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Abstract

This paper introduces a Probabilistic Logic of Communication and
Change, which captures in a unified framework subjective probability,
arbitrary levels of mutual knowledge and a mechanism for multi-agent
Bayesian updates that can model complex social-epistemic scenarios, such
as informational cascades. We show soundness, completeness and decid-
ability of our logic, and apply it to a concrete example of cascade.

1 Introduction

In the analysis of many games, as well as of other social phenomena, it is im-
portant to be able to represent, not only the agents’ probabilistic beliefs and
their knowledge, but also higher levels of mutual knowledge, including common
knowledge, relativized (i.e. conditional) common knowledge etc. Equally im-
portant is to have a rational mechanism for changing both probabilistic beliefs
and the levels of knowledge, in a way that can accurately model the epistemic
effects of social-dynamic scenarios involving complex multi-agent interactions.

In this paper we propose a unified framework, that combines a variant of the
Logic of Communication and Change (LCC) from [4] and a variant of Dynamic-
Epistemic Probabilistic Logic (DEPL) from [3]. Our Probabilistic Logic of
Communication and Change (PLCC) inherits LCC’s ability to express common
knowledge as well is DEPL’s ability to express probabilistic epistemic dynamics.
Moreover, it does this in a way that is completely justifiable from Bayesian first
principles (while DEPL seems to go beyond these principles). In Section 4, we
provide a sound and complete proof system for PLCC.

While we think that our logic has great potential for applications to various
issues in Game Theory and Social Epistemology, we only give here one such
application, namely to an informational cascade [2]. Such phenomena involve
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mechanisms that “rationally” explain conformity in certain social situations.
Informational cascades are worth studying because they show how our intuition
about social knowledge fails. The expectation is that groups are able to track the
truth better than the individuals composing them, by virtue of communication,
whereby the individual pieces of information each member of the group possesses
are pooled together and analysed in a rational manner. However, informational
cascades show how sequential communication can impair a group’s ability to
track the truth.

In this paper, we focus on a classical example of informational cascade, the
Urn Example. Such examples have been analysed using logic before in [1] and
[9]. But these frameworks could not fully capture syntactically informational
cascades, as they lack common knowledge in their language. In contrast, as
shown in Section 3, our logic can give a full syntactic encoding of the Urn
Example.

2 Probabilistic logic of communication and change

In this section, we introduce our Probabilistic Logic of Communication and
Change (PLCC), which captures in a unified framework subjective probabil-
ity, arbitrary levels of mutual knowledge (including common knowledge) and
a mechanism for multi-agent Bayesian updates that can model complex social-
epistemic scenarios. Essentially, this framework combines an S5 variant of the
logic LCC from [4] and a variant of the logic DEPL from [3]. In contrast to
LCC [4], our version takes the first level of knowledge (i.e. individual knowl-
edge modalities) to be factive and fully introspective, thus satisfying the stan-
dard epistemic system S5. As for DEPDL, the key difference between our event
models in Definition 2.3 and the standard update models of [3, p. 77] is that the
update models in [3] involve both objective occurrence probabilities (of events
occurring given certain preconditions) and subjective observation probabilities
(about what action agents think actually occurred). In our setting, we merge
these two types of probabilities to form subjective occurrence probabilities, given
by the functions prea. This gives us a purely Bayesian account, in which all
probabilities are subjective. But moreover, the power of approach comes pre-
cisely from the combination of probabilistic features and higher levels of mutual
knowledge.

Language of PLCC

Let At be a set of atomic propositions and Ag a set of agents. We also assume
a set of informational events that we will explain later. The language of PLCC,
denoted LPLCC, is given by the following Backus Naur form:

φ ::= true | p | ¬φ | φ ∧ ψ | [π]φ | [e]φ | α1 · Pa(φ1) + · · ·+ αn · Pa(φn) ≥ β
π ::= a | π;π | π ∪ π | π∗ | φ?
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where p ∈ At is an atomic proposition, α1, . . . , αn, β are rational numbers,
a ∈ Ag is an agent, and e is an event from a given list E of symbols called
“events” (which will form the domain of a probabilistic event model A).

The sort φ are called formulas, and the sort π are called complex agent
terms. As usual, when a model is given, the formulas denote propositions (sets
of states), while terms denote binary relations on states interpreted as complex
levels of mutual knowledge. The formulas [π]φ are epistemic formulas inherited
from epistemic PDL [4]. The formula [a]φ is read “agent a knows φ”, [a; b]φ is
read “a knows that b knows φ”, [a∪ b]φ as “It is known to both a and b that φ”
and [(a∪b)∗]φ as “φ is common knowledge among a and b ”. The formula [ψ?]φ is
equivalent to ψ → φ, but when involved in more complex terms, we can express
such notions as “relativized common knowledge” (see [4]) [(ψ?; (a ∪ b))∗]φ read
as “φ is common knowledge among a and b conditional on ψ ”.

Formulas [e]φ are dynamic formulas, read as “φ holds after any successful in-
formational event e”. The “static” sublanguage of PLCC, that does not include
any dynamic modalities, is called probabilistic epistemic PDL or PE-PDL.

Formulas α1Pa(φ1) + · · · + αn · Pa(φn) ≥ β are called a-probability formu-
las (for agent a), and express the fact that a linear combination of agent a’s
probabilities (of various propositions) is at least β.

We abbreviate: false by ¬true, ¬[π]¬φ by 〈π〉φ, ¬[e]¬φ by 〈e〉φ, ¬(¬φ1∧¬φ2)
by (φ1 ∨ φ2), ¬(φ1 ∧ φ2) by (φ1 → φ2), (φ1 → φ2) ∧ (φ2 → φ1) by φ1 ↔
φ2. Furthermore we abbreviate the expression α1Pa(φ1) + · · ·+ αn · Pa(φn) by∑n
i=1 αiPa(φi), and we may denote it by t if the details of the expression are

irrelevant. We also use c
∑n
j=1 αjPa(φj) for

∑n
j=1 cαjP(φj). We then abbreviate

t ≤ β ≡ −t ≥ −β
t1 ≥ t2 ≡ t1 − t2 ≥ 0
t1 > t2 ≡ ¬(t1 ≤ t2)
t1 = t2 ≡ (t1 ≥ t2) ∧ (t2 ≥ t1)

Semantics of PLCC

Definition 2.1 (Bayesian Kripke models). Given sets Ag and At , a Bayesian
Kripke model is a quadruple M = (S,∼, µ, V ) where:

• S is a non-empty set of states.

• ∼ is a family of equivalence relations ∼a on S, one for each agent a ∈ Ag .

• µ is a family of functions µa : S → (S → [0, 1]), one for each agent a ∈ Ag ,
whose values are denoted by µsa(s′) and satisfy the conditions:

– (SDP): if s ∼a t then µsa(s′) = µta(s′), for all s′ ∈ S (from [8]);

– (CONS): µsa(t) = 0 if s 6∼a t (from [8]);

– (CAUT): s 6∼a t if µsa(t) = 0 (from [6]);1

1In the submitted abstract, we grouped CONS and CAUT together and called it CONS,
but here we think it is better to separate them, as CONS is the name used in [8] for just the
one implication we have by that name in the current version.
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– (PROB): for every s ∈ S,
∑
t∈S µ

s
a(t) = 1.

• V : At → P(S) is a valuation function.

The relation ∼a is interpreted as agent a’s epistemic indistinguishability re-
lation, which induces a’s information partition, thus modeling a’s knowledge, in
Aumann’s style. The function µsa gives agent a’s subjective probability distribu-
tion in state s. The condition (PROB) which is called “probability” ensures that
µsa is indeed a probability distribution; (SDP) which is called “state-determined
probability” expresses introspection of probabilistic beliefs: agents know their
own probabilities; (CONS) which is called “consistent” expresses consistence of
beliefs with knowledge: agents assign probability 0 to propositions they know to
be false; finally, (CAUT) which is called “cautious” expresses our assumption
that rational agents are cautious: they assign probability 0 only to propositions
they know to be false.2 In satisfying these conditions, our “Bayesian models”
are fundamentally very similar to the models used in [6]. As a pleasant conse-
quence, this notion of “knowledge” is equivalent to “subjective probability = 1”.
This interesting, but rather unusual, equivalence has been previously adopted
in [6] as one of its main principles. This means that we could in principle com-
pletely eliminate the epistemic relations ∼a from our models, by defining them
in terms of probabilities: s ∼a t iff µsa(t) 6= 0.

We now describe an update mechanism that combines multi-agent Bayesian
conditioning (for belief change) with epistemic update (for knowledge change)
and fact changes (i.e. ontic changes induced by “real” events). Following [4],
to model fact changes we employ substitution functions, which will reset the
propositional valuation of the initial epistemic model.

