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Collective Decision Making

Social choice theory is the philosophical and mathematical study of

methods for collective decision making .

Classically, this is mostly about political decision making. But in fact

the basic principles are relevant to a diverse range of questions:

• How to divide a cake between several children?

• How to assign bandwidth to competing processes on a network?

• How to choose a president given people’s preferences?

• How to combine the website rankings of multiple search engines?

• How to assign student doctors to hospitals?

• How to aggregate the views of different judges in a court case?

• How to extract information from noisy crowdsourced data?

Computational social choice emphasises the fact that any method of

decision making is ultimately an algorithm.
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Example

What would be a good compromise representing the preferences of this

group of five agents over three alternatives?

Agent 1: 4 � # � �
Agent 2: # � � � 4
Agent 3: � � 4 � #

Agent 4: � � 4 � #

Agent 5: # � � � 4

?
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Plan for Today

This will be an introduction to classical results (from the 1950s)

on preference aggregation, followed by a discussion of some recent

generalisations to graph aggregation:

• Examples for voting rules (i.e., preference aggregation rules)

• Axiomatic method: systematic study of properties of rules

• Classical results: May’s Theorem and Arrow’s Theorem

• Graph aggregation: framework, im/possibility results, applications

These slides are available online:

https://staff.science.uva.nl/u.endriss/teaching/paris-2016/

Most of the material is covered in the two papers cited below.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today, College Publications, 2011.

U. Endriss and U. Grandi. Collective Rationality in Graph Aggregation. Proc. 21st

European Conference on Artificial Intelligence (ECAI), 2014.
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Three Voting Rules

In voting, n voters choose from a set of m alternatives by stating their

preferences in the form of linear orders over the alternatives.

Here are three voting rules (there are many more):

• Plurality : elect the alternative ranked first most often

(i.e., each voter assigns 1 point to an alternative of her choice,

and the alternative receiving the most points wins)

• Plurality with runoff : run a plurality election and retain the two

front-runners; then run a majority contest between them

• Borda: each voter gives m−1 points to the alternative she ranks

first, m−2 to the alternative she ranks second, etc.; and the

alternative with the most points wins
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Example: Choosing a Beverage for Lunch

Consider this election with nine voters having to choose from three

alternatives (namely what beverage to order for a common lunch):

2 Germans: Beer � Wine � Milk

3 Frenchmen: Wine � Beer � Milk

4 Dutchmen: Milk � Beer � Wine

Which beverage wins the election for

• the plurality rule?

• plurality with runoff?

• the Borda rule?
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Axiomatic Method

So how do you decide which is the right voting rule to use?

The classical approach is to use the axiomatic method:

• identify good axioms: normatively appealing high-level properties

• give mathematically rigorous definitions of these axioms

• explore the consequences of the axioms

The definitions on the following slide are only sketched, but can be

made mathematically precise (see the paper cited below for how).

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds.), Logic and Philosophy Today. College Publications, 2011.
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May’s Theorem

When there are only two alternatives, then all the voting rules we have

seen coincide. This is usually called the simple majority rule (SMR).

Intuitively, it does the “right” thing. Can we make this precise? Yes!

Theorem 1 (May, 1952) A voting rule for two alternatives satisfies

anonymity, neutrality, and positive responsiveness iff it is the SMR.

Meaning of these axioms:

• anonymity = voters are treated symmetrically

• neutrality = alternatives are treated symmetrically

• positive responsiveness = if x is the (sole or tied) winner and one

voter switches from y to x, then x becomes the sole winner

K.O. May. A Set of Independent Necessary and Sufficient Conditions for Simple

Majority Decisions. Econometrica, 20(4):680–684, 1952.
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Proof Sketch

We want to prove:

A voting rule for two alternatives satisfies anonymity,

neutrality, and positive responsiveness iff it is the SMR.

