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Abstract

The talk will present epistemic probability models with probabilistic updates, and will dis-
cuss an implementation that allows model checking the results of updates in a multi-agent set-
ting.

I will also try to convey the attractions of functional programming.



How are Logic and Probability Theory Related?

• Logic = Reasoning about Certainty

• Probability Theory = Reasoning about Uncertainty

• Wikipedia defines Epistemic or Bayesian probability as “... an
extension of propositional logic that enables reasoning with hy-
potheses, i.e., the propositions whose truth or falsity is uncertain.”

• But logic has something to say, too, about reasoning under uncer-
tainty: epistemic logic, doxastic logic, default logic, . . .

• How are all these enterprises related?



The Usefulness of Probability Theory



Quote from [BH14]:

“Life: Life is uncertain, and probability is the logic of uncer-
tainty. While it isn’t practical to carry out a formal probabil-
ity calculation for every decision made in life, thinking hard
about probability can help us avert some common fallacies,
shed light on coincidences, and make better predictions.”



Prime example: probability of having disease D after positive test

You are from a population with a statistical chance of 1 in 100 of
having disease D. The initial screening test for this has a false positive
rate of 0.2 and a false negative rate of 0.1. You tested positive (T).



Should you believe you have disease D?

• You reason: if I test positive then, given that the test is quite
reliable, the probability that I have D is quite high. So I believe
that I have D.

• You use pen and paper and calculate:

P (D|T ) = P (T |D)P (D)

P (T )
=

P (T |D)P (D)

P (T |D)P (D) + P (T |¬D)P (¬D)

Filling in P (T |D) = 0.9, P (D) = 0.01, P (¬D) = 0.99, P (T |¬D) =

0.2 gives P (D|T ) = 1
23. You don’t believe you have D but you

agree to undergo further testing.



Analysis

“Now the discrepancy between 4% and 80 or 90% is no small matter,
particularly if the consequence of an error involves either unnecessary
surgery or (in the reverse case) leaving a cancer untreated. But deci-
sions similar to these are constantly being made based upon ”intuitive
feel” – i.e., without the benefit of paper and pen, let alone Bayesian
networks (which are simpler to use than paper and pen!).” [KN11]



Amos Tversky and Daniel Kahneman [TK74].



Successes and Failures of Probabilistic Analysis

The German tank problem Given a list of serial numbers of tanks
that were captured or destroyed, estimate the total number of
tanks. Find an estimate of the number of tanks produced each
month. The probabilistic analysis of this turned out to be vastly
more reliable than the intelligence estimates.



Successes and Failures of Probabilistic Analysis

The German tank problem Given a list of serial numbers of tanks
that were captured or destroyed, estimate the total number of
tanks. Find an estimate of the number of tanks produced each
month. The probabilistic analysis of this turned out to be vastly
more reliable than the intelligence estimates.

Statistical estimate for tanks produced in August 1942: 327. In-
telligence estimate: 1550. German records: 342.



People v. Collins Testimony of bystanders on a robbery committed
in Los Angeles in 1968. Robbery was committed by a black male,
with a beard and moustache, and a caucasian female with blonde
hair tied in a ponytail. They had escaped in a yellow motor car.

The prosecutor invited the jury to calculate the probability that
a pair who fitted the description were not the robbers, by mul-
tiplication. Black man with beard: 1 in 10, white woman with
ponytail, 1 in 10, and so on.

The jury accepted this and the pair was convicted. (Fortunately,
the conviction was overruled after appeal.)

See Wikipedia for a description, and [KN11] for a Bayesian anal-
ysis of the fallacy.



Lucia de B(erk) Probabilistic analysis of unexpected deaths in the
Juliana Children’s Hospital in The Hague. Same pattern of rea-
soning as in People v. Collins . . .



The Drake Equation Probabilistic argument for estimating the num-
ber of active, radio-communicative extraterrestial civilizations in
the Milky Way galaxy (Frank Drake, 1961).



The Drake Equation Probabilistic argument for estimating the num-
ber of active, radio-communicative extraterrestial civilizations in
the Milky Way galaxy (Frank Drake, 1961).

Also see: the Fermi question.



The Drake Equation Probabilistic argument for estimating the num-
ber of active, radio-communicative extraterrestial civilizations in
the Milky Way galaxy (Frank Drake, 1961).