Definition 2.2 (Substitutions [4]). A substitution is a function σ : At → LPLCC

that maps all but a finite number of propositional atoms into themselves. Let

dom(σ)
def
= {p ∈ At | σ(p) 6= p} be the the domain of σ. Let subLPLCC

denote the
set of all such possible substitution functions and ε the identity substitution.

Definition 2.3 (Event Models). An event model over LPLCC is the quintuple
A = (E,∼,PRE,pre, sub) where:

• E is a finite non-empty set of events.

• ∼ is a set of equivalence relations ∼a for each agent a ∈ Ag .

• PRE : E → P(LPLCC) is a map, such that Φ
def
=
⋃
e∈E PRE(e) is finite set

of pairwise inconsistent formulas.

• pre is a family of functions prea : Φ → (E → [0, 1]) for each a ∈ Ag
assigning to each precondition φ ∈ Φ a subjective occurrence probability
distribution over E (i.e.

∑
e∈E prea(φ)(e) = 1), such that prea(φ)(e) = 0

iff φ 6∈ PRE(e).

2This is a technical assumption, that allows us to do belief revision without having to
conditionalize on propositions of probability 0. Another solution would be to move to a
non-standard probabilistic setting, e.g. lexicographic probabilities, Popper functions or prob-
abilities with values in a non-standard model of analysis.
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• sub : E → subLPLCC assigns a substitution function to each event in E.

We abbreviate prea(φ)(e) by prea(e | φ) in order to improve legibility. We
denote by prea(e | s) the value of prea(e | φs), where φs is the element of Φ that
is satisfied in (M, s). If no such φ exists then prea(e | s) = 0. Finally, we also

use the abbreviation pre(e)
def
=
∨

PRE(e).
The equivalence relations ∼a capture agent a’s knowledge about the current

event: if e ∼a f , then events e and f are indistinguishable to a at the mo-
ment when either of them is happening; prea(e | φ) captures agent a’s (prior)
conditional belief about event e given precondition φ. In particular, prea(e | s)
represents the (prior) conditional probability assigned by agent a to event e
happening in state s.

Definition 2.4 (Product Update). The update product of a static Bayesian
Kripke model M = (S,∼, µ, V ) with an event model A = (E,∼,Φ,pre, sub) is
the weighted epistemic model M ⊗A = (S ⊗ E,∼, µ, V ) where:

• S ⊗ E def
= {(s, e) | s ∈ S, e ∈ E, (M, s) |=

∨
PRE(e)}.

• (s, e) ∼a (s′, e′) iff s ∼a s′ and e ∼a e′.

• Let D
def
=
∑

(s′,e′)∼a(w,g) (µwa (s′) · prea(e′ | s′)), and put:

µ(w,g)
a (s, e)

def
=

{
µw
a (s)·prea(e|s)

D if (s, e) ∼a (w, g)

0 otherwise

(Note that D 6= 0 for (w, g) ∈ S ⊗ E.)

• V (p) = {(s, e) |M, s |= sub(e)(p)}

It is easy to check that, if S⊗E 6= ∅, then (M⊗A) is still a Bayesian Kripke
model.

Definition 2.5 (Semantics of PLCC). The semantics for LPLCC is given by a
relation |= between pointed models (M, s), with M = (S,∼, µ, V ) and s ∈ S,
and formulas φ, such that

M, s |= true iff always
M, s |= p iff s ∈ V (p)
M, s |= ¬φ iff M, s 6|= φ
M, s |= φ ∧ ψ iff M, s |= φ and M, s |= ψ
M, s |= [a]φ iff for all t ∈ S : if s ∼a, t then M, t |= φ
M, s |= [e]φ iff M, s |=

∨
PRE(e) then M ×A, (s, e) |= φ,

where e is an event in action model A
M, s |= [π]φ iff for all t ∈ S : if sRπt then M, t |= φ,
M, s |=

∑n
j=1 αjPa(φj) iff

∑n
j=1 αj · µsa(φj) ≥ β
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where µsa(φj) is an abbreviation for
∑
s′∈S,s′|=φj

µsa(s′), and Rπ is a binary
relation given by

sRat iff s ∼a t
sRπ1∪π2

t iff sRπ1
∪Rπ2

t
sRπ1;π2

t iff sRπ1
;Rπ2

t (there is w, such that sRπ1
w and wRπ2

t)
sRπ∗t iff s(Rπ)∗t (where (Rπ)∗ is the reflexive transitive closure of Rπ)
sRφ?t iff s = t and s |= φ

We write |= ϕ if M, s |= ϕ for every pointed Bayesian Kripke model M, s.

3 Urn Example

A canonical example of informational cascade is the Urn Example. The narrative
behind this example is close to [1]: each individual in a group tries to correctly
identify the proportion of black and white balls contained in an urn, that was
placed in a room by “Nature”. It is common knowledge that the urn can either
contain a mix denoted MW (“majority white”), consisting of 2 white balls and
1 black ball, or a mix denoted MB (“majority black”), consisting of 1 white ball
and 2 black balls. It is commonly believed that one of the two mixes was chosen
randomly from a uniform distribution (say, by using a fair coin). The agents
enter the room one at a time. Upon entering, each agent randomly draws a
ball from the urn, looks at it, and returns it to the urm. Then, after exiting,
he publicly announces his guess as to which mix he thinks is more probable,
MW or MB , so that all the agents can hear it. We assume that the agents are
sincere: they truthfully announce the mix that they really believe to be more
probable. In case an agent considers MB and MW equally likely, he will just
guess the color of the ball he drew.

We model this example as follows. Let Ag
def
= {1, . . . , n} be the set of agents.

The set of atomic propositions is At
def
= {MW,MB} ∪ {DWi,DBi,Wi,Bi}i∈Ag ,

where MW asserts that the urn has a majority-white mix, DWi that agent i
drew a white ball, Wi that agent i announced a majority-white guess, and

similarly for the black. Let At≥i
def
= {DWj ,DBj ,Wj ,Bj}i≤j≤n, and At>i

def
=

{DWj ,DBj ,Wj ,Bj}i<j≤n. Then for 0 < i ≤ n, let

χi
def
= (MW ∨MB) ∧

∧
j<i(DWj ∨ DBj) ∧

∧
j<i(Wj ∨ Bj)) ∧

∧
p∈At≥i

¬p
χDi

def
= (MW ∨MB) ∧

∧
j≤i(DWj ∨ DBj) ∧

∧
j<i(Wj ∨ Bj) ∧ ¬(Wi ∨ Bi) ∧

∧
p∈At>i

¬p

We then define an event model A = (E,∼,PRE,pre, sub) by

• E def
= {dwi, dbi,wi, bi}i∈Ag , where dwi is the action by which i draws a

white ball, wi is i’s public announcement of his guess that the urn is
majority-white, and similarly for black.

• for each agent j = 1, . . . , n, ∼j is the smallest equivalence relation on E
satisfying

dwi ∼j dbi for every i 6= j.
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This means that agents cannot see the color of the balls drawn by other
agents, but they can all hear every agent’s guess when it is publicly an-
nounced (since wi 6∼j bi for any i, j).

• PRE(e)
def
=

{
{ψWi , ψBi } if e ∈ {dwi, dbi}
{φWi , φBi } if e ∈ {wi, bi}

,

where

ψWi
def
= MW ∧ χi

ψBi
def
= MB ∧ χi

φWi
def
= Pi(MW) > Pi(MB) ∨ (DWi ∧ Pi(MW) = Pi(MB)) ∧ χDi

φBi
def
= Pi(MB) > Pi(MW) ∨ (DBi ∧ Pi(MW) = Pi(MB)) ∧ χDi

• pre(e | ϕ) =


2/3 ∃i : (ϕ = ψWi & e = dwi) or (ϕ = ψBi & e = dbi)

1/3 ∃i : (ϕ = ψBi & e = dwi) or (ϕ = ψWi & e = dbi)

1 ∃i : (ϕ = φWi & e = wi) or (ϕ = φBi & e = bi)

0 otherwise

• sub(e, p) =


χi (e = dwi & p = DWi) or (e = dbi & p = DBi)

χDi (e = wi & p = Wi) or (e = bi & p = Bi)

p otherwise

We depict many features of this action model in Figure 1.

dwi dbi

wi bi

pre(dwi | ψW
i ) = 2

3

pre(dwi | ψB
i ) = 1

3

pre(dbi | ψW
i ) = 1

3

pre(dbi | ψB
i ) = 2

3

j 6= i

pre(wi | φW
i ) = 1

pre(wi | φB
i ) = 0

pre(bi | φW
i ) = 0

pre(bi | φB
i ) = 1

Figure 1: Our event model A for the Urn Example. Although only four events
appear in the diagram above, the actual event model has 4n events.

