the following query we say that we are not interested in the value of

ID (by using the ^ operator), but Prolog will still give alternative

solutions for every possible instantiation of Grade:

?- bagof(Name, ID^student(Name,ID,Grade), List).

Grade = fail

List = [pat] ;

Grade = pass

List = [ann, bob, sue] ;

No

Ulle Endriss 103

Prolog PSS 2018

Summary: Collecting Answers

• findall/3 collects all the answers to a given goal that match a

given template in a list. Variables not occurring in the template

may take different values within the list of answers.

• bagof/3 is similar, but generates a different list for every possible

instantiation of the variables not occurring in the template. Use

the Var^ construct to allow for a variable to take different values

within the same list of answers.

• setof/3 works like bagof/3, but will also remove any duplicates

and return lists that are ordered.

• Note that findall/3 returns an empty list if the goal in the

second argument position cannot be satisfied, while bagof/3 and

setof/3 will simply fail. (Observe that this makes sense!)

• Use these predicates sparingly! They tend to tempt people into

writing inelegant and inefficient programs.

Ulle Endriss 104

Prolog PSS 2018

Assert and Retract

Prolog evaluates any queries with respect to a given knowledge base

(your program + definitions of built-in predicates).

It is possible to dynamically add clauses to this knowledge base:

• Executing a goal of the form assert(+Clause) will add the

clause Clause to the Prolog knowledge base.

• Executing retract(+Clause) will remove that clause again.

• Executing retractall(+Clause) will remove all the clauses

matching Clause.

A typical application is to dynamically create and change a database.

In that case, the Clauses usually are facts.

Ulle Endriss 105

Prolog PSS 2018

Database Example

?- assert(zoo(monkey)), assert(zoo(camel)).

Yes

?- zoo(X).

X = monkey ;

X = camel ;

No

?- retract(zoo(monkey)).

Yes

?- zoo(X).

X = camel ;

No

Ulle Endriss 106

Prolog PSS 2018

Dynamic Manipulation of the Program

You can even declare your program predicates as being dynamic and

assert and retract clauses for these predicates.

Example: Suppose we have consulted our “big animals” program from

the first lecture (see next slide for a reminder) and suppose we have

declared bigger/2 as a dynamic predicate . . .

?- is_bigger(camel, monkey).

No

?- assert(bigger(camel,horse)).

Yes

?- is_bigger(camel, monkey).

Yes

Ulle Endriss 107

Prolog PSS 2018

The Big Animals Program

:- dynamic bigger/2.

bigger(elephant, horse).

bigger(horse, donkey).

bigger(donkey, dog).

bigger(donkey, monkey).

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

Ulle Endriss 108

Prolog PSS 2018

Fast Fibonacci

Another application of dynamic predicates would be to store previously

computed answers, rather than to compute them again from scratch

every time they are needed. Example:

:- dynamic fibo/2.

fibo(0, 0). fibo(1, 1).

fibo(N, F) :-

N >= 2, N1 is N - 1, N2 is N - 2,

fibo(N1, F1), fibo(N2, F2), F is F1 + F2,

asserta(fibo(N,F):-!). % assert as first clause

This is much faster than the standard program for the Fibonacci

sequence (= the above program without the last line). However, a

solution with just a single recursive call is even better than this one.

Ulle Endriss 109

Prolog PSS 2018

Summary: Dynamic Predicates

• Use assert/1 to add clauses to the knowledge base and use

retract/1 or retractall/1 to remove them again.

• If the predicate to be asserted or retracted is already in use, then

it needs to be declared as being dynamic first (in SWI-Prolog use

the dynamic directive; this might differ for other systems).

• If the order of clauses in the dynamic knowledge base matters,

there are further predicates such as asserta/1 and assertz/1

that can be used (check the reference manual for details).

• Note: Use with care! Dynamic predicates obfuscate the declarative

meaning of Prolog and make it much harder to check programs

(the same code will behave differently for different dynamic

knowledge bases). Often a sign of poor programming style!

Ulle Endriss 110

Prolog PSS 2018

Input/Output and File Handling

We have already seen how to explicitly write output onto the user’s

terminal using the write/1 predicate. Example:

?- X is 5 * 7, write(’The result is: ’), write(X).

The result is: 35

X = 35

Yes

Now we are also going to see how to read input. In Prolog, input and

output from and to the user are similar to input and output from and

to files, so we deal with these in one go.

Ulle Endriss 111

Prolog PSS 2018

Streams

In Prolog, input and output happen with respect to two streams:

the current input stream and the current output stream. Each of these

streams could be either the user’s terminal (default) or a file.

You can choose the current output stream to be Stream by executing

the goal tell(+Stream). Example:

?- tell(’example.txt’).

Yes

Now write/1 will not write to the user’s terminal anymore, but

instead to the file example.txt:

?- write(’Hello, have a beautiful day!’).

Yes

To close the current output stream, use the command told/0.

Ulle Endriss 112

Prolog PSS 2018

Reading Terms from the Input Stream

The corresponding predicates for choosing and closing an input stream

are called see/1 and seen/0.

To read from the current input stream, use the predicate read/1.

Note: Reading only works if the input stream is a sequence of terms,

each of which is followed by a full stop (like in a Prolog program file).

Ulle Endriss 113

Prolog PSS 2018

Example: Reading Terms from a File
Content of file students.txt:

% Database of students

student(ann, 44711, pass).

student(bob, 50815, pass).

student(pat, 41018, fail).

?- see(’students.txt’).

Yes

?- read(Next).

Next = student(ann, 44711, pass)

Yes

?- read(Next).

Next = student(bob, 50815, pass)

Yes

?- read(Next).

Next = student(pat, 41018, fail)

Yes

?- read(Next).

Next = end_of_file

Yes

?- seen.

Yes

Ulle Endriss 114

Prolog PSS 2018

Example with User Input

Consider the following program:

start :-

write(’Enter a number followed by a full stop: ’),

read(Number),

Square is Number * Number,

write(’Square: ’),

write(Square).

After compilation, it works as follows:

?- start.

Enter a number followed by a full stop: 17.

Square: 289

Yes

Ulle Endriss 115

Prolog PSS 2018

Summary: Input/Output and File Handling

• Input and output use the concept of streams, with the default

input/output stream being the user’s terminal.

• Main predicates:

– see/1: choose an input stream

– seen/0: close the current input stream

– tell/1: choose an output stream

– told/0: close the current output stream

– read/1: read the next term from the input stream

– write/1: write to the output stream

• Using read/1 only works with text files that are sequences of

Prolog terms. To work with arbitrary files, have a look at get/1.

• There are many more input/output predicates in the manual.

Ulle Endriss 116

	Lecture 1: Basic Prolog
	Lecture 2: Working with Lists
	Lecture 3: Working with Numbers
	Lecture 4: Working with Operators
	Lecture 5: Backtracking, Cuts and Negation
	Lecture 6: Additional Features