Also see: the Fermi question.



“Where is everybody?”



Belief and Probability

In the perspective of epistemic logic, our body of knowledge consists
of true facts that we are certain about. But in the practice of everyday
life and in the pursuit of science such absolute certainty is very rare.

• Can I safely cross this road?

• Should I bring my umbrella?

• Can I trust this bank?

• Is it safe to order from this cheap website?

• Can I trust this estimate of the mass of the planet Saturn?1

1Pierre Simon Laplace made a famous calculation of this, including an estimate for the uncertainty, using the astro-
nomical data that were available to him in the early Nineteenth Century.



Decision Making under Uncertainty

An agent faces a choice between a finite number of possible courses
of action a1, . . . , an. The agent is uncertain about the state of the
world: she considers states s1, . . . , sm possible. There is a table of
consequences c, with c(si, aj) giving the consequences of performing
action aj in state si.

Suppose there is a preference ordering R on the consequences, with
cRc′ expressing that either the agent is indifferent between c and c′, or
the agent strictly prefers c to c′. Assume R is transitive and reflexive.
Then define cPc′ as cRc′∧¬c′Rc, so that cPc′ expresses that the agent
strictly prefers c to c′. The relation P is transitive and irreflexive.

A utility function u : C → R represents R if u satisfies u(c) ≥ u(c′)

iff cRc′.

How can the agent pick the best available action?



The Von Neuman and Morgenstern Decision Tool

Von Neumann and Morgenstern [NM44] showed how to turn this into
a tool for decision making if one adds a probability measure P on the
state set. So assume P (si) ≥ 0 and

∑n
i=1 P (si) = 1. Then a utility

function u on the consequences induces a utility function U on the
actions, by means of

U(aj) =

n∑
i=1

P (si)u(si, aj).

A rational agent who disposes of a utility function u representing her
preferences and a probability measure on what she thinks is possible
will perform the action aj that maximizes U(aj) . . .

This is the reason why expositions of probability theory often make
strong claims about the applicability of their subject.



Varieties of Belief

• Betting belief (or: Bayesian belief) in ϕ: P (ϕ) > P (¬ϕ). Com-
pare [ER14].

• Threshold belief in ϕ: P (ϕ) > t, for some specific t with 1
2 ≤

t < 1. Also known as Lockean belief.

• Stable belief in ϕ: For all consistent ψ: P (ϕ|ψ) > P (¬ϕ|ψ)
(Hannes Leitgreb [Lei10]).

• Strong belief in ϕ. Defined for plausibility models, e.g., locally
connected well-preorders. An agent strongly believes in ϕ if ϕ is
true in all most plausible accessible worlds. This yields a KD45
notion of belief (reflexive, euclidean, and serial).

• Subjective certainty belief in ϕ: P (ϕ) = 1. This is a notion used
in epistemic game theory [Aum99].



The Lottery Puzzle

If Alice believes of each of the tickets 000001 through 111111 that
they are not winning, then this situation is described by the following
formula:

111111∧
t=000001

Ba¬t.

If her beliefs are closed under conjunction, then this follows:

Ba

111111∧
t=000001

¬t.

But actually, she believes, of course, that one of the tickets is winning:

Ba

111111∨
t=000001

t.



This is a contradiction. The difficulty arises if we assume belief is
closed under conjunction.

So it seems we need an operator Bi that does not satisfy (Dist).

Bi(ϕ→ ψ)→ Biϕ→ Biψ (Dist-B)

This means: Bi is not a normal modal operator.



Epistemic Neighbourhood Models

An Epistemic Neighbourhood ModelM is a tuple

(W,R,N, V )

where

• W is a non-empty set of worlds.

• R is a function that assigns to every agent i ∈ Ag an equivalence
relation ∼i on W . We use [w]i for the ∼i class of w, i.e., for the
set {v ∈ W | w ∼i v}.

• N is a function that assigns to every agent i ∈ Ag and world
w ∈ W a collectionNi(w) of sets of worlds—each such set called
a neighbourhood of w—subject to a set of conditions.

• V is a valuation function that assigns to every w ∈ W a subset of
Prop.



