Mark Allen Satterthwaite:

"Strategy-Proofness and Arrow's Conditions: Existence and Correspondence Theorems for Voting Procedures and Social Welfare Functions"

(in: Journal of Economic Theory, vol. 10, pp. 187-217 (1975)

Stefan Eichinger

June 23, 2009

Overview of the presentation

- 1. Biographical sketch of the author
- 2. Terminology & key concepts
- 3. Proof of the existence theorem for strategy-proof strict voting procedures
- 4. Discussion pointers

Overview of the presentation

- 1. Biographical sketch of the author
- 2. Terminology & key concepts
- 3. Proof of the existence theorem for strategy-proof strict voting procedures
- 4. Discussion pointers

Mark (Allen) Satterthwaite

• <u>Academic career:</u>

- 1973: PhD in Economics from University of Wisconsin, Madison
- since then: faculty at Kellog School of Management, Northwestern University

• <u>Areas of expertise:</u>

competition in healthcare, healthcare management, strategy, voting systems

- <u>"Strategy-Proofness and Arrow's Conditions":</u>
- originated from his PhD thesis: *The Existence of a Strategy Proof Voting Procedure: A Topic in Social Choice Theory* (1973);
- => Gibbard-Sattherthwaite Theorem (independently from Allan Gibbard)
- this paper written after reading Gibbard's proof of the theorem (cf. sec. 4&5)

Overview of the presentation

- 1. Biographical sketch of the author
- 2. Terminology & key concepts
- 3. Proof of the existence theorem for strategy-proof strict voting procedures
- 4. Discussion pointers

The existence theorem for strategy-proof voting procedures

• <u>Terminology & concepts:</u>

- a committee is a set I_n of $n \ge 1$ individuals;
- an alternative set S_m is a set of $m \ge 3$ elements/alternatives;
- for each individual $i \in I_n$, there is a weak ordering R_i (i.e., reflexive, transitive, complete) on S_m called a preference ordering;
- if $x, y \in S_m$, $i \in I_n$, then $x \mathbf{R}_i y$ and $x \mathbf{R}_i y$ mean "individual *i* prefers *x* over *y*" and "individual *i* prefers *x* over *y* or is indifferent between *x* and *y*" respectively;
- π_m ... the set of all possible preference orderings (with respect to S_m);
- π_m^n ... the *n*-ary Cartesian product of π_m ;
- for each individual $i \in I_n$, there is a weak ordering B_i on S_m (i.e., $B_i \in \pi_m$) called a ballot;
- $B = (B_1, ..., B_n)$... the ballot set composed of ballots $B_1, ..., B_n$;
- a voting procedure for *n* individuals and *m* alternatives is a function v^{nm} : $\pi_m^n \to T_p \subseteq S_m$ (for
- $1 \le p \le m$ [intuitively: v^{nm} selects for each ballot set *B* the elected alternative $x \in S_m$];
- $\langle I_n, S_m, v^{nm}, T_p \rangle$... the committee's structure.

Terminology & concepts continued ...

• <u>Definition of strategy-proofness:</u>

An individual $i \in I_n$ can manipulate a voting procedure v^{nm} at ballot set $B = (B_1, ..., B_n)$ iff there is a ballot B_i such that $v^{nm}(B_1, ..., B_i^{'}, ..., B_n) B_i v^{nm}(B_1, ..., B_i, ..., B_n)$.

A voting procedure v^{nm} is manipulable at ballot set $B = (B_1, ..., B_n)$ if there is an individual $i \in I_n$ that can manipulate v^{nm} at B.

A voting procedure v^{nm} is strategy-proof iff there is no ballot set *B* at which it is manipulable.

Example: $B_i = R_i$... sincere strategy vs $B_i' \neq R_i$... sophisticated strategy

• <u>Restriction D:</u>

Consider a committee structure $\langle I_n, S_m, v^{nm}, T_p \rangle$. If this structure is subject to Restriction D then only preference sets $R = (R_1, ..., R_n) \in \rho_m{}^n$ and ballot sets $B = (B_1, ..., B_n) \in \rho_m{}^n$ are admissible. [Here $\rho_m{}^n$ is the n-ary Cartesian product of ρ_m , which is the set of all possible strong preference orderings.]