Our example assumes that we start with a Bayesian Kripke model in which:
there is an urn having one of the two mixes MW or MB, nobody knows which of
the two mixes is in and that everybody believes the mix was chosen at random
using a fair coin (i.e. everybody assigns odds 1 : 1 to the mixes). These
assumptions are encoded in the following formula:

χ
def
= (MW ∨MB) ∧ ¬(MW ∧MB) ∧

∧
i∈Ag

(
Pi(MW) = Pi(MB)

)
∧
∧
p∈At≥1

¬p

Moreover, in our initial Bayesian model, all the above assumptions are common
knowledge: this can be encoded in the epistemic formula

[(∪i∈Agi)∗]χ.
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The simplest model M0 satisfying these assumptions has two states S = {s, t},
with ∼i= S×S, µsi (s) = µsi (t) = µti(s) = µti(t) = 1/2, V (MW) = {s}, V (MB) =
{t} and V (p) = ∅ for all other atoms. Given such a model, assume agent 1
draws a white ball from the urn (event dw1). By applying Bayesian reasoning,
agent 1 thinks it is more likely that urn 1 is majority-white, and hence w1 can
be performed while b1 cannot (agent 1 publicly guesses “white”). Suppose that
after this agent 2 also draws a white ball, and so he similarly guesses that the urn
is majority-white. All agents now know that two white balls have been drawn
and gives odds of 4 : 1 that the urn is majority-white (rather than majority-
black). At this point a cascade begins. Each new agent to enter the room will
draw either a black ball or a white ball, but either way they will still consider
MW more likely. Since the other agents anticipate this, all subsequent public
guesses are uninformative, and can be simply ignored.

But the first two guesses of white were still enough to ensure that all the
agents will forever consider MW more likely than MB , regardless of what color
ball they may draw. Thus a cascade has begun, where agents base their choices
on the inferences of what agents probably believe given their actions, rather
than base their choices on their own observations from nature.

We can simulate the above scenario by performing successive updates of the
initial model M0 with the event model A, obtaining successive models ((M0 ⊗
A)⊗A) · · · ⊗A. But in fact there is nothing special about our model M0: any
model satisfying the above assumptions will lead to the same cascade, as shown
in the following proposition:

Proposition 3.1. Let 3 ≤ i ≤ n. For all 1 ≤ j ≤ i, let fj ∈ {dwj , dbj} and
gj ∈ {wj , bj}. Then

[(∪i∈Agi)∗]χ⇒ [dw1][g1][dw2][g2][f3][g3] . . . [fi][gi]
(
Pk(MW) > Pk(MB)

)
is a valid formula, for all 1 ≤ k ≤ n.

Proof. We focus our proof on a model M0 (soon to be defined), such that any
pointed model satisfying [(∪i∈Agi)∗]χ is “bisimilar” one of its states, and in
which M0 |= [dw1][g1][dw2][g2][f3][g3] . . . [fi][gi]

(
Pk(MW) > Pk(MB)

)
. Bisim-

ulation is preserved by actions and bisimilar pointed models satisfy the same
formulas. Our desired result then follows.

A bisimulation between Bayesian Kripke models (M,x) = ((S,∼M , µ, VM ), x)
and (N, y) = ((T,∼N , nu, V N ), x) is a relation Z satisfying the the following.

• For every X ⊆ S, µ(X) ≤ ν({y | xZy}),

• For every Y ⊆ T , ν(Y ) ≤ µ({x | xZy}),

• Whenever xZy, the following hold

– x ∈ VM (p) iff y ∈ V N (p) for every p ∈ At ,

– if x ∼ x′, then there exists y′, such that y ∼ y′ and x′Zy′,

– if y ∼ y′, then there exists x′, such that x ∼ x′ and x′Zy′.
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We say two pointed models are bisimilar if there is a bisimulation between them.
The two lemmas are can be proved using standard methods.

Lemma 3.2. If (M,x) and (N, y) are bisimilar, and (A, e) is a pointed action
model, then M ⊗A, (s, e) and N ⊗A, (t, e) are bisimilar.

Lemma 3.3. If (M,x) and (N, y), then (M,x) |= ϕ if and only if (N, y) |= ϕ
for any ϕ ∈ LPLCC.

The model M0 consists of two states, MW and MB, where MW ∼k MB for
all agents k, and each agent gives equal probability to both MW and MB. The
atomic proposition MW is true only at MW and MB is true only at MB.

We graphically represent Bayesian Kripke models as follows: the worlds are
depicted by rectangles, which contain the atoms true at that world. These
atoms, put together in a sequence, label the world they’re in. Worlds are con-
nected by arrows, which represent equivalence relations. Every arrow is labelled
by the agents who cannot distinguish between the worlds connected by the ar-
row. We do not denote reflexive arrows in our models, since they are always
assumed to be there for any model represented. Given the SDP condition, we
have that within every agent’s information set, his probability assignments at
each world are the same. Therefore, we represent only one probability assign-
ment per world per agent, next to the name of the world. In model M0 of
Figure 2, the actual state MB is represented by the bold-font rectangle, whereas
the label on the arrows designates the agents that cannot distinguish between
the two states of the world, MW and MB. The probabilities that each player
assigns to the worlds are represented on the side of each rectangle, preceded by
the players that hold these beliefs.

MWall k : 1/2 MB all k : 1/2
all k

Figure 2: The initial state model M0, after Nature picks the state of the world
MB. This action is not observable by any of the agents k ∈ Ag . All players give
each world equal chances of being true.

It is clear that M0 |= [(∪i∈Agi)∗]χ (satisfied in both states), and it is not
hard to see that any pointed model satisfying [(∪i∈Agi)∗]χ will be bisimilar to
a state in M0.

Agent 1 draws a white ball The result of updating M0 with event dw1 is
the new state model M1 represented in Figure 3. Observe that agent 1 knows
she has drawn a white marble dw1, while not being able to discern the true urn
MB. All the other players in the game remain ignorant with regard to player
1’s private draw, and can therefore exclude no world.

Given the new state model M1, we can calculate the probabilities that each
agent gives to the new states, using the probability update formula introduced
in Section 2. For example, we compute the revised probability assignment of
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MW
dw1

k : 2/6
1 : 2/3

MB
dw1

k : 1/6
1 : 1/3

MW
db1

k : 1/6
1 : 1/3

MB
db1

k : 2/6
1 : 2/3

all k

k 6= 1 k 6= 1

all k

k 6= 1 k 6= 1

Figure 3: The product update model M1 resulting after the private announce-
ment of agent 1’s signal.

player 1, since any other players’ informational state does not change as a result
of event dw1. We drop the world indexation in the product update rule in order
to improve legibility, since by the SDP condition, the probability assignment
of an agent is the same at every world within the same information set. For
example, applying the product update rule

µi(s, e) =
µi(s) · prei(e | s)∑

(s′,e′)∈S1
µi(s′) · prei(e

′ | s′)

we have that

µ1(MW, dw1) =
1
2 ·

1
3

1
2

=
2

3

This represents, intuitively, the probability player 1 assigns to the state of the
world being MW (satisfying proposition MW), given he received the private
signal dw1. The other probabilities are computed in the same way and included
in Figure 3.

Agent 1’s action The pre function encodes the common knowledge of ratio-
nality and tie-breaking rule assumptions: agent 1 only announces w1 if he either
believes MW to be more likely than MB or he believes them to be equally prob-
able but his private signal was dw1. In the previous paragraph, we computed
agent 1’s subjective probability that MW is true, µ1(MW, dw1) = 2

3 . Therefore
player 1 will choose w1. This event gives rise to the update model M2. The
product update model will still have four worlds, but the two worlds where w1

is true will be unrelated (for all players) to the two worlds in which db1 is true:
it is common knowledge in which of these two zones the players are. Assuming
the real world is MBdw1w1, we can thus disregard the b1 worlds as irrelevant
(inaccessible, impossible). More precisely, the 4-world model with actual world
MBdw1w1 is bisimilar to the the 2-world model (having only the w1 worlds)
with the same actual world MBdw1w1. So we can just delete the b1 worlds,
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obtaining the model in Figure 4. From now on, we abuse notation and refer to
the bisimilar model as being the product update model itself.

MB
dw1w1

k : 1/3
MW
dw1w1

k : 2/3
all k

Figure 4: The product update model M2 after agent 1’s announcement. The
consequence of imposing common knowledge of rationality on the current model
is the deletion of the worlds at which b1 is true. All agents, knowing that player
1 is rational, are able to deduce that agent 1 saw a white ball.