Conditions

(c) ∀X ∈ Ni(w) : X ⊆ [w]i. This ensures that agent i does not
believe any propositions X ⊆ W that she knows to be false. If
X contains a world in w′ ∈ W − [w]i that the agent knows is not
possible with respect to the actual world w, then she knows that
X cannot be the case and hence she does not believe X .

(f) ∅ /∈ Ni(w). This ensures that no logical falsehood is believed.

(n) [w]i ∈ Ni(w). This ensures that what is known is also believed.

(a) ∀v ∈ [w]i : Ni(v) = Ni(w). This ensures that if X is believed,
then it is known that X is believed.

(m) ∀X ⊆ Y ⊆ [w]i : if X ∈ Ni(w), then Y ∈ Ni(w). This says
that belief is monotonic: if an agent believesX , then she believes
all propositions Y ⊇ X that follow from X .



(d) If X ∈ Ni(w) then [w]i − X /∈ Ni(w). This says that if i be-
lieves a proposition X then i does not believe the negation of that
proposition.



Language

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | Kiϕ | Biϕ.

Semantics:

M, w |= Kiϕ iff for all v ∈ [w]i :M, v |= ϕ.

M, w |= Biϕ iff for some X ∈ Ni(w), for all v ∈ X :M, v |= ϕ.



Example

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}
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Example

w : pqr

v : pqr

u : pqr

N(w) = N(v) = N(u) = {{w, v}, {v, u}, {w, u}, {w, v, u}}

In all worlds, K(p ∨ q ∨ r) is true.

In all worlds B¬p, B¬q, B¬r are true.

In all worlds B(¬p ∧ ¬q), B(¬p ∧ ¬r), B(¬q ∧ ¬r) are false.



AXIOMS

(Taut) All instances of propositional tautologies

(Dist-K) Ki(ϕ→ ψ)→ Kiϕ→ Kiψ

(T) Kiϕ→ ϕ

(PI-K) Kiϕ→ KiKiϕ

(NI-K) ¬Kiϕ→ Ki¬Kiϕ

(F) ¬Bi⊥.

(PI-KB) Biϕ→ KiBiϕ

(NI-KB) ¬Biϕ→ Ki¬Biϕ

(KB) Kiϕ→ Biϕ

(M) Ki(ϕ→ ψ)→ Biϕ→ Biψ

(D) Biϕ→ ¬Bi¬ϕ.



RULES
ϕ→ ψ ϕ

ψ
(MP)

ϕ

Kiϕ
(Nec-K)

Further details: see [ER14] and [BvBvES14].



Knowledge, Certainty, Belief

One way to make the connection between epistemic logic and proba-
bility theory is by interpreting Kiϕ as “agent i assigns ϕ probability
1”, or, “agent i is certain that ϕ is true.”

Interpret Biϕ as “agent i assigns ϕ higher probability than ¬ϕ”, or,
“agent i assigns ϕ probability greater than 1

2.”

As it turns out, the only thing we have to do is remove the neighbour-
hood function and add a weight function to an epistemic model.

If W is the set of worlds of an epistemic model, a weight function
L assigns to every agent i a function Li : W → Q+, subject to the
constraint that the sum of the Li values over each epistemic partition
cell of i is bounded.



Knowledge, Certainty, Belief

One way to make the connection between epistemic logic and proba-
bility theory is by interpreting Kiϕ as “agent i assigns ϕ probability
1”, or, “agent i is certain that ϕ is true.”

Interpret Biϕ as “agent i assigns ϕ higher probability than ¬ϕ”, or,
“agent i assigns ϕ probability greater than 1

2.”

As it turns out, the only thing we have to do is remove the neighbour-
hood function and add a weight function to an epistemic model.

If W is the set of worlds of an epistemic model, a weight function
L assigns to every agent i a function Li : W → Q+, subject to the
constraint that the sum of the Li values over each epistemic partition
cell of i is bounded.

If X ⊆ W then Li(X) is shorthand for
∑

x∈X Li(x).



Boundedness

The boundedness condition excludes cases where [w]i is infinite and
each v in [w]i gets the same positive value c. It does not exclude
infinite epistemic partition cells, however.

Example 1 Let [w]i = N, and let Li(n) = 1
2n . Then:

Li([w]i) =
∑
n∈N

1

2n
= 2 <∞.



Epistemic Weight Models

An Epistemic Weight ModelM is a tuple (W,R, V, L), where

• W is a non-empty set of worlds.