- A committee subject to Restriction D is called a strict committee. The corresponding voting procedure is called a strict voting procedure.

Terminology & concepts continued ...

• <u>Three useful functions:</u>

Informally, a choice function Ψ_W is a function (defined for any $W \subset S_m$) which selects for each ballot B_i those alternatives from W ranked highest in the ordering B_i . Informally, a reduction function θ_W is a function (defined for any $W \subset S_m$) which outputs for each weak ordering $C_i \in \pi_m$ a weak ordering $D_i \in \pi_m$ that is identical with C_i after removing from it any alternative not in W.

Informally, a dictator function f_T^i is a function which, for any ballot set *B*, selects from T_p that alternative which individual *i* has ranked highest on ballot B_i .

• <u>Definition of dictatorship:</u>

A voting procedure is dictatorial iff there is an individual $i \in I_n$ such that $v^{nm}(B) = f_T^i(B)$ for any $B \in \pi_m^{n}$.

Two variants of dictatorship: $T_p = S_m$ (fully dictatorial v.p.), $T_p \subset S_m$ (partially dictatorial v.p.).

Overview of the presentation

- 1. Biographical sketch of the author
- 2. Terminology & key concepts
- 3. Proof of the existence theorem for strategy-proof strict voting procedures
- 4. Discussion pointers

The existence theorem

• <u>Theorem 1(Gibbard-Satterthwaite):</u>

Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T_p \rangle$ where $n \ge 1$ and $m \ge p \ge 3$. The voting procedure v^{nm} is strategy-proof iff it is dictatorial.

Proof (outline): (<=): immediate.</pre>

(=>): using Lemmas 5&6.

• <u>Lemma 5:</u>

Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T_p \rangle$ where $n \ge 1$, $m \ge 3$ and $p \ge 1$. If v^{nm} is strategy-proof, then it is either fully dictatorial or strongly alternative.

<u>Proof (outline)</u>: 3 parts: - base step (n = 1, m = 3)- induction on *n* [only a sketch] - induction on *m* [not in the paper]

=> We will start with the base case (Lemmas 1&2) and then do induction on n (Lemmas 3&4).

The base step (n = 1, m = 3):

• <u>Definition of weak and strong alternative-exclusion:</u> A voting procedure v^{nm} is weak alternative-excluding iff $T_p \subset S_m$.

Given a strict committee structure $\langle I_n, S_m, v^{nm}, T = T_p \rangle$, the strict voting procedure v^{nm} satisfies Condition U iff, for any $B = (B_1, ..., B_n) \in \rho_m{}^n$ such that $\Psi_T(B_1) = \Psi_T(B_2) = ...$ $= \Psi_T(B_n)$, then $v^{nm}(B) = \Psi_T(B_1)$. [= a Pareto optimality condition]

A voting procedure v^{nm} is strong alternative-excluding iff it is weak-alternative excluding and satisfies Condition U.

• <u>Lemma 1:</u>

Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T = T_p \rangle$ where $n \ge 1$, $m \ge 3$ and $p \ge 1$. If v^{nm} is strategy-proof, then it satisfies Condition U.

Proof:

Suppose that v^{nm} is strategy-proof and does not satisfy Condition U. Then there is an $x \in T_p$ and $C \in \rho_m^{n}$ such that $\Psi_T(C_1) = \Psi_T(C_2) = \ldots = \Psi_T(C_n)$, but $v^{nm}(C) \neq \Psi_T(C_1)$.

Lemma 1:

Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T = T_p \rangle$ where $n \ge 1$, $m \ge 3$ and $p \ge 1$. If v^{nm} is strategy-proof, then it satisfies Condition U.

We have: $\Psi_T(C_1) = \Psi_T(C_2) = ... = \Psi_T(C_n)$, but $v^{nm}(C) \neq \Psi_T(C_1)$.

=> since $\Psi_T(C_1) \in T_p$, there is a $D \in \rho_m^n$ such that $v^{nm}(D) = \Psi_T(C_1)$.