Agent 2 draws a white ball Again, as above, we model the effect of this
event using a product update model M3 = M2 ⊗A in Figure 5.

MW
dw1w1

dw2

k : 4/9
2 : 2/3

MB
dw1w1

dw2

k : 1/9
2 : 1/3

MW
dw1w1

db2

k : 2/9
2 : 1/3

MB
dw1w1

db2

k : 2/9
2 : 2/3

all k

k 6= 2 k 6= 2

all k

k 6= 2 k 6= 2

Figure 5: The product update model M3 resulting after the private announce-
ment of agent 2’s signal.

Agent 2’s action The preconditions are designed to make player 2 choose
action w2, given that the subjective belief he attaches to the world satisfying
MW is given by µ2(MW) = 4

5 >
1
2 . This public announcement will give rise to

the product update model M4. Graphically this is represented in Figure 6:

MB
dw1w1

dw2w2

k : 4/5

MW
dw1w1

dw2w2

k : 1/5
all k

Figure 6: The product update model M4 after agent 2’s public announcement.
The consequence of imposing common knowledge of rationality on the current
model is the deletion of the worlds at which db2 is true.
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MW
dw1w1

dw2w2

dw3

k : 8/15
3 : 8/9

MB
dw1w1

dw2w2

dw3

k : 1/15
3 : 1/9

MW
dw1w1

dw2w2

db3

k : 4/15
3 : 2/3

MB
dw1w1

dw2w2

db3

k : 2/15
3 : 1/3

all k

k 6= 3 k 6= 3

all k

k 6= 3 k 6= 3

Figure 7: The product update model M5 resulting after the private announce-
ment of player 3’s signal.

Agent 3 draws a ball Here we consider what happens when agent 3 draws a
ball (either black or white). We continue our example as though agent 3 draws a
black ball, but the updated model also contains information about what would
have happened were he to draw white. The update model that follows this event
db3, denoted by M5, is given by Figure 7. In the pictorial representation, you
can find the subjective probability player 3 assigns to the world satisfying MW,
given the observed actions of previous players and his own private signal.

Agent 3’s action As we have gotten used to by now, we are going to construct
a product update model M6, as a result of the public communication of action
w3 (the only action that satisfies the preconditions in M5. In this new model, no
worlds will be deleted, since no agent except agent 3 can distinguish between dw3

and db3, based solely on the assumption of common knowledge of rationality.
For agent 3, as we have argued, it is consistent with rationality to choose action
w3, both in the case that he receives a dw3 and db3. This means this agent
has entered into a false cascade, and others cannot infer with his private signal
though his choice.

The same reasoning can be applied to any subsequent agent, who will ra-
tionally choose wi, regardless of his private signal. This is due to the failure
of extracting any extra information for any players, except player 1, player 2
and himself. Thus, as argued before, agents will enter a cascade, in which every
player i > 2 imitates his predecessor.

We set to prove by induction on n ≥ 3 that the model M2n−1 |= Pj(MW) ≥
2 · Pj(MB) for all j ≤ n and M2n−1 |= Pj(MW) ≥ 4 · Pj(MB) for all j > n. The
discussion in the previous paragraphs proves the result for n = 3.

Inductive Hypothesis Assume the proposition holds for all i ≤ n−1 and try
to prove it holds for n. In particular the inductive hypothesis holds for

12



MW
dw1w1

dw2w2

dw3w3

k : 8/15
3 : 8/9

MB
dw1w1

dw2w2

dw3w3

k : 1/15
3 : 1/9

MW
dw1w1

dw2w2

db3w3

k : 4/15
3 : 2/3

MB
dw1w1

dw2w2

db3w3

k : 2/15
3 : 1/3

all k

k 6= 3 k 6= 3

all k

k 6= 3 k 6= 3

Figure 8: The product update model M6 resulting after the private announce-
ment of player 3’s signal.

n− 1, and therefore get state model M2n−3, which we will represent par-
tially, by lumping together all the W -worlds and, respectively, B-worlds
as presented in Figure 9

W -worlds B-worlds
all kall a ≤ n− 1 a :≥ 2/3

all a > n− 1 a :≥ 4/5

all a ≤ n− 1 a :≤ 1/3

all a > n− 1 a :≤ 1/5

Figure 9: The state model M2n−3, representing the beliefs of players after
player n − 1 has seen his signal. The probabilities express the sentence in
the proposition, in terms of actual probability assignments. For example,
Pj(MW) ≥ 2 · Pj(MB) is equivalent to saying that µj(MW) ≥ 2

3
.

Next, player n−1 will publicly announce wn−1, as demanded by his beliefs.
This announcement will not change the informational state of any agent,
since no one except n − 1 can infer anything about the private signal of
player n− 1. Therefore, the new model M2n−2 will be identical to M2n−3

in terms of beliefs of players. This is so because at every world in the
model M2n−3, the sentence Pn−1(MW) > 1

2 is true, and therefore common
knowledge. The next event is either dwn or dbn. The new product update
model that results from M2n−2 and A is presented graphically in Figure 10.

Applying the technique of lumping together W -worlds and respectively
B-worlds, we end up with a model of the form:

Therefore, model M2n−1 satisfies

Pj(MW) ≥ 2 · Pj(MB) for all j ≤ n, and

Pj(MW) ≥ 4 · Pj(MB) for all j > n

13



W -world
dwn

B-world
dwn

W -world
dbn

B-world
dbn

all k

k 6= n k 6= n

all k

k 6= n k 6= n

k : 8/15

n : 8/9

k : 4/15

n : 2/3

k : 1/15

n : 1/9

k : 2/15

n : 1/3

Figure 10: The product update model M2n−1 resulting after the private an-
nouncement of player n’s signal.

W -worlds B-worlds
all kall a ≤ n a :≥ 2/3

all a > n a :≥ 4/5

all a ≤ n a :≤ 1/3

all a > n a :≤ 1/5

Hence we proved the induction step for n.

4 Proof System of LPLCC

For each finite event model E, we will give a proof system for the logic PLCC
having only dynamic modalities for events e ∈ E. To state our axioms, we need
to introduce a “program transformer” notation Tef (π) for all programs π and
events e, f ∈ E.

Definition 4.1 (Tij program transformers and Kijk(π) path transformers). To
define Tefπ, let m be the number of events in E, and let (e1, e2, . . . , em) be an
enumeration of all the events in E without repetitions. For all 1 ≤ i, j, k ≤
m and all programs π, we first define program transformers Tij(π) and path
transformers Kijk(π). The definition is by (double) recursion on the complexity
of π and on the number k.

14



Tij(a) =

{
?pre(ei); a if eiR(a)ej

? ⊥ otherwise

Tij(?φ) =

{
?(pre(ei) ∧ [ei]φ) if i = j

? ⊥ otherwise

Tij(π1;π2) =

n−1⋃
k=0

(Tik(π1);Tkj(π2))

Tij(π1 ∪ π2) = Tij(π1) ∪ Tij(π2)

Tij(π
∗) = Kijm(π)

and

Kij0(π) =

{
?true ∪ Tij(π) if i = j

Tij(π) otherwise

Kij(k+1)(π) =
(Kkkk(π))

∗
if i = k = j

(Kkkk(π))
∗

;Kkjk(π) if i = k 6= j

Kikk(π); (Kkkk(π))
∗

if i 6= k = j

Kijk(π) ∪
(
Kikk(π); (Kkkk(π))

∗
;Kkjk(π)

)
otherwise (i 6= k 6= j)

Finally, for two events e = ei, f = ej ∈ E, we put

Tefπ := Tij(π).

The Proof System TPLCC. Our proof system TPLCC for the logic LPLCC is
given in Figure 11. We write ` ϕ to indicate that ϕ can be proved in TPLCC.
Axioms K1-3 ensure that the Ra (for atomic a ∈ Ag) are all equivalence re-
lations (though not all Rπ are equivalence relations). Axioms A1-6 are basic
axioms concerning complex agents. Axioms I1-6 ensure that the inequalities in
probability formulas behave appropriately. Axioms W1-7 ensures that probabil-
ity terms behave appropriately. Axioms D1-D5 are schema concerning dynamic
operators, and depend on the “program transformer” of Definition 4.1.

The proof system TPE-PDL of PE-PDL consists of all of the schema in Fig-
ure 11 through W7 including R1 and R2. This extends the E-PDL of [4] by
incorporating the schema K1-3, I1-6, and W1-7 from [8]. We adapt a translation
similar to one in [4] from LCC to E-PDL into a truth preserving translation of
PLCC into PE-PDL. Although this shows that PLCC and PE-PDL are equally
expressive, PLCC is much more succinct at expressing dynamic phenomena.