• R is a function that assigns to every agent i ∈ Ag an equivalence
relation ∼i on W .

• V is a valuation function that assigns to every w ∈ W a subset of
Prop.

• L is a function that assigns to every agent i ∈ Ag a weight Li,
where Li is a function fromW to Q+, the set of positive rationals,
with the constraint that for each w ∈ W ,

Li([w]i) <∞.



Single Weight Models

An epistemic weight modelM = (W,R, V, L) is single (or: a single
weight model) if for all i, j ∈ Ag it holds that Li = Lj.

Example 2 Take any epistemic modelM = (W,R, V ) with W finite.
Let L be the function that maps i to the weight Li = λw.1. Then
(W,R, V, L) is an epistemic single weight model.



Example 3 Two agents i, j consider betting on a horse race. Three
horses take part in the race, and there are three possible outcomes: a
for “a wins the race”, b for “ b wins the race”, and c for “c wins the
race.” Neither agent knows which horse will win; i takes the winning
chances to be 3 : 2 : 1, j takes them to be 1 : 2 : 1. In a picture:

a
i : 3, j : 1

b
i : 2, j : 2

c
i : 1, j : 1

In all worlds, i assigns probability 1
2 to a, 1

3 to b and 1
6 to c, while j

assigns probability 1
4 to a and to c, and probability 1

2 to b.



Example 4 Same situation as in example 3, but now agent j (dashed
lines) considers c impossible.

a
i : 3, j : 1

b
i : 2, j : 2

c
i : 1, j : 1

The probabilities assigned by i remain as before. The probabilities
assigned by j have changed, as follows. In worlds a and b, j assigns
probability 1

3 to a and 2
3 to b. In world c, j is sure of c.



Example 5 Two agents i (solid lines) and j (dashed lines) are uncer-
tain about the toss of a coin. i holds it for possible that the coin is fair
f and that it is biased f , with a bias 2

3 for heads h. j can distinguish
f from f . The two agents share the same weight (so this is a single
weight model), and the weight values are indicated as numbers in the
picture.

hf 2 hf 3

hf 2 hf 1

In world hf , i assigns probability 5
8 to h and probability 1

2 to f . In
world hf , j assigns probability 1

2 to h and probability 1 to f . In other
words, j is certain that the coin is fair.



Epistemic Probability Language

Let i range over Ag, p over Prop, and q over Q. Then the language of
epistemic probability logic is given by:

ϕ ::= > | p | ¬ϕ | (ϕ ∧ ϕ) | ti ≥ 0 | ti = 0

ti ::= q | q · Piϕ | ti + ti where all indices i are the same.



Truth for Epistemic Probability Logic
LetM = (W,V,R, L) be an epistemic weight model and let w ∈ W .

M, w |= > always
M, w |= p iff p ∈ V (w)

M, w |= ¬ϕ iff it is not the case thatM, w |= ϕ

M, w |= ϕ1 ∧ ϕ2 iff M, w |= ϕ1 andM, w |= ϕ2

M, w |= ti ≥ 0 iff [[ti]]
M
w ≥ 0

M, w |= ti = 0 iff [[ti]]
M
w = 0.

[[q]]Mw := q

[[q · Piϕ]]Mw := q × PMi,w(ϕ)
[[ti + t′i]]

M
w := [[ti]]

M
w + [[t′i]]

M
w

PMi,w(ϕ) =
Li({u ∈ [w]i | M, u |= ϕ})

Li([w]i)
.



Example 6 A normalized model for the horse racing situation from
Example 3 is given in the picture:

a
i : 1

2, j :
1
4

b
i : 1

3, j :
1
2

c
i : 1

6, j :
1
4



Example 7 [Continued from Example 5] The model from Example 5
is an epistemic weight model where the two agents share the same
weight. It is also possible to give each agent its own weight, and to
normalize the weight functions using the epistemic accessibilities.

hf
i : 1

4, j :
1
2

hf
i : 1

4, j :
1
2

hf
i : 3

8, j :
3
4

hf
i : 1

8, j :
1
4



Fact 1 Formulas of epistemic probability logic are invariant for (the
appropriate notion of) bisimulation [ES14].

Fact 2 On epistemic weight models with finite epistemic partition cells
for every agent, invariance for formulas of epistemic probability logic
implies bisimilarity [ES14].