=> Consider the following sequence *S*(*C*, *D*):

$$\begin{split} v^{nm}(C_1, C_2, \dots, C_n) \neq \Psi_T(C_1). \\ v^{nm}(D_1, C_2, \dots, C_n) \\ & \dots \\ v^{nm}(D_1, \dots, D_{i-1}, C_i, C_{i+1} \dots, C_n) \\ v^{nm}(D_1, \dots, D_{i-1}, D_i, C_{i+1} \dots, C_n) \\ v^{nm}(D_1, \dots, D_{n-1}, C_n) \\ v^{nm}(D_1, \dots, D_{n-1}, D_n) = \Psi_T(C_1). \end{split}$$

=> At some point in S(C, D), the outcome must change from $\neg \Psi_T(C_1)$ to $\Psi_T(C_1)$. Let's say this happens at individual $i \in I_n$:

$$v^{nm}(D_1, ..., D_{i-1}, C_i, C_{i+1}, ..., C_n) = x \neq \Psi_T(C_1).$$

 $v^{nm}(D_1, ..., D_{i-1}, D_i, C_{i+1}, ..., C_n) = \Psi_T(C_1).$

Lemma 1:

Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T = T_p \rangle$ where $n \ge 1, m \ge 3$ and $p \ge 1$. If v^{nm} is strategy-proof, then it satisfies Condition U.

We have:
$$v^{nm}(D_1, ..., D_{i-1}, C_i, C_{i+1}, ..., C_n) = x \neq \Psi_T(C_1).$$

 $v^{nm}(D_1, ..., D_{i-1}, D_i, C_{i+1}, ..., C_n) = \Psi_T(C_1).$

- => Then the following scenario is possible: $C_i = R_i$ (i.e., C_i represents *i*'s sincere strategy and D_i represents *i*'s sophisticated strategy).
- => Thus, *v*^{*nm*} is manipulable and consequently is not strategy-proof. Contradiction. So, *v*^{*nm*} satisfies Condition U.

Using Lemma 1 we obtain ...

• <u>Lemma 2:</u>

Consider a strict committee structure $\langle I_1, S_3, v^{1,3}, T = T_p \rangle$ where $l \le p \le 3$. If $v^{1,3}$ is strategy-proof, then it is either fully dictatorial or strong alternative-excluding.

<u>Proof:</u> By contradiction & case distinctions. Lemma 1 covers the case where $v^{1,3}$ does not satisfy Condition U.

The inductive step on *n*:

As a preliminary step, observe that any $v^{n,3}$ can be represented as an *n*-dimensional table. For example, for n = 2 we could have Table I:

		1	$1^{2,3}(B_1, E_1)$	3 ₂)				
		B ₁						
		(x y z)	$(x \ z \ y)$	(y x z)	(y z x)	(z x y)	(z y x)	
	$(x \ y \ z)$	x	x	У	У	У	У	
	(x z y)	x	x	У	У	У	у	
B ₂	$(y \ x \ z)$	у	у	x	x	x	x	
	(y z x)	У	z	x	x	x	x	
	$(z \ x \ y)$	у	у	x	x	x	x	
	(z y x)	У	У	x	x	x	x	

The inductive step continued ...

Alternatively, the same information can be represented as shown in Table II:

				TABLE	EII								
$v^{2,3}(B_1, B_2)$													
$v^{2,3}(B_1, B_2) = \begin{cases} v_1^{1,3}(B_1) \text{ if } B_2 = (x \ y \ z) \\ v_2^{1,3}(B_1) \text{ if } B_2 = (x \ z \ y) \\ v_3^{1,3}(B_1) \text{ if } B_2 = (y \ x \ z) \\ v_4^{1,3}(B_1) \text{ if } B_2 = (y \ z \ x) \\ v_5^{1,3}(B_1) \text{ if } B_2 = (z \ x \ y) \\ v_5^{1,3}(B_1) \text{ if } B_2 = (z \ x \ y) \end{cases}$													
Where				(6 (2	1, n 2 ₂		,						
			$v_{1}^{1,3}$	$v_{2}^{1,3}$	$v_{s}^{1,3}$	$v_4^{1,3}$	$v_{5}^{1,3}$	$v_{6}^{1,3}$					
		$(x \ y \ z)$	x	x	У	У	У	У					
		$(x \ z \ y)$	x	x	У	z	У	У					
	R	$(y \ x \ z)$	v	У	x	x	x	x					
	D_1	(y z x)	У	У	x	x	x	x					
		$(z \ x \ y)$	У	У	x	x	x	x					
		(z y x)	y	у	x	x	x	x					

The inductive step continued ...