Theorem 4.2 (Soundness). The proof system LPLCC is sound with respect to
Bayesian Kripke structures if and only if, for φ ∈ LPLCC :

` φ implies |= φ
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Axiom Schemata

PL. All propositional tautologies

K1. [a]φ→ φ

K2. [a]φ→ [a][a]φ

K3. ¬[a]φ→ [a]¬[a]φ

A1. [π](φ→ ψ)→ ([π]φ→ [π]ψ)

A2. [π1;π2]φ↔ [π1][π2]φ

A3. [π1 ∪ π2]φ↔ [π1]φ ∧ [π2]φ

A4. [π∗]φ↔ (φ ∧ [π][π∗]φ)

A5. [π∗](φ→ [π]φ)→ (φ→ [π∗]φ)

A6. [φ?]ψ ↔ (φ→ ψ)

I1. t ≥ β ↔ t+ 0Pa(φ) ≥ β
I2.

∑n
k=1 αkPa(φk) ≥ β →

∑n
k=1 αjkPa(φjk) ≥ qβ

for any permutation j1, . . . , jn of 1, . . . , n

I3.
∑n
k=1 αkPa(φk) ≥ β ∧

∑n
k=1 α

′
kPa(φk) ≥ β′ →

∑n
k=1(αk + α′k)Pa(φk) ≥ (β + β′)

I4. t ≥ β ↔ dt ≥ dβ if d > 0

I5. t ≥ β ∨ t ≤ β
I6. t ≥ β → t ≥ γ if β > γ

W1. Pa(φ) ≥ 0

W2. Pa(true) = 1

W3. P (φ ∧ ψ) + P (φ ∧ ¬ψ) = Pa(φ)

W4. Pa(φ) = Pa(ψ) if φ↔ ψ is a propositional tautology.

W5. Pa(false) = 0

W6. [a]φ↔ Pa(φ) ≥ 1

W7. w → [a]w, for any w an a-probability formulas.

D1. [e]p↔ (pre(e)→ sub(e)(p))

D2. [e]¬φ↔ (pre(e)→ ¬[e]φ)

D3. [e](φ ∧ ψ)↔ ([e]φ ∧ [e]ψ)

D4. [e][π]φ↔
∧
f∈E [Tefπ][f ]φ (where Tef is given in Definition 4.1)

D5. [e] (
∑n
k=1 αk · Pa(ψk) ≥ β )↔ (pre(e)→ C ≥ D), where

C =
∑
φ∈Φ

∑
f∼ae

∑n
k=1 αk · prea(f | φ) · Pa(φ ∧ [f ]ψk),

D =
∑
φ∈Φ

∑
f∼ae

β · prea(f | φ) · Pa(φ).

Rules

R1.
φ→ ψ φ

ψ
R2.

φ

[π]φ
R3.

φ

[e]φ

Figure 11: The Proof System TPLCC
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Induction on the length of the proof. It is sufficient to prove that every axiom
is sound and each inference rule preserves truth. This is a routine proof, so we
will only check the soundness of the most difficult reduction axiom:

[e]

(
k∑
h=1

αh · Pa(ψh) ≥ β

)
↔ (pre(e)→ C ≥ D)

where

C =
∑
φ∈Φ

∑
f∼ae

∑k
h=1 αh · prea(f | φ) · Pa(φ ∧ [f ]ψh),

D =
∑
φ∈Φ

∑
f∼ae

β · prea(f | φ) · Pa(φ).

Take an arbitrary Bayesian Kripke model M and a state s, such that:

M, s |= [e]

 ∑
1≤h≤k

αh · Pa(ψh) ≥ β


Assume

M, s |= pre(e).

Then by definition of the semantics.∑
1≤h≤k

αh
∑

(s′,e′)∼a(s,e)
M⊗A,(s′,e′)|=ψh

µ(s,e)
a (s′, e′) ≥ β

by the product update rule︷︸︸︷⇔
∑

1≤h≤k

αh

∑
(s′,e′)∼a(s,e)

M⊗A,(s′,e′)|=ψh

µsa(s′) pre(e′ | s′)∑
(w,f)∼a(s,e) µ

s
a(w) pre(f | w)

≥ β

Now ∑
1≤h≤k

αh
∑

(s′,e′)∼a(s,e)
M⊗A,(s′,e′)|=ψh

µ(s,e)
a (s′, e′) ≥ β

by the product update rule︷︸︸︷⇔
∑

1≤h≤k

αh

∑
(s′,e′)∼a(s,e)

M⊗A,(s′,e′)|=ψh

µsa(s′) pre(e′ | s′)∑
(w,f)∼a(s,e) µ

s
a(w) pre(f | w)

≥ β

re-aranging the terms︷︸︸︷⇔∑
1≤h≤k

αh
∑

(s′,e′)∼a(s,e)
M⊗A,(s′,e′)|=ψh

µsa(s′) pre(e′ | s′) ≥ β
∑

(w,f)∼a(s,e)

µsa(w) pre(f | w)
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by grouping worlds according to the preconditions they satisfy, for every f ∼a e︷︸︸︷⇔∑
1≤h≤k

αh
∑
f∼ae
φi∈Φ

prea(f |φi)
∑
s′∼as

s′|=[f ]ψh

s′|=φi

µsa(s′) ≥ β
∑
f∼ae
φi∈Φ

prea(f | φi)
∑
w|=φi

µsa(w)

by semantic definition︷︸︸︷⇔
M, s |=

∑
1≤h≤k

αh
∑
f∼ae
φi∈Φ

prea(f | φi) · Pa(φi ∧ [f ]ψh) ≥ β
∑
f∼ae
φi∈Φ

prea(f | φi)Pa(φi)

re-grouping the sums︷︸︸︷⇔
M, s |=

∑
1≤h≤k
f∼ae
φi∈Φ

αh prea(f | φi) · Pa(φi ∧ [f ]ψh) ≥
∑
f∼ae
φi∈Φ

β prea(f | φi)Pa(φi)

Reducing the notation for the terms we have then that

M, s |= C ≥ D.

4.1 Completeness of PLCC

We first prove the completeness of the static language PE-PDL, which we call
PE-PDL, and then argue, via the reduction axioms, that every LPLCC-formula
can be translated into a LPLCC-formula.

4.1.1 Completeness of the static language PE-PDL

The following definitions have been adapted from [5] to include the test operator.

Definition 4.3 (Fischer-Ladner closure). Let X be a set of formulas. Then
X is Fischer-Ladner closed if it is closed under subformulas and satisfies the
following additional constraints:

(i) If [π1;π2]φ ∈ X then [π1][π2]φ ∈ X

(ii) If [π1 ∪ π2]φ ∈ X then [π1]φ ∧ [π2]φ ∈ X

(iii) If [π∗]φ ∈ X then [π][π∗]φ ∈ X

(iv) If [φ?]ψ ∈ X then φ→ ψ ∈ X.

(v) If w ∈ X then [a]w ∈ X, for w an a-probability formula.
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If Σ is any set of formulas then FL(Σ) (the Fischer-Ladner closure of Σ) is the
smallest set of formulas containing Σ that is Fischer-Ladner closed.

Given a formula φ, we define ∼ φ as the following formula

∼ φ =

{
ψ if φ is of the form ¬ψ
¬φ otherwise.

A set of formulas X is closed under single negations if ∼ φ belongs to X when-
ever φ ∈ X.

We define ¬FL(Σ), the closure of Σ, as the smallest set containing Σ which
is Fischer-Ladner closed and closed under single negations.

Definition 4.4 (Atoms). Let Σ be a set of formulas. A set of formulas A is an
atom over Σ if it is a maximal consistent subset of ¬FL(Σ). That is, A is an
atom over Σ if A ⊆ ¬FL(Σ), if A is consistent, and if A ⊂ B ⊆ ¬FL(Σ) then B
is inconsistent. At(Σ) is the set of all atoms over Σ.

The following lemma (except for item 6) closely follows [5, lemma 4.81].