Fact 3 A sound and complete for the language of epistemic proba-
bility logic, interpreted in epistemic probability models, is given in
[ES14].



AXIOMS

(Taut) All instances of propositional tautologies

(Linear) All instances of valid formulas about linear inequalities

(ProbNonNeg) Piϕ ≥ 0

(ProbTrue) Pi> = 1

(ProbAdd) Pi(ϕ1 ∧ ϕ2) + Pi(ϕ1 ∧ ¬ϕ2) = Piϕ1

(ProbProbGeq) ti ≥ 0→ Pi(ti ≥ 0) = 1

(ProbProbEq) ti = 0→ Pi(ti = 0) = 1

(ProbT) Piϕ = 1→ ϕ

RULES
ϕ→ ψ ϕ

ψ
(MP)

ϕ1 ↔ ϕ2

Piϕ1 = Piϕ2
(ProbRule)



From Weight Models to Neighbourhood Models

IfM = (W,R, V, L) is an epistemic weight model, thenM• is the tu-
ple (W,R, V,N) given by replacing the weight function by a function
N , where N is defined as follows, for i ∈ Ag, w ∈ W .

Ni(w) = {X ⊆ [w]i | Li(X) > Li([w]i −X)}.

Fact 4 For any epistemic weight model M it holds that M• is a
neighbourhood model.

Fact 5 The calculus of epistemic-doxastic neighbourhood logic is sound
for interpretation in epistemic probability models. Probabilistic be-
liefs are neighbourhoods.



Translating Knowledge and Belief

If ϕ is a formula of the language of epistemic/doxastic logic, then ϕ•

is the formula of the language of epistemic probability logic given by
the following instructions:

>• = >
p• = p

(¬ϕ)• = ¬ϕ•

(ϕ1 ∧ ϕ2)
• = ϕ•1 ∧ ϕ•2

(Kiϕ)
• = Pi(ϕ

•) = 1

(Biϕ)
• = Pi(ϕ

•) > Pi(¬ϕ•).

Theorem 6 For all formulas of epistemic/doxastic logic ϕ, for all
epistemic weight modelsM, for all worlds w ofM:

M•, w |= ϕ iffM, w |= ϕ•.



Theorem 7 Let ` denote derivability in the calculus of EDNL. Let `′
denote derivability in the calculus of EPL. Then ` ϕ implies `′ ϕ•.



Implementation

Building epistemic models from partitions . . .

type Erel a = [[a]]



data Agent = Ag Int

a,b,c,d,e :: Agent
a = Ag 0; b = Ag 1; c = Ag 2; d = Ag 3; e = Ag 4

data Prp = P Int | Q Int | R Int | S Int



Epistemic models

data EpistM state = Mo
[state]
[Agent]
[(state,[Prp])]
[(Agent,Erel state)]
[state]



example1 :: EpistM Int
example1 = Mo
[0..3]
[a,b,c]
[]
[(a,[[0],[1],[2],[3]]),
(b,[[0],[1],[2],[3]]),(c,[[0..3]])]

[1]



Epistemic Formulas

data Frm a = Tp
| Info a
| Prp Prp
| N (Frm a)
| C [Frm a]
| D [Frm a]
| Kn Agent (Frm a)

Truth Definition

. . .



isTrueAt :: Ord state =>
EpistM state -> state -> Frm state -> Bool

isTrueAt m w Tp = True
isTrueAt m w (Info x) = w == x
isTrueAt

m@(Mo worlds agents val acc points) w (Prp p) =
let props = apply val w
in elem p props

isTrueAt m w (N f) = not (isTrueAt m w f)
isTrueAt m w (C fs) = and (map (isTrueAt m w) fs)
isTrueAt m w (D fs) = or (map (isTrueAt m w) fs)
isTrueAt
m@(Mo worlds agents val acc points) w (Kn ag f) =
let

r = rel ag m
b = bl r w

in
and (map (flip (isTrueAt m) f) b)



