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Set Theory was developed as a mathematical theory of sets that
later developed into a foundational theory for all of mathematics.
As usual with mathematical theories, there was an expectation
that natural set-theoretic problems are solvable (“für uns gibt es
kein Ignorabimus und meiner Meinung nach auch für die
Naturwissenschaft überhaupt nicht”).
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David Hilbert (1862–1943)

Problems for the 20th century posed at the International Congress
of Mathematicians in Paris, 1900. The first problem was:

2ℵ0 = ℵ1?

Or, in other words: Does every uncountable set of real numbers
have the cardinality of the set of all real numbers?

Theorem (Cohen). If M |= ZFC, then there are N and N ′ such
that M ⊆ N and M ⊆ N ′ and

N |= ZFC + CH and N ′ |= ZFC + ¬CH.
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The multiverse view vs. the universe view

Joel D. Hamkins

J. D. Hamkins, “The set-theoretic multiverse,” Review of Symbolic Logic 5
(2012), pp. 416-449.

The universe view is the commonly held philosophical position that there is a unique absolute
background concept of set, instantiated in the corresponding absolute set-theoretic universe, the
cumulative universe of all sets, in which every set-theoretic assertion has a definite truth value. On
this view, interesting set-theoretic questions, such as the continuum hypothesis and others, have
definitive final answers.

The multiverse view [...] holds that there are diverse distinct concepts of set, each instantiated in a
corresponding set-theoretic universe, which exhibit diverse set-theoretic truths. Each such universe
exists independently in the same Platonic sense that proponents of the universe view regard their
universe to exist. [...] In particular, I shall argue [...] that the question of the continuum
hypothesis is settled on the multiverse view by our extensive, detailed knowledge of how it behaves
in the multiverse.
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The multiverse view.

The set theoretic multiverse is the collection of all models of set
theory. Between these models, there are relations that tell us how
one of them was constructed from another or what models know
about each other.

One example of such a construction method is Cohen’s method of
forcing:

Paul Cohen (1934–2007)

Theorem (Cohen). If M |= ZFC, then there are N and
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Forcing.

Paul Cohen (1934–2007)

Theorem (Cohen). If M |= ZFC, then there are N and
N ′ such that M ⊆ N and M ⊆ N ′ and

N |= ZFC + CH and N ′ |= ZFC + ¬CH.

In general, forcing is a technique that takes a model of set theory
V and produces a new bigger model V [G ] called a generic
extension. This construction has the properties that the original
model V is a definable inner model of V [G ] called the ground
model and that the ground model can express statements about
the existence of generic extensions.



The generic multiverse.

If V ,W |= ZFC, then we say that W is a generic extension of V if
there is a P ∈ V and some G ∈W which is P-generic over V such
that W = V [G ]. We say that V is a ground of W . The generic
multiverse of V consists of the closure of V under the operations
of generic extension and ground.

The generic multiverse can be seen as a directed graph.

Or, slightly more generally:

The generic multiverse with inner models of V is the closure of V
under the operations of generic extension, ground, and inner
model. It comes as a graph-structure with two edge relations
(interacting with each other).
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Provability Logic (1).

If we interpret 2ϕ as “ϕ is provable in PA”, we obtain the
provability interpretation:

2(2ϕ→ ϕ)→ 2ϕ. (Löb)

The modal logic GL is obtained from K by including all instances
of (4) and (Löb).

Theorem (Segerberg-de Jongh-Kripke, 1971). The set of modal
formulas valid in all transitive and conversely well-founded frames
is GL.
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Provability Logic (2).

Robert M. Solovay

A function from the language of modal logic into into the set of
arithmetical sentences is called a realization if

R(⊥) = ⊥
R(¬ϕ) = ¬R(ϕ)

R(ϕ ∨ ψ) = R(ϕ) ∨ R(ψ)

R(2ϕ) = PA ` R(ϕ).

Theorem (Solovay, 1976). A modal formula is in GL if and only if
all of its realizations are PA-provable.
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Hamkins translations and the modal logic of forcing.

A function H from the language of modal logic into set-theoretic
sentences is called a Hamkins translation if

H(⊥) = ⊥
H(¬ϕ) = ¬H(ϕ)

H(ϕ ∨ ψ) = H(ϕ) ∨ H(ψ)

H(2ϕ) = ∀B(JH(ϕ)KB = 1B).