• <u>Lemma 3:</u>

Consider a strict committee structure $\langle I_{n+1}, S_3, v^{n+1,3}, T_p \rangle$ where $n \ge 1$ and $1 \le p \le 3$. Let $B = (B_1, \ldots, B_n)$. Then $v^{n+1,3}$ can be represented as shown below, where $v_1^{n,3}, \ldots, v_6^{n,3}$ are strict voting procedures for committees with *n* members.

No ballot set $(B, B_{n+1}) \in \pi_m^{n+1}$ exists at which any individual $i \in I_n$ (individual n+1 being excluded) can manipulate $v^{n+1,3}$ iff each of each of $v_1^{n,3}, \dots, v_6^{n,3}$ is strategy-proof.

$$v^{n+1.3}(B, B_{n+1}) = \begin{cases} v_1^{n,3}(B) & \text{if } B_{n+1} = (x \ y \ z) \\ v_2^{n,3}(B) & \text{if } B_{n+1} = (x \ z \ y) \\ \dots \\ v_6^{n,3}(B) & \text{if } B_{n+1} = (z \ y \ x) \end{cases}$$

<u>To show</u>: no ballot set $(B_n, B_{n+1}) \in \pi_m^{n+1}$ exists at which any individual $i \in I_n$ (individual n+1 being excluded) can manipulate $v^{n+1,3}$ iff each of each of $v_1^{n,3}, \dots, v_6^{n,3}$ is strategy-proof.

Proof:

(=>) By contradiction.

Suppose $v^{n+1,3}$ is strategy-proof for all individuals $j \in I_n$, but some $v_k^{n,3}$ $(1 \le k \le 6)$ is not strategy-proof for some individual $i \in I_n$. Suppose that k = 1.

- => There is some ballot set $B = (B_1, ..., B_n)$ and ballot B_i ' such that $v_1^{n,3}(B_1, ..., B_i', ..., B_n)$ $B_i v_1^{n,3}(B_1, ..., B_i, ..., B_n)$.
- => Let individual n+1 cast the ballot $B_{n+1}(x, y, z)$.
- => Repeated substitution yields v^{n+1,3}(B', B_{n+1}) B_i v^{n+1,3}(B, B_{n+1}). Hence, v^{n+1,3} is manipulable at (B, B_{n+1}). Contradiction. This concludes the necessary part.

(<=) By contradiction.

Suppose all of $v_1^{n,3}$, ..., $v_6^{n,3}$ $(1 \le k \le 6)$ are strategy-proof for all individuals $j \in I_n$, but $v^{n+1,3}$ is not strategy-proof for some individual $i \in I_n$ [where $v_1^{n,3}$, ..., $v_6^{n,3}$ are the constituents of $v^{n+1,3}$].

We have: Suppose all of $v_1^{n,3}$, ..., $v_6^{n,3}$ $(1 \le k \le 6)$ are strategy-proof for all individuals $j \in I_n$, but $v^{n+1,3}$ is not strategy-proof for some individual $i \in I_n$ [where $v_1^{n,3}$, ..., $v_6^{n,3}$ are the constituents of $v^{n+1,3}$].

- => There is some ballot set $(B, B_{n+1}) = (B_1, ..., B_i, ..., B_n, B_{n+1})$ and ballot B_i ' such that $v^{n+1,3}(B', B_{n+1}) \mathbf{B}_i v^{n+1,3}(B, B_{n+1})$.
- => Let individual n+1 cast the ballot $B_{n+1}(x, y, z)$.
- => Repeated substitution yields $v_1^{n,3}(B') B_i v^{n,3}(B)$. Hence, $v_1^{n,3}$ is not strategy-proof. Contradiction. Thus, the sufficiency part is proved too.

However, Lemma 3 gave us only a necessary condition for constructing a strategy-proof voting procedure $v^{n+1,3}$. Under certain circumstances, individual n+1 can manipulate the voting procedure.

=> Lemma 4 establishes a necessary condition for $v^{n+1,3}$ to be strategy-proof.

The inductive step continued ...