Lemma 4.5. Let Σ be any set of formulas, and A any element of At(Σ). Then

1. For all φ ∈ ¬FL(Σ): exactly one of φ and ∼ φ is in A

2. For all φ ∨ ψ ∈ ¬FL(Σ): φ ∨ ψ ∈ A iff φ ∈ A or ψ ∈ A

3. For all 〈π1;π2〉φ ∈ ¬FL(Σ): 〈π1;π2〉φ ∈ A iff 〈π1〉〈π2〉φ ∈ A

4. For all 〈π1 ∪ π2〉φ ∈ ¬FL(Σ): 〈π1 ∪ π2〉φ ∈ A iff 〈π1〉φ ∈ A or 〈π2〉φ ∈ A

5. For all 〈π∗〉φ ∈ ¬FL(Σ): 〈π∗〉φ ∈ A iff φ ∈ A or 〈π〉〈π∗〉φ ∈ A

6. For all [φ?]ψ ∈ ¬FL(Σ) : [φ?]ψ ∈ A iff φ→ ψ.

Now it is time to define the canonical model over Σ.

Definition 4.6 (Canonical model over Σ). Let Σ be a finite set of formulas.
The canonical model over Σ is the triple (At(Σ), {SΣ

π }π∈Π, V
Σ) where for all

the propositional variables p, V Σ(p) = {A ∈ At(Σ) | p ∈ A} and for all atoms
A,B ∈ At(Σ) and all programs π,

ASπB if φA ∧ 〈π〉φB is consistent.

where φA is defined as the conjunction of all formulas that belong to A.

Definition 4.7 (Regular model over Σ). Let Σ be a finite set of formulas. For
all basic programs a, define RΣ

a as:

ARaB if ∀φ ∈ ¬FL(Σ), [π]φ ∈ A iff [π]φ ∈ B
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For the complex programs, inductively define the PDL relations such that
∀π, π1, π2, we have:

Rπ1∪π2
= Rπ1

∪Rπ2

Rπ1;π2
= Rπ1

;Rπ2

Rπ∗ = (Rπ)∗

ARφ?B ⇔ A = B and φ ∈ A

Finally, define R, the regular model over Σ, to be

R = (At(Σ), {RΣ
π }π∈Π, V

Σ)

where V Σ is the canonical valuation.

Given the regular model R = (At(Σ), {RΣ
π }π∈Π, V

Σ), our goal is to define a
probability assignment

µΣ : Ag →
(
At
(
Σ)→ (At(Σ)→ [0, 1]

))
s.t. if we consider the Bayesian Kripke structure

M = (At(Σ), {RΣ
π }π∈Π, µ

Σ, V Σ)

then for every state A ∈ At(Σ) and every ψ ∈ ¬FL(Σ) we have (M, A) |= ψ iff
ψ ∈ A.

Lemma 4.8. For any a ∈ Ag and any atom A, there exists a probability function
µa : At(Σ)→ [0, 1] that can realize all a-probability formulas w ∈ A together.

Proof. Using only propositional reasoning, we can show that:

` ψ ↔
∨

{A∈At(Σ)|ψ∈A}

φA, for all ψ ∈ ¬FL(Σ) (1)

` φA → ¬φB , for any A,B ∈ At(Σ), A 6= B (2)

Using these observations and Axioms W1-W5, we can show that

Pa(ψ) =
∑

{A∈At(Σ)|ψ∈A}

Pa(φA)

is provable in PE-PDL. Using this fact, together with I1 and I3, we can show
that an a-probability formula ψ ∈ ¬FL(Σ) is provably equivalent to a formula
of the form ∑

A∈At(Σ)

cAPa(φA) ≥ b

for some appropriate coefficients cA. Let P(A) be the set of atoms B, such that
0 φA → Pa(φB) = 0.
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Now, fix an agent a and a state A ∈ At(Σ). We describe a set of linear
equalities and inequalities corresponding to a and s, over variables of the form
xaAA′ , for A′ ∈ At(Σ). We can think of xaAA′ as representing µAa (A′), that is
the probability of state A′ under agent a’s probability distribution at state A.
We have one inequality corresponding to every a-probability formula ψ ∈ A.
Assume that ψ is equivalent to∑

A′∈At(Σ)

cA′Pa(φA′) ≥ b

Notice that exactly one of ψ and ¬ψ is in A. If ψ ∈ A, then the corresponding
inequality is ∑

A′∈At(Σ)

cA′xaAA′ ≥ b

If ¬ψ ∈ A, then the corresponding inequality is∑
A′∈At(Σ)

cA′xaAA′ < b

Further, due to W6, we have the following equalities:

xaAA′ = 0

for A′ 6∈ P(A), and
xaAA′ > 0

for A′ ∈ A− P(A). Finally, we have the equality∑
A′∈At(Σ)

xaAA′ = 1

As shown in the proofs of [7, Thm. 2.2] and [8, Thm. 4.1], since φA is consistent,
this set of linear equalities and inequalities has a solution x∗a,A,A′ , for A′ ∈ At(Σ).
Set µa,A(A) = x∗a,A,A′ . This is the probability assignment µ that we are looking
for. Before we proceed to the truth lemma, we only need to make sure that
our model M, thus constructed, satisfies the SDP condition, corresponding to
the introduction of Axiom W7 in the logic. This can be easily be checked by
inspecting the definition of Ra. Given this, we can assume, without loss of
generality, that if ARaA

′ then µa,A = µa,A′ , since we have that the definition
of µa,A depends only on the i-probability formulas and their negations at state
A.

Before we prove the truth lemma, we need to establish two important results:
an existence lemma for Sπ and a theorem which states that Sπ ⊆ Rπ.

Lemma 4.9 (The Existence Lemma for Sπ). Let A be an atom and let 〈π〉φ
be a formula in ¬FL(Σ). Then 〈π〉φ ∈ A iff there is a B such that ASπB and
φ ∈ B.
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Proof. Following the strategy laid out in [5, p. 244], we set out to construct an
appropriate atom B by forcing choices. We begin by enumerating the formulas
in the finite set FL(Σ) as σ1, . . . , σm and define B0 to be {φ}. Suppose as
an inductive hypothesis that Bn is defined such that φA ∧ 〈π〉φBn

is consistent
(where 1 ≤ n ≤ m). We get that

` 〈π〉φB ↔ 〈π〉 ((φB ∧ σn+1) ∨ (φB ∧ ¬σn+1))

and thus
` 〈π〉φB ↔ (〈π〉(φB ∧ σn+1)) ∨ (〈π〉(φB ∧ ¬σn+1))

Therefore, either for B′ = B ∪ {σn+1} or for B′ = B ∪ {¬σn+1}, we have that
φA ∧ 〈φB′〉 is consistent. Choose Bn+1 to be this consistent expansion, and let
Bm be B. Then B is the atom we want.

Lemma 4.10 (Lemma for basic programs). For all programs a ∈ Ag, Sa ⊆ Ra.

Proof. We need to show that, if ASaB, then ARaB, for all A,B ∈ At(Σ).
We begin by noting that, since φA ∧ 〈a〉φB is consistent, then there exists a
maximally consistent set (MCS) Γ such that φA ∧ 〈a〉φB ∈ Γ. Note that A is
the maximal consistent subset of ¬FL(Σ) that extends to Γ: A = Γ∩¬FL(Σ).
Since φA ∧ 〈a〉φB ∈ Γ then 〈a〉φB ∈ Γ too. So, there exists a ∆, a maximally
consistent set, such that Γ ∼a ∆, where ∼a is the canonical relation, defined by
A ∼a B iff for all formulas φ, φ ∈ B implies 〈a〉φ ∈ A. Let B = ∆ ∩ ¬FL(Σ).
Then, we have that A ∼a B. We can show that, by the standard results on
canonical models, we have that if the logic includes the S5 axioms, then ∼a is
an equivalence relation.

We prove the following claim:

T ∼a U ↔ ∀φ, 〈a〉φ ∈ T iff 〈a〉φ ∈ U

Proof.

“⇒” Suppose T ∼a U and 〈a〉φ ∈ T . Then, by the definition of ∼a, we have
that 〈a〉〈a〉φ ∈ U . By Axiom K4, we have that 〈a〉φ ∈ U . The other
direction follows from the symmetry of ∼a.

“⇐” Suppose that ∀φ, 〈a〉φ ∈ T iff 〈a〉φ ∈ U . Let ψ ∈ U . We need to show
that 〈a〉ψ ∈ T . From ψ ∈ U and Axiom K3, we then have that 〈a〉φ ∈ T .

Therefore, we proved then that if ASaB then ARaB.

Lemma 4.11. If Σ is finite, then ¬FL(Σ) is finite.

Proof. We skip the proof of this theorem, as it is a straightforward proof by
induction.

Lemma 4.12. For all programs π, we have that Sπ∗ ⊆ (Sπ)∗.
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Proof. Identical to the proof of Lemma 4.87 in [5, p. 244].

Theorem 4.13. For all programs π, Sπ ⊆ Rπ.

Proof by induction on the complexity of π.

Base Case: π = a is given by the Lemma for basic programs.