Question. What is the modal logic of those modal formulas whose
Hamkins translations are ZFC-provable?

Definition. The Modal Logic of Forcing MLF is the set of ϕ such
that for all Hamkins translations H, ZFC ` H(ϕ).
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What is the modal logic of forcing? (1)

2ϕ→ ϕ (T)

2ϕ→ 22ϕ (4)

32ϕ→ 23ϕ (.2)

32ϕ→ ϕ (5)

Theorem (Hamkins). The modal logic of forcing MLF contains
S4.2, but not S5.

Theorem (Stavi-Väänänen / Hamkins). There is a model
M |= ZFC in which every instance of (5) holds.

J. Stavi, J. Väänänen, “Reflection principles for the continuum”, in: Y. Zhang
(ed.), Logic and algebra, Volume 302 of Contemporary Mathematics, American
Mathematical Society, 2002, pp. 59-84.

J. D. Hamkins, “A simple maximality principle”, Journal of Symbolic Logic 68
(2003), pp. 527-550.
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What is the modal logic of forcing? (2)

Theorem (Hamkins-Löwe). The modal logic of forcing is exactly
S4.2.

J. D. Hamkins, B. Löwe, “The Modal Logic of Forcing”, Transactions of the
American Mathematical Society 360 (2008), pp. 1793-1817
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Theorem (Hamkins-Löwe). The modal logic of forcing is exactly
S4.2.
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Generalizations I.

If V |= ZFC, then we can consider MLFV := {ϕ ; for all Hamkins
translations H, V |= H(ϕ)}.

The Stavi-Väänänen/Hamkins result says that there is a model V
such that MLFV = S5.

Theorem (Hamkins-Löwe). MLFL = S4.2.

Using the techniques of the main theorem, it is easy to see that
S4.2 ⊆MLFV ⊆ S5 for any model V .

Question. Can you find V such that MLFV is any modal logic
strictly between S4.2 and S5?
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Generalizations II: Reversing the arrows (1).

In our introduction, we said that the generic multiverse of a model
V was the closure of V under set-generic extensions and ground
models. But the Modal Logic of Forcing only talks about
set-generic extensions. What if we reverse the direction of our
accessibility relation:

A function G from propositional modal logic into the set of
sentences of the language of set theory is called a ground
translation if

G (⊥) = ⊥
G (¬ϕ) = ¬G (ϕ)

G (ϕ ∨ ψ) = G (ϕ) ∨ G (ψ)

G (2ϕ) = G (ϕ) holds in all grounds.

The modal logic of grounds is the set MLG := {ϕ ; ZFC ` G (ϕ)
for all ground translations G}.
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Generalizations II: Reversing the arrows (2).

The situation for MLG is quite different from that of MLF: in L,
we have that 2p ↔ 3p ↔ p. In particular, the modal logic of
grounds in L is much stronger than S5.

J. D. Hamkins, B. Löwe, Moving up and down in the generic multiverse, in:
Kamal Lodaya (ed.), Logic and Its Applications, 5th International Conference,
ICLA 2013, Chennai, India, January 10-12, 2013, Proceedings Springer-Verlag,
Berlin 2013 [Lecture Notes in Computer Science 7750], pp. 139-147

Theorem. There are models V0, V1, and V2 such that

MLFV0 = S4.2 and MLGV0 = S4.2;

MLFV1 = S5 and MLGV1 = S4.2; and

MLFV2 = S4.2 and MLGV2 = S5.

Theorem. It is impossible to have MLFV = S5 and MLGV = S5.
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Generalizations III: Other modalities (1).

A function I from propositional modal logic into the set of
sentences of the language of set theory is called a inner model
translation if

I (⊥) = ⊥
I (¬ϕ) = ¬I (ϕ)

I (ϕ ∨ ψ) = I (ϕ) ∨ I (ψ)

I (2ϕ) = I (ϕ) holds in all inner models.

The modal logic of inner models is the set
MLIM := {ϕ ; ZFC ` I (ϕ) for all inner model translations I}.
As opposed to the conditions “in all generic extensions” and “in all
grounds”, “in all inner models” is not first-order definable in the
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Theorem (Inamdar-Löwe). MLIM = S4.2Top.



Generalizations III: Other modalities (2).
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