Proof: Clearly, the simple majority rule has all three properties. X

Other direction: assume #voters is odd (other case: similar) ; no ties

Let a X be the set of voters voting x � y and Y those voting y � x.

Anonymity ; only number of ballots of each type matters. Two cases:

• If |X | = |Y|+ 1, then only x wins. Then, by PR, only x wins

whenever |X | > |Y| and thus, by neutrality , only y wins whenever

|Y| > |X | (which is exactly the simple majority rule). X

• There exist X , Y with |X | = |Y|+ 1 but y wins. Let one x-voter

switch to y. By PR, now only y wins. But now |Y ′| = |X ′|+ 1,

which is symmetric to the first situation, so by neutrality x wins. �
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Condorcet Paradox

Our initial example showed that for three or more alternatives, the

simple majority rule sometimes produces a cycle. Simpler example:

Agent 1: 4 � # � �
Agent 2: � � 4 � #

Agent 3: # � � � 4

This is known as the Condorcet Paradox . Is there a better rule?
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Preference Aggregation

A group of n agents express their preferences by each ranking a set of

m alternatives. An aggregation rule F maps any such profile of

individual preference orders to a single compromise preference order.

Two axioms you may want to impose on aggregation rules F :

• Pareto condition: if all agents rank x above y in the input profile,

then so should the output order returned by F .

• Independence of irrelevant alternatives (IIA): the relative ranking

of x and y in the output order returned by F should only depend

on the relative rankings of x and y in the input profile.

Both axioms apply to all alternatives x and y.
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Arrow’s Theorem

Unfortunately, our requirements are too demanding:

Theorem 2 (Arrow, 1951) Any aggregation rule for > 3 alternatives

that satisfies the Pareto condition and IIA must be a dictatorship.

An aggregation rule F is dictatorship if F always simply copies the

preference order of some fixed dictator (one of the agents).

Remarks:

• Not true for 2 alternatives. Opposite direction also holds.

• Dictatorial does not just mean: outcome = someone’s preference.

Next: Proof (following Geanakoplos, 2005).

K.J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 2nd

edition, 1963. First edition published in 1951.

J. Geanakoplos. Three Brief Proofs of Arrow’s Impossibility Theorem. Economic

Theory, 26(1):211–215, 2005.
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Extremal Lemma

Assume there are > 3 alternatives and F satisfies Pareto and IIA.

Claim: If all agents rank y either top or bottom, then so does F .

Proof: Suppose otherwise, i.e., all agents rank alternative y either top

or bottom, but F does not. Write � for the order returned by F .

(1) Then there exist alternatives x and z such that x � y and y � z.

(2) By IIA, this does not change when we move z above x in every

individual order (as doing so we don’t cross the extremal y).

(3) By Pareto, in the new profile we must have z � x.

(4) But we still have x � y and y � z, so by transitivity we get x � z.

Contradiction. X
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Existence of an Extremal-Pivotal Agent

Fix some alternative y. Call an agent extremal-pivotal if she can push

y from the bottom to the top in the output for at least one profile.

Claim: There exists an extremal-pivotal agent.

Proof: Consider a profile where every agent ranks y at the bottom.

By Pareto, so does F . Let agents switch y to the top, one by one.

By the Extremal Lemma, after each step, y is still extremal in F .

By Pareto, at the end of this process, F ranks y at the top.

So there must be a point where y jumps from the bottom to the top.

The agent making the corresponding switch is extremal-pivotal. X

Let Profy the profile just before the jump and let Prof y be the profile

just after the jump. Let i be the extremal-pivotal agent we found.
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Dictatorship: Part 1

Recall: i is extremal-pivotal for y in Profy (y at bottom for �i and �),

from where she can force Prof y (y at top for �i and �).

Claim: Agent i can dictate the relative ranking under F of any two

alternatives x and z that are different from y.

Proof: Suppose i wants to place x above z.

Let i vote as in Prof y, except that she puts x at the top: x �i y �i z.

Let all others rank y as in Prof y, but otherwise vote as they please.