Inductive Hypothesis: Assume the claim holds for all programs of complex-
ity lower than π. Now we try to show it for π

Case 1: π is of the form π1;π2. Suppose ASπ1;π2
B, that is, φA∧〈π1;π2〉φB is

consistent. It follows, by Axiom 3, that φA∧〈π1〉〈π2〉φB is consistent.
By the IH, we get that ARπ1

C and CRπ2
B. It follows immediately

that ARπ1;π2
B.

Case 2: π is of the form π1 ∪ π2. Similar to Case 1. Omitted here.

Case 3: π is of the form π∗. Suppose ASπ∗B, that is, φA ∧ 〈π∗〉φB is con-
sistent. Since Sπ∗ ⊆ (Sπ)∗, we get that there exists a chain A =
C0SπC1 . . . Ck = B, such that, for every pair CiCi+1, by the IH, if
CiSπCi+1 then CiRπCi+1. But then ARπ∗B.

Case 4: π is of the form φ?. Assume φ ∈ ¬FL(Σ). Suppose ASφ?B. Then
φA ∧ [φ?]φB is consistent. From Axiom 7, using propositional rea-
soning, we get that 〈φ?〉ψ ↔ (φ ∧ ψ). It follows that

φA ∧ (φ ∧ ψB) is consistent

However, it’s easy to notice that for any two atoms are mutually
exclusive, therefore ` φA → ¬φB∀A 6= B. We can conclude then
that A = B. Finally, since φA ∧ φ is consistent and φ ∈ ¬FL(Σ), we
conclude that φ ∈ A.

Before we prove the truth lemma, we need to establish an existence lemma
as follows:

Lemma 4.14 (Existence Lemma). Let A and B be atoms in At(Σ) and let
[π]φ ∈ ¬FL(Σ). Then if [π]ψ ∈ A and ARπB then φ ∈ B.

Proof: induction on the complexity of π.

Base Case: π is a basic program a

We need to show that if ARaB and [a]φ ∈ A, then [a]φ ∈ B. It immedi-
ately follows that if [a]φ ∈ A and ARaB then, by the definition of Ra we
get [a]φ ∈ B. By this and the transitivity axiom [a]φ→ φ, it follows that
φ ∈ B.

Inductive step: Assume the claim holds for all π of a certain complexity and
lower.
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Case 1: φ is of the form π1∪π2. We have that ARπ1∪π2B and [π1∪π2]φ ∈ A.
By Ax. (iv), we have that [π1]φ, [π2]φ ∈ A. Since ARπ1∪π2B then we
have that either ARπ1

B or ARπ2
B. Applying the IH, we get that in

either case φ ∈ B.

Case 2: π is of the form π1;π2. Similar to Case 1. Will omit here.

Case 3: π is of the form φ?. We have that [φ?]ψ ∈ A and ARφ?B and we
need to show that ψ ∈ B. By Axiom 7, then φ → ψ ∈ A. Further,
from ARφ?B, we get that A = B and φ ∈ A. By an application of
modus ponens, we get that ψ ∈ A.

Case 4: π is of the form [π∗]. In order to prove this, it suffices to show that:

Theorem 4.15. ∀φ such that [π∗] ∈ ¬FL(Σ), if [π∗]φ ∈ A and
ARπ∗B then [π∗]φ ∈ B.

Proof by induction on the length of the path k from A to B: A =
C0RπC1 . . . RπCk = B.

Proof.

Base Case: the length of the path k = 1. We know that ARπB
and [π∗]φ ∈ B. By Axiom 5 and clause 5 of the FL closure,
we get that [π][π∗]φ ∈ A. Applying the IH∃Lemma, we get that
[π∗]φ ∈ B.

Inductive Hypothesis: Assume the claim holds for all lengths lower
than k and try to prove it for k.
We have that [π∗]φ ∈ A and

A = C0RπC1 . . . Ck−1RπCk = B

By the IH, given that ARπ∗Ck−1, we have that [π∗]φ ∈ Ck−1.
By Axiom 5 and clause 5 of the FL closure, [π][π∗]φ ∈ Ck−1.
Since we also have that Ck−1RπB, by the IH∃Lemma, we get
have [π∗]φ ∈ B.

Theorem 4.16 (Truth Lemma). Let R be a regular PE-PDL model over Σ.
For all atoms A and all φ ∈ ¬FL(Σ), R, A |= φ iff φ ∈ A.

Proof: Induction on the number of connectives.

Base Case Follows immediately from the definition of the canonical valuation
over Σ.

Inductive step

Case 1: The Boolean case.

It follows immediately from Lemma 4.5 above.
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Case 2: φ is of the form [a]ψ

“⇒” R, A |= [a]ψ then [a]ψ ∈ A.

Proof. Define ∆ = {[a]χ|[a]χ ∈ A}∪{¬[a]χ|¬[a]χ ∈ A}. Then ∆∪{¬ψ} is
inconsistent. For suppose otherwise. Then ∆∪{¬ψ} could be expanded to
a MCS B ∈ At(Σ). We have that by construction ARaB. If ¬ψ ∈ B then
by the IH I get that B |= ¬ψ. Since R, A |= [a]ψ and ARaB ⇒ B |= ψ.
Contradiction. Then ` φ∆ → ψ. By R2 ⇒` [a](φ∆ → ψ) and by Ax. 4
and Ax. 5 we get that φ∆ → [a]φ∆. By K2 ⇒` φ∆ → [a]ψ. This, together
with the fact that [a]ψ ∈ ¬FL(Σ) and the fact that for ∀φ ∈ FL(Σ), either
φ or its negation is in A⇒ [a]ψ ∈ A.

“⇐” if [a]ψ ∈ A then R, A |= [a]ψ.

Proof. Consider B ∈ At(Σ) s.t. ARaB. Then [a]φ ∈ A ⇔ [a]φ ∈ B.
This together with the assumption imply that [a]ψ ∈ B. By Ax. K3 we
know that [a]ψ → ψ and since [a]ψ ∈ ¬FL(Σ) then ψ ∈ ¬FL(Σ), we get
that ψ ∈ B. By the IH ⇒ B |= ψ. This holds for any B s.t. ARaB.
⇒ A |= [a]ψ.

Case 3: φ = [π1 ∪ π2]ψ

“⇒” if R, A |= [π1 ∪ π2]ψ then [π1 ∪ π2]ψ ∈ A.

Proof. A |= [π1 ∪ π2]ψ ⇒ ∀B s.t. ARπ1B or ARπ2B then B |= ψ ⇒ A |=
[π1]ψ and A |= [π2]ψ. By IH we get that [π1]ψ, [π2]ψ ∈ A. By Ax. 4,
we have that [π1]ψ ∧ [π2]ψ ⇔ [π1 ∪ π2]ψ. Since [π1 ∪ π2]ψ ∈ ¬FL(Σ) ⇒
[π1 ∪ π2]ψ ∈ A.

“⇐” if [π1 ∪ π2]ψ ∈ A then A |= [π1 ∪ π2]ψ.

Proof. Consider B ∈ At(Σ) s.t. ARπ1∪π2B. This means that ARπ1B or
ARπ2

B. Now [π1 ∪ π2]ψ ∈ A. By Ax. 4 [π1 ∪ π2]ψ ↔ [π1]ψ ∧ [π2]ψ ⇒
[π1]ψ, [π2]ψ ∈ A ⇒ by IH A |= [π1]ψ ∧ [π2]ψ. Since B is s.t. ARπ1

B or
ARπ2

B then B |= φ⇒ A |= [π1 ∪ π2]ψ

Case 4: φ is of the form [π1;π2]ψ

“⇒” R, A |= [π1;π2]ψ then [π1;π2]ψ ∈ A

Proof. From R, A |= [π1;π2]ψ we get that for ∀C, ∀B ∈ At(Σ) s.t. ARπ1
C

and CRπ2
B, then B |= ψ. It follows that C |= [π2]ψ for any C s.t.

ARπ1C ⇒ A |= [π1][π2]ψ. By IH ⇒ [π1][π2]ψ ∈ A. By Ax. 3 ⇒
[π1;π2]ψ ∈ A, since [π1;π2]ψ ∈ ¬FL(Σ).

“⇐” if [π1;π2]ψ ∈ A⇒ A |= [π1;π2]ψ
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Proof. We need to show that if [π1;π2]ψ ∈ A then for ∀C,B ∈ At(Σ) s.t.
ARπ1C and CRπ2B then B |= ψ. By Ax. 3 and by clause 1, if [π1;π2]ψ ∈
A ⇒ [π1][π2]ψ ∈ A. By IH ⇒ A |= [π1][π2]ψ ⇒ for ∀C s.t. ARπ1

C we
have R, C |= [π2]ψ ⇒ ∀B s.t. CRπ2

B ⇒ B |= ψ ⇒ A |= [π1;π2]ψ

Case 5: φ is of the form φ?

“⇒” Assume A |= [φ?]ψ. We need to show that [φ?]ψ ∈ A. By Axiom 6,
A |= φ→ ψ. By the IH, we get that φ→ ψ ∈ A. By Axiom 7, [φ?]ψ ∈ A.

“⇐”Assume [φ?]ψ ∈ A. Show that A |= [φ?]ψ. By Axiom 7, we get that
φ → ψ ∈ A. By the IH, we have that A |= φ → ψ. By Axiom 7,we get
that A |= [φ?]ψ.

Case 6: φ is of the form [π∗]ψ

“⇐” if [π∗]ψ ∈ A⇒ A |= [π∗]ψ.

From the Existence Lemma and an application of Axiom 5, it follows
immediately that ∀φs.t.[π]φ ∈ ¬FL(Σ), if ARπ∗B and [π∗]φ ∈ A then
φ ∈ B.

“⇒” if A |= [π∗]ψ ⇒ [π∗]ψ ∈ A.

Proof. By contraposition, we need to prove that if ¬[π∗]φ ∈ A then A 6|=
[π∗]ψ. By the Existence Lemma for Si∗ , we have that if ¬[π∗]φ ∈ A then
∃B ∈ At(Σ) such that ASπ∗B, then ¬φ ∈ B. But we have shown that
Sπ∗ ⊆ Rπ∗ , therefore we have that ARπ∗B. By the IHTruth Lemma and
the fact that ¬φ ∈ B we have that B |= ¬φ. Therefore A 6|= [π∗]φ.

Case 7: φ is of the form
∑k
j=1 αjPa(φj) ≥ β. By Lemma 4.8,

∑k
j=1 αjPa(φj) ≥

β ∈ A if and only if
∑k
j=1

∑
{B∈At,`B→φj} αjµa,A(B) ≥ β if and only

if R, A |=
∑k
j=1

∑
{B∈At,`B→φj} αjµa,A(B) ≥ β if and only if R, A |=∑k

j=1 αjPa(φj) ≥ β.

Lemma 4.17. If R = (At(Σ), {RΣ
π }π∈Π, µ

Σ, V Σ) is a regular PE-PDL structure
over Σ then B = (At(Σ), {RΣ

a }a∈Ag , µ
Σ, V Σ) is a Bayesian Kripke model.

Proof. We must show that SDP, CONS, CAUT, and PROB are satisfied by R
and hence B. That PROB is satisfied follows immediately from Lemma 4.8. The
case for SDP was addressed in the proof of Lemma 4.8. For CONS and CAUT,
we note that by the construction of the µAi , we ensured that the support of µAi
was P(A) consisting of all atoms B, such that 0 φA → Pi(φB) = 0. We thus
wish to show that

ARiB ⇔ 0 φA → (Pi(φB) = 0) .

First observe that by W6 (and propositional reasoning),

0 φA → [i](¬φB) ⇔ 0 φA → (Pi(φB) = 0) .
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It remains to show that

ARiB ⇔ 0 φA → [i](¬φB).

The right to left direction follows almost directly from Lemma 4.10, since it is
immediate from the definition of Si that ASiB is equivalent to 0 φA → [i](¬φB).
But here is another proof. Suppose that it is not the case that ARiB. Then there
exists a [i]ψ that is in exactly one of A or B. If B, we have that ` φA → ¬[i]ψ.
Then by K3 and modus ponens, we have ` φA → [i]¬[i]ψ. As ` ¬[i]ψ → φB
(by propositional reasoning), we have that ` ψA → [i]¬φB . If [i]ψ ∈ A, then
we have that ` ψA → [i]ψ, and by K2 and modus ponens, ` ψA → [i][i]ψ. As
` ¬¬[i]ψ ∈→ φB , we have that ` ψA → [i]¬φB .

The left-to-right direction follows from the Truth Lemma (Lemma 4.16).
Suppose that ARiB. Then by the truth lemma (Lemma 4.16), R, B |= ψ for
every ψ ∈ B. Then R, B |= φB and hence R, A |= φA ∧ 〈i〉φB . As φA ∧ 〈i〉φB is
satisfiable, it must be consistent. Hence 0 φA → [i]¬φB .

Theorem 4.18 (Weak completeness of PE-PDL). PE-PDL is weakly complete
with respect to the class of all Bayesian Kripke frames.

The reduction axioms presented in Figure 11 determine a translation proce-
dure, for reducing the LPLCC-formulas into LPE-PDL formulas.

Definition 4.19 (Translation). The function t takes a formula from the lan-
guage of LPLCC and yields a formula in the language of LPE-PDL.

t(T ) = T r(a) = a

t(p) = p r(B) = B

t(¬φ) = ¬t(φ) r(?φ) =?t(φ)

t(φ1 ∧ φ2) = t(φ1) ∧ t(φ2) r(π1;π2) = r(π1); r(π2)

t([π]φ) = [r(π)]t(φ) r(π1 ∪ π2) = r(π1) ∪ r(π2)

t([e]T ) = T r(π∗) = (r(π))∗

t([e]p) = t(pre(e))→ t(sub(e)(p))

t([e]¬φ) = t(pre(e))→ ¬t([e]φ)

t([e](φ1 ∧ φ2)) = t([e]φ1) ∧ t([e]φ2)

t([ei][π]φ) =

m−1∧
j=0

[Tij(r(π))]t([ej ]φ)

t([e][e′]φ) = t([e]t([e′]φ))

t

 ∑
1≤h≤k

αh · Pa(ψh) ≥ β

 =
∑

1≤h≤k

αh · Pa(t(ψh)) ≥ β

t

[e]
∑

1≤h≤k

αh · Pa(ψh) ≥ β

 = t(pre(e))→ t(C > D)
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where the letters in the last line stand for

C =
∑

1≤h≤k
φi∈Φ
f∼ae

αh · prea(f | φi) · Pa(t(φi ∧ [f ]ψh))

D =
∑
φi∈Φ
f∼ae

β · prea(f | φi) · Pa(t(φi))

Finally, we have that:

Theorem 4.20 (Completeness of PLCC). For any φ, a formula of the language
LPLCC, we have that:

|= φ iff ` φ

Proof. Given the completeness of the static language PE-PDL LPE-PDL, and
the translation procedure above, which ensures every formula in the language of
PLCC is equivalent to a formula in the language of PE-PDL, the result follows
immediately.

Theorem 4.21 (Decidability and Strong Finite Model Property). The sat-
isfiability problem for PLCC is decidable. Moreover, there exists a computable
function f from formulas to natural numbers, such that every satisfiable formula
φ has a model of size at most f(φ).

Proof. Given a consistent formula ϕ in PLCC, one can translate ϕ to in a prov-
ably equivalent way to a formula t(ϕ) in PE-PDL. The length of the resulting
formula is bounded by the size of ϕ. if Σ is the set of sub formulas of t(ϕ), then
¬FL(Σ) can be computed, and its size is bounded by the length of ϕ. The size
of the canonical model is thus bounded by 2n where n is the size of ¬FL(Σ).

Remark 4.22 (Expressivity and Succinctness). PLCC and PE-PDL are equally
expressive (although PLCC is much more succinct).

5 Conclusions

The Probabilistic Logic of Communication and Change (PLCC) introduced in
this paper provides a unified framework for reasoning about subjective proba-
bilities, levels of mutual knowledge and complex interactive scenarios involving
changes affecting both the facts of the world and the agents’ information states.
We applied this logic to fully capture the higher-level reasoning involved in an
informational cascade: the Urn Example.

Conceptually, the importance of our analysis of cascades comes from the fact
that PLCC incorporates, not only the standard Bayesian rationality assump-
tions, but also meta-rationality and higher levels of reflection (via the availability
of arbitrary levels of mutual knowledge, including knowledge of the long-term
epistemic protocol, as encoded in our event model). So our epistemic analysis
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of this example shows that, contrary to some authors’ opinions, reflection and
higher-order reasoning cannot in general prevent informational cascades: even
if the agents are aware of the cascade, it is still rational for them to continue
engaging in it.

But our analysis of the Urn scenario is just one example of the interesting
applications of our logic. Beyond this particular example, and even beyond the
issue of informational cascades, we think that our logic has broader potential
for applications in Game Theory and Social Epistemology, and can be used to
spot hidden assumptions behind ordinary economic or multi-agent reasoning,
while the axioms and inference rules can also help to analyse such assumptions.
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