• <u>Lemma 4:</u>

Consider a strict committee $\langle I_{n+1}, S_3, v^{n+1,3}, T_p \rangle$ where $n \ge 1$ and $1 \le p \le 3$. If every strategy-proof strict voting procedure $v^{n,3}$ is either fully dictatorial or strong alternative-excluding, then a necessary condition for $v^{n+1,3}$ to be strategy-proof is that it be either fully dictatorial or strong alternative-excluding.

<u>Proof:</u> Let us first fix some terminology:

 V^{n+1} ... the set of all strict voting procedures $v^{n+1,3}$; $H^{n+1} \subset V^{n+1}$... the set of all strict voting procedures $v^{n+1,3}$ that are fully dictatorial or strong alternative-excluding;

Define V^n and H^n accordingly for the case of n individuals.

 $W^{n+1} \subset V^{n+1}$... the set of all strict voting procedures $v^{n+1,3} \in V^{n+1}$ that are constructed from voting procedures $v^{n,3} \in H^n$, that is, all constituents $v^{n,3}$ are in H^n ; $V^{n+1*} \subset V^{n*}$... the sets of all strategy-proof strict voting procedures contained in V^{n+1} and V^n respectively.

 H^{n+1} ... fully dictatorial or s.a.e. // W^{n+1} ... constructed // V^{n+1*} ... strategy-proof

Assume that $V^{n^*} \subset H^{n}$.

- => By Lemma 3, $V^{n+1*} \subset W^{n+1}$.
- => Every $v^{n+1,3} \in V^{n+1*}$ can be identified by repeatedly partitioning W^{n+1} and discarding those subsets which are disjoint with V^{n+1*} .
- => The partitioning is done into 7 classes:

$$v^{n,3}(B) = f_T^i(B)$$
 where $T = S_3$ and $i \in I_n$,

- $v^{n,3}(B) = h_K^{n,3}(B) = x,$ (15)
- $v^{n,3}(B) = h_L^{n,3}(B) = y, (16)$

 $v^{n,3}(B) = h_M^{n,3}(B) = z,$ (17)

 $v^{n,3}(B) = h_N^{n,3}(B),$ (18)

(14)
$$v^{n,3}(B) = h_P^{n,3}(B)$$
, and (19)

$$v^{n,3}(B) = h_0^{n,3}(B), \tag{20}$$

 H^{n+1} ... fully dictatorial or s.a.e. // W^{n+1} ... constructed // V^{n+1*} ... strategy-proof & contained

=> Thus, we get the following classes at the first level of W^{n+1} :

$$\mathscr{W}_{1}^{n+1} = \{ v^{n+1,3} \mid v^{n+1,3} \in \mathscr{W}^{n+1} \& v^{n+1,3}[B, (x \ y \ z)] = f_{T}^{i}(B)$$

where $T = S_{3}$ and $i \in I_{n} \},$ (21)

$$\mathscr{W}_{2}^{n+1} = \{ v^{n+1,3} \mid v^{n+1,3} \in \mathscr{W}^{n+1} \& v^{n+1,3}[B, (x \ y \ z)] = h_{\mathcal{K}}^{n,3}(B) \}, \quad (22)$$

$$\mathscr{W}_{3}^{n+1} = \{ v^{n+1,3} \mid v^{n+1,3} \in \mathscr{W}^{n+1} \& v^{n+1,3}[B, (x \ y \ z)] = h_{L}^{n,3}(B) \}, \quad (23)$$

$$\mathscr{W}_{7}^{n+1} = \{ v^{n+1,3} \mid v^{n+1,3} \in \mathscr{W}^{n+1} \& v^{n+1,3}[B, (x \ y \ z)] = h_{0}^{n,3}(B) \}.$$
(24)

 H^{n+1} ... fully dictatorial or s.a.e. // W^{n+1} ... constructed // V^{n+1*} ... strategy-proof & contained

=> We then have two establish for every such class whether it is disjoint with V^{n+1*}. For example,

$$W^{n+1}_{27} = \{v^{n+1,3} \mid v^{n+1,3} \in W^{n+1}_{2} \& v^{n+1,3} [B, (x, y, z)] = h^{n,3}_{Q} (B)\}.$$

Let individual *n*+1 have preferences and sincere strategy $R_{n+1} = (x \ z \ y)$ and let the other individuals cast ballots $B_1 = B_2 = \dots = B_n = (z \ y \ x)$.