Consider the resulting profile Prof:

• Note that in Prof all relative rankings of x and y are as in Profy.

So by IIA, we must still have x � y.

• Note that in Prof all relative rankings of y and z are as in Prof y.

So by IIA, we must still have y � z.

By transitivity , we get x � z. By IIA, this continues to hold, if others

change their relative rankings of alternatives other than x and z. X
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Dictatorship: Part 2

Let i still be the extremal-pivotal agent relative to alternative y.

Claim: Agent i can also dictate the relative ranking under F of y and

any other alternative x.

Proof: We can use a similar construction as before to show that for

some alternative z, there must be an agent j that can dictate the

relative ranking of x and y (both different from z).

But in profile Profy, i can dictate the relative ranking of x and y.

As there can be at most one dictator in any situation, we get i = j. X

Thus, agent i in fact is a dictator for any two alternatives, i.e.,

F is dictatorial. This proves Arrow’s Theorem.
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Graph Aggregation

Preferences orders are special types of graps. Let’s generalise!

Fix a finite set of vertices V . A (directed) graph G = 〈V,E〉 based on

V is defined by a set of edges E ⊆ V ×V (thus: graph = edge-set).

Everyone in a finite group of agents N = {1, . . . , n} provides a graph,

giving rise to a profile E = (E1, . . . , En).

An aggregation rule is a function mapping profiles to collective graphs:

F : (2V×V )n → 2V×V

Examples for aggregation rules:

• majority rule: accept an edge iff > n
2 of the agents do

• intersection rule: return E1 ∩ · · · ∩ En

U. Endriss and U. Grandi. Collective Rationality in Graph Aggregation. Proc. 21st

European Conference on Artificial Intelligence (ECAI), 2014.
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Applications

You may need to use graph aggregation in some of these situations:

• Elections: aggregation of preference relations

• Consensus clustering: aggregating outputs (equivalence classes)

generated by different clustering algorithms

• Aggregation of Dungian abstract argumentation frameworks

(graphs of attack relations between arguments)

• Social network analysis: aggregating influence networks

• Epistemology: aggregating Kripke frames for epistemic logics

– aggregation by intersection = distributed knowledge

– aggregation by union = shared knowledge

– aggregation by transitive closure of union = common knowledge
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Collective Rationality

Examples for typical properties a graph may or may not possess:

Reflexivity ∀x.xEx

Symmetry ∀xy.(xEy → yEx)

Transitivity ∀xyz.(xEy ∧ yEz → xEz)

Seriality ∀x.∃y.xEy

Completeness ∀xy.[x 6= y → (xEy ∨ yEx)]

Connectedness ∀xyz.[xEy ∧ xEz → (yEz ∨ zEy)]

Aggregation rule F is collectively rational (CR) for graph property P if,

whenever all individual graphs Ei satisfy P, so does the outcome F (E).

Example: Condorcet Paradox = majority rule not CR for transitivity

I Which aggregation rules are CR for which graph properties?
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Example

Three agents each provide a graph on the same set of four vertices:

•

��

•
��
•
��

•

OO •
��
•

��

•
��

•

GG •
��
•
��
•

}}•

==

1 2 3

If we aggregate using the majority rule, we obtain this graph:

•
��
•
��
•
��

•

Observations:

• Majority rule not collectively rational for seriality .

• But symmetry is preserved.

• So is reflexivity (easy: agents violate it).
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Axioms

Want to study collective rationality for classes of aggregation rules

rather than specific rules (such as the majority rule).

We may want to impose certain axioms on F : (2V×V )n → 2V×V, e.g.:

• Anonymous: F (E1, . . . , En) = F (Eσ(1), . . . , Eσ(n))

• Nondictatorial : for no i? ∈ N you always get F (E) = Ei?