Public Announcement

upd_pa :: Ord state =>
EpistM state -> Frm state -> EpistM state

upd_pa m@(Mo states agents val rels actual) f =
(Mo sts’ agents val’ rels’ actual’) where

sts’ = [ s | s <- states, isTrueAt m s f ]
val’ = [ (s, ps) | (s,ps) <- val,

s ‘elem‘ sts’]
rels’ = [(ag,restrict sts’ r) |

(ag,r) <- rels ]
actual’= [ s | s <- actual, s ‘elem‘ sts’ ]

upds_pa :: Ord state =>
EpistM state -> [Frm state] -> EpistM state

upds_pa = foldl upd_pa



Example: Sum and Product (Hans Freudenthal)

A says to S and P: I have chosen two integers x, y such that 1 < x < y

and x + y ≤ 100. In a moment, I will inform S only of s = x + y,
and P only of p = xy. These announcements remain private. You are
required to determine the pair (x, y). He acts as said. The following
conversation now takes place:

1. P says: “I do not know the pair.”

2. S says: “I knew you didn’t.”

3. P says: “I now know it.”

4. S says: “I now also know it.”

Determine the pair (x, y).



A model checking solution with DEMO [vE05, vE07] (based on a
DEMO program written by Ji Ruan) was presented in [DRV05]. An
optimized version of that solution is in [vE13].

The list of candidate pairs:

pairs :: [(Int,Int)]
pairs = [ (x,y) | x <- [2..100], y <- [2..100],

x < y, x+y <= 100 ]

The solution:
solution = upds_pa msnp

[k_a_statement_1e,statement_2e,statement_3e]

This is checked in a matter of seconds:

*DEMO_S5> solution
Mo [(4,13)] [a,b] [(a,[[(4,13)]]),(b,[[(4,13)]])]

[(4,13)]



Extending This With Weights

data EpistWM state = WMo
[state]
[Agent]
[(state,[Prp])]
[(Agent,Erel state)]
[(Agent,[(state,Rational)])]
[state]



• Representation of probabibility information by means of weight
functions was designed with implementation of model checking
in mind.

• Just extend the epistemic models with a weight table for each
agent.

• Implementations of model checkers for these logics can be found
in [Eij13] and in [San14] . . .

• The implementations can deal with Monty Hall style puzzles, urn
puzzles, Bayesian updating by drawing from urns or tossing (pos-
sibly biased) coins, and ‘paradoxes’ such as the puzzle of the
three prisoners (below).

• Efficiency was not a goal, but these implementation can be made
very efficient with a little effort.



Aside: The Puzzle of the Three Prisoners

Alice, Bob and Carol are in prison. It is known that two of them will
be shot, the other freed. The warden knows what is going to happen,
so Alice asks him to reveal the name of one other than herself who
will be shot, explaining to him that since there must be at least one,
this will not reveal any new information. The warden agrees and says
that Bob will be shot. Alice is cheered up a little by this, for she
concludes that her chance of surviving has now improved from 1

3 to 1
2.

Is this correct? How does this agree with the intuition that the warden
has not revealed new information?

Many sources, e.g. [Jef04].



How to Move on From Here

• Combine EPL with network information for the agents, where
the network is given by a relation, and where links starting from
an agent can be added (“start following”) and deleted (“stop fol-
lowing, unfollow”). Interpret announcements as group messages
to all followers. See [RT11] and current work by Jerry Seligman
and Thomas Agotnes. But: this can all be done with epistemic
PDL with a binary follow relation F added.

• Further analysis of the connection between neighbourhood logics
and probabilistic logics [ER14]. This is also connected to work
of Wes Holliday and Thomas Icard.

• Add bias variables X for the representation of unknown biases.
Collaboration in progress with Joshua Sack.



• Work with the epistemic PDL version of the probabilistic logic,
as an extension of LCC from [BvEK06]. This gives us common
knowledge, and a nice axiomatisation by means of epistemic pro-
gram transformation [Ach14].

• Achieve better efficiency, by using methods proposed by Kaile
Su.

• Towards analysis of real-life protocols. Compare the use of epis-
temic model checking by Malvin Gattinger [Gat13, Gat14b, Gat14a].

• Consider weak weight models, where the weight functions assign
pairs of values (x, y), with x giving the lower probability L and
x + y the upper probability U . Belief of i in ϕ is now modelled
as Li(ϕ) > Hi(¬ϕ). This connects up to weak Bayesianism and
imprecise probability theory [Wal91].

• Consolidate what we know about the topic in a state-of-the-art



textbook [BvBvES14].
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