- => $v^{n+1, 3}[B, (x, y, z)] = h^{n, 3}Q(B) = y$. This is the least favourable outcome for n+1.
- => By employing the sophisticated strategy B_{n+1} ' = $(x \ y \ z)$, we get $v^{n+1,3}[B, (x, y, z)] = h^{n,3}_{K}(B) = x$.
- => Thus, every $v^{n+1,3} \in W^{n+1}_{27}$ is not strategy-proof. So, W^{n+1}_{27} will be discarded.

 H^{n+1} ... fully dictatorial or s.a.e. // W^{n+1} ... constructed // V^{n+1*} ... strategy-proof

⇒ Satterthwaite claims that this procedure yields 17 subsets of W_{n+1} that are not disjoint with V^{n+1*} . Furthermore, it can be checked that the elements of these subsets are all either fully dictatorial or strong alternative-excluding.

=> <u>Lemma 5:</u>

Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T_p \rangle$ where $n \ge 1$, $m \ge 3$ and $p \ge 1$. If v^{nm} is strategy-proof, then it is either fully dictatorial or strongly alternative-excluding.

=> <u>Lemma 6:</u>

Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T = T_p \rangle$ where $n \ge 2, m \ge 3$ and $p \ge 1$, and $m \ge p$. If v^{nm} is a strategy-proof and two ballot sets $C, D \in \rho_m^{n}$ have the property that, for all $i \in I_n$, $\theta_T(C_i) = \theta_T(D_i)$, then $v^{nm}(C) = v^{nm}(D)$.

<u>Theorem 1(Gibbard-Satterthwaite)</u>: Consider a strict committee structure $\langle I_n, S_m, v^{nm}, T_p \rangle$ where $n \ge 1$ and $m \ge p \ge 3$. The voting procedure v^{nm} is strategy-proof iff it is dictatorial.

(=>): Suppose *v*^{*nm*} is strategy-proof. By Lemma 5, if *v*^{*nm*} is strategy-proof, then it is either fully dictatorial or strong alternative-excluding.

<u>To show:</u> If v^{nm} is strategy-proof and strong alternative-excluding then it is partially dictatorial.

- => Assume that v^{nm} is strategy-proof, strong alternative-excluding and has range $T = T_p$. Rewrite each ballot $B_i \in \rho_m^n$ as $B_i^* \in \rho_p^n$ (where $B_i^* = \theta_T(B_i)$).
- => Consider any distinct $C, D \in \rho_m^n$ such that $[\theta_T(C_1), \dots, \theta_T(C_n)] = [\theta_T(D_1), \dots, \theta_T(D_n)]$. By Lemma 6, $v^{nm}(C) = v^{nm}(D)$.
- => There exists a v^{np} such that, for all $B \in \rho_m^n$, $v^{np}[\theta_T(B_1), \dots, \theta_T(B_n)] = v^{nm}(B_1, \dots, B_n)$.
- => Since v^{nm} is strategy-proof, so is v^{np} . By Lemma 5, it is either dictatorial or strong alternativeexcluding. It cannot be the latter. Thus, v^{np} is dictatorial. From this it follows that v^{nm} is partially dictatorial.

Overview of the presentation

- 1. Biographical sketch of the author
- 2. Terminology & key concepts
- 3. Proof of the existence theorem for strategy-proof strict voting procedures
- 4. Discussion pointers

Points for discussion

- For the proof of Lemma 4, a great number of partition classes need to be checked. (Satterthwaite refers us to his thesis.) Is there any principled means of eliminating candidate classes?
- In section 3 (pp. 193-4), Satterthwaite briefly considers the case of S_2 and mentions two further strategy-proof voting procedures. Are these all or can there be others?
- In section 4 (pp. 207-8) Satterthwaite expresses the opinion that the correspondence theorem establishes a new conceptual foundation/justification for Arrow's condition: constructing SWFs satisfying rationality, (IIA), (CS), (NNR) is equivalent to constructing a strategy-proof voting procedure. How does this observation relate to arguments against Arrow's condition (e.g. rationality or (IIA))?