• Unanimous: F (E) ⊇ E1 ∩ · · · ∩ En

• Grounded: F (E) ⊆ E1 ∪ · · · ∪ En

• Neutral : NE
e = NE

e′ implies e ∈ F (E)⇔ e′ ∈ F (E)

• Independent: NE
e = NE′

e implies e ∈ F (E)⇔ e ∈ F (E′)

For technical reasons, we’ll restrict some axioms to nonreflexive edges.

Notation: NE
e = {i ∈ N | e ∈ Ei} = coalition accepting edge e in E
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Basic Results

Proposition 3 Every unanimous aggregation rule is CR for reflexivity.

Proof: If every individual graph includes edge (x, x), then unanimity

ensures the same for the collective outcome graph. X

Proposition 4 Every grounded aggregation rule is CR for irreflexivity.

Proof: Similar. X

Proposition 5 Every neutral aggregation rule is CR for symmetry.

Proof: If (x, y) and (y, x) have the same support, neutrality ensures

that either both or neither are accepted. X
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General Impossibility Theorem

Terminology: Arrovian = independent + unanimous + grounded

Theorem 6 (Endriss and Grandi, 2014) Any Arrovian aggregation

rule for > 3 vertices that is CR for some contagious, implicative and

disjunctive graph property must be dictatorial on nonreflexive edges.

Sketchy definition of the meta-properties of graphs used here:

• Implicative ≈ [
∧

S+ ∧ ¬
∨
S−]→ [e1 ∧ e2 → e3]

• Disjunctive ≈ [
∧
S+ ∧ ¬

∨
S−]→ [e1 ∨ e2]

• Contagious ≈ for every accepted edge, there are some conditions

under which also one of its “neighbouring” edges is accepted

Example:

• Transitivity is contagious and implicative

• Completeness is disjunctive

}
⇒ Arrow’s Theorem

Ulle Endriss 23



Theory of Aggregation 1 LIP6, March 2016

Application: Preference Aggregation in AI

As an immediate corollary to our theorem, we get Arrow’s Theorem

(both for strict linear orders and for weak orders).

Arrow’s Thm does not hold for for partial-order preferences (popular

in AI), as the intersection rule has all the required properties. But:

Theorem 7 (Pini et al., 2009) Any preference aggregation rule for

preorders with maximal elements for three or more alternatives that is

Arrovian must be a dictatorship.

Preorders are reflexive and transitive. Having a maximal element

means that at least one alternative is as good as any other.

Proof: Transitivity is contagious and implicative. Maximal element

property is a disjunctive. Irreflexivity of the input together with

groundedness means that any NR-dictator is actually a full dictator. X

M.S. Pini, F. Rossi, K.B. Venable, and T. Walsh. Aggregating Partially Ordered

Preferences. Journal of Logic and Computation, 19(3):475–502, 2009.
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Application: Consensus Clustering

Clustering algorithms try to partition data points into clusters.

Output is an equivalence relation (equivalent = in same cluster).

Don’t want a trivial clustering, where every point is its own cluster.

Consensus clustering is about finding a compromise between the

solutions suggested by several algorithms: need to use aggregation.

Theorem 8 Any aggregation rule for nontrivial equivalence relations

on three or more data points that is Arrovian must be a dictatorship.

Proof: Transitivity is both contagious and implicative, while the

nontriviality condition is disjunctive (disjunction over all edges).

Reflexivity of the input together with unanimity means that any

NR-dictator is actually a full dictator. X
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Last Slide

This has been an introduction to classical preference aggregation as

studied in social choice theory, as well as to its generalisation in the

form of graph aggregation. Topics covered:

• Examples for voting rules (i.e., preference aggregation rules)

• Axiomatic method: systematic study of properties of rules

• Classical results: May’s Theorem and Arrow’s Theorem

• Graph aggregation: framework, im/possibility results, applications

Next week we will review judgment aggregation (again more general)

and discuss an application of collective annotation via crowdsourcing.

Again, the slides are available online:

https://staff.science.uva.nl/u.endriss/teaching/paris-2016/
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