
Tableaux for First-order Logic ILCS 2007

Introduction to
Logic in Computer Science: Autumn 2007

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Tableaux for First-order Logic ILCS 2007

Tableaux for First-order Logic

The next part of the course will be an introduction to analytic

tableaux for classical first-order logic:

• Quick review of syntax and semantics of first-order logic

• Quantifier rules for Smullyan-style and KE-style tableaux

• Soundness and completeness proofs

• Automatic generation of countermodels

• Discussion of efficiency issues, undecidability

• Free-variable tableaux to increase efficiency

• Tableaux for first-order logic with equality

• Clause tableaux for input in CNF

Ulle Endriss 2

Tableaux for First-order Logic ILCS 2007

Syntax of FOL

The syntax of a language defines the way in which basic elements of

the language may be put together to form clauses of that language.

In the case of FOL, the basic ingredients are (besides the logic

operators): variables, function symbols, and predicate symbols. Each

function and predicate symbol is associated with an arity n ≥ 0.

Definition 1 (Terms) We inductively define the set of terms as

the smallest set such that:

(1) every variable is a term;

(2) if f is a function symbol of arity k and t1, . . . , tk are terms,

then f(t1, . . . , tk) is also a term.

Function symbols of arity 0 are better known as constants.

Ulle Endriss 3

Tableaux for First-order Logic ILCS 2007

Syntax of FOL (2)

Definition 2 (Formulas) We inductively define the set of

formulas as the smallest set such that:

(1) if P is a predicate symbol of arity k and t1 . . . , tk are terms,

then P (t1, . . . , tk) is a formula;

(2) if ϕ and ψ are formulas, so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ→ ψ;

(3) if x is a variable and ϕ is a formula, then (∀x)ϕ and (∃x)ϕ are

also formulas.

Syntactic sugar: ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ); > ≡ P ∨ ¬P

(for an arbitrary 0-place predicate symbol P); ⊥ ≡ ¬>.

Also recall: atoms, literals, ground terms, bound and free

variables, closed formulas (aka sentences), . . .

Ulle Endriss 4

Tableaux for First-order Logic ILCS 2007

Semantics of FOL

The semantics of a language defines the meaning of clauses in that

language. In the case of FOL, we do this through the notion of

models (and variable assignments).

Definition 3 (Models) A model is a pair M = (D, I), where D

(the domain) is a non-empty set of objects and I (the

interpretation function) is mapping each n-place function symbol f

to some n-ary function fI : Dn → D and each n-place predicate

symbol P to some n-ary relation P I : Dn → {true, false}.

Note that this definition also covers the cases of 0-place function

symbols (constants) and predicate symbols.

Ulle Endriss 5

Tableaux for First-order Logic ILCS 2007

Semantics of FOL (2)

Definition 4 (Assignments) A variable assignment over a

domain D is a function g from the set of variables to D.

Definition 5 (Valuation of terms) We define a valuation

function valI,g over terms as follows:

valI,g(x) = g(x) for variables x

valI,g(f(t1, . . . , tn)) = fI(valI,g(t1), . . . , valI,g(tn))

Definition 6 (Assignment variants) Let g and g′ be

assignments over D and let x be a variable, Then g′ is called an

x-variant of g iff g(y) = g′(y) for all variables y 6= x.

Ulle Endriss 6

Tableaux for First-order Logic ILCS 2007

Semantics of FOL (3)

Definition 7 (Satisfaction relation) We write M, g |= ϕ to say

that the formula ϕ is satisfied in the model M = (I,D) under the

assignment g. The relation |= is defined inductively as follows:

(1) M, g |= P (t1, . . . , tn) iff P I(valI,g(t1), . . . , valI,g(tn)) = true;

(2) M, g |= ¬ϕ iff not M, g |= ϕ;

(3) M, g |= ϕ ∧ ψ iff M, g |= ϕ and M, g |= ψ;

(4) M, g |= ϕ ∨ ψ iff M, g |= ϕ or M, g |= ψ;

(5) M, g |= ϕ→ ψ iff not M, g |= ϕ or M, g |= ψ;

(6) M, g |= (∀x)ϕ iff M, g′ |= ϕ for all x-variants g′ of g; and

(7) M, g |= (∃x)ϕ iff M, g′ |= ϕ for some x-variant g′ of g.

Ulle Endriss 7

Tableaux for First-order Logic ILCS 2007

Semantics of FOL (4)

Observe that in the case of closed formulas ϕ the variable

assignment g does not matter (we just write M |= ϕ).

Satisfiability. A closed formula ϕ is called satisfiable iff it has a

model, i.e. there exists a model M with M |= ϕ.

Validity. A closed formula ϕ is called valid iff for every model M

we have M |= ϕ. We write |= ϕ.

Consequence relation. Let ϕ be a closed formula and let ∆ be a

set of closed formulas. We write ∆ |= ϕ iff whenever M |= ψ holds

for all ψ ∈ ∆ then also M |= ϕ holds.

Ulle Endriss 8

Tableaux for First-order Logic ILCS 2007

Quantifier Rules

Both the KE-style and the Smullyan-style tableau method for

propositional logic can be extended with the following rules.

Gamma Rules:

(∀x)A

A[t/x]

¬(∃x)A

¬A[t/x]

Delta Rules:

(∃x)A

A[c/x]

¬(∀x)A

¬A[c/x]

Here, t is an arbitrary ground term and c is a constant symbol that

is new to the branch.

Unlike all other rules, the gamma rule may have to be applied more

than once to the same formula on the same branch.

Substitution. ϕ[t/x] denotes the formula we get by replacing each

free occurrence of the variable x in the formula ϕ by the term t.

Ulle Endriss 9

Tableaux for First-order Logic ILCS 2007

Smullyan’s Uniform Notation

Formulas of universal (γ) and existential (δ) type:

γ γ1(u)

(∀x)A A[u/x]

¬(∃x)A ¬A[u/x]

δ δ1(u)

(∃x)A A[u/x]

¬(∀x)A ¬A[u/x]

We can now state gamma and delta rules as follows:

γ

γ1(t)

δ

δ1(c)

where:

• t is an arbitrary ground term

• c is a constant symbol new to

the branch

Ulle Endriss 10

Tableaux for First-order Logic ILCS 2007

Exercises

Give Smullyan-style or KE-style tableau proofs for the following

two arguments:

• (∀x)P (x) ∨ (∀x)Q(x) |= ¬(∃x)(¬P (x) ∧ ¬Q(x))

• |= (∃x)(P (x) ∨Q(x)) ↔ (∃x)P (x) ∨ (∃x)Q(x)

Ulle Endriss 11

Tableaux for First-order Logic ILCS 2007

Soundness and Completeness

Let ϕ be a first-order formula and ∆ a set of such formulas. We

write ∆ ` ϕ to say that there exists a closed tableau for ∆ ∪ {¬ϕ}.

Theorem 1 (Soundness) If ∆ ` ϕ then ∆ |= ϕ.

Theorem 2 (Completeness) If ∆ |= ϕ then ∆ ` ϕ.

We shall prove soundness and completeness only for Smullyan-style

tableaux (but it’s almost the same for KE-style tableaux).

Important note: The mere existence of a closed tableau does not

mean that we have an effective method of finding it! Concretely:

we don’t know how often we need to apply the gamma rule and

what terms to use for the substitutions.

Ulle Endriss 12

Tableaux for First-order Logic ILCS 2007

Proof of Soundness

This works exactly as in the propositional case (; last week).

The central step is to show that each of the expansion rules

preserves satisfiability:

• If a non-branching rule is applied to a satisfiable branch, the

result is another satisfiable branch.

• If a branching rule is applied to a satisfiable branch, at least

one of the resulting branches is also satisfiable.

Ulle Endriss 13

Tableaux for First-order Logic ILCS 2007

Proof of Soundness (cont.)

Gamma rule: If γ appears on a branch, you may add γ1(t) for

any ground term t to the same branch.

Proof: suppose branch B with γ ≡ (∀x)γ1(x) ∈ B is satisfiable

⇒ there exists M = (D, I) s.t. M |= B and hence M |= (∀x)γ1(x)

⇒ for all assignments g: M, g |= γ1(x); choose g′ s.t. g′(x) = tI

⇒ M, g′ |= γ1(x) ⇒ M |= γ1(t) ⇒ M |= B ∪ {γ1(t)} X

Delta rule: If δ appears on a branch, you may add δ1(c) for any

new constant symbol c to the same branch.

Proof: suppose branch B with δ ≡ (∃x)δ1(x) ∈ B is satisfiable

⇒ there exists M = (D, I) s.t. M |= B and hence M |= (∃x)δ1(x)

⇒ there exists a variable assignment g s.t. M, g |= δ1(x)

now suppose g(x) = d ∈ D; define new model M′ = (D, I ′) with I ′

like I but additionally cI
′

= d (this is possible, because c is new)

⇒ M′ |= δ1(c) and M′ |= B ⇒ M′ |= B ∪ {δ1(c)} X

Ulle Endriss 14

Tableaux for First-order Logic ILCS 2007

Hintikka’s Lemma

Definition 8 (Hintikka set) A set of first-order formulas H is

called a Hintikka set provided the following hold:

(1) not both P ∈ H and ¬P ∈ H for atomic formulas P ;

(2) if ¬¬ϕ ∈ H then ϕ ∈ H for all formulas ϕ;

(3) if α ∈ H then α1 ∈ H and α2 ∈ H for alpha formulas α;

(4) if β ∈ H then β1 ∈ H or β2 ∈ H for beta formulas β.

(5) for all terms t built from function symbols in H (at least one

constant symbol): if γ ∈ H then γ1(t) for gamma formulas γ;

(6) if δ ∈ H then δ1(t) ∈ H for some term t, for delta formulas δ.

Lemma 1 (Hintikka) Every Hintikka set is satisfiable.

Ulle Endriss 15

Tableaux for First-order Logic ILCS 2007

Proof of Hintikka’s Lemma

Construct a model M = (D, I) from a given Hintikka set H:

• D: set of terms constructible from function symbols appearing

in H (add one constant symbol in case there are none)

• I: (1) function symbols are being interpreted “as themselves”:

fI(d1, . . . , dn) = f(d1, . . . , dn); (2) predicate symbols:

P I(d1, . . . , dn) = true iff P (d1, . . . , dn) ∈ H

Claim: ϕ ∈ H entails M |= ϕ.

Proof: By structural induction. [. . .] X

Ulle Endriss 16

Tableaux for First-order Logic ILCS 2007

Proof of Completeness

Fairness. We call a tableau proof fair iff every non-literal gets

eventually analysed on every branch and, additionally, every

gamma formula gets eventually instantiated with every term

constructible from the function symbols appearing on a branch.

Proof sketch. We will show the contrapositive: assume ∆ 6` ϕ and

try to conclude ∆ 6|= ϕ.

If there is no proof for ∆ ∪ {¬ϕ} (assumption), then there can also

be no fair proof. Observe that any fairly constructed non-closable

branch enumerates the elements of a Hintikka set H.

H is satisfiable (Hintikka’s Lemma) and we have ∆ ∪ {¬ϕ} ⊆ H.

So there is a model for ∆ ∪ {¬ϕ}, i.e. we get ∆ 6|= ϕ. X

Ulle Endriss 17

Tableaux for First-order Logic ILCS 2007

Summary: Basic Tableaux Systems for FOL

• Two tableau methods for first-order logic: Smullyan-style

(syntactic branching) and KE-style (semantic branching)

• Soundness and completeness

• Undecidability: gamma rule is the culprit

Ulle Endriss 18

Tableaux for First-order Logic ILCS 2007

Automatic Generation of Countermodels

Besides deduction and theorem proving, another important

application of automated reasoning is model generation.

Using tableaux, we sometimes get termination for failed proofs and

can extract a counterexample (particularly nice for KE).

Ulle Endriss 19

Tableaux for First-order Logic ILCS 2007

Saturated Branches

An open branch is called saturated iff every non-literal has been

analysed at least once and, additionally, every gamma formula has

been instantiated with every term we can construct using the

function symbols on the branch.

Failing proofs. A tableau with an open saturated branch can

never be closed, i.e. we can stop an declare the proof a failure.

The solution? This only helps us in special cases though.

(A single 1-place function symbol together with a constant is

already enough to construct infinitely many terms . . .)

Propositional logic. In propositional logic (where we have no

gamma formulas), after a limited number of steps, every branch will

be either closed or saturated. This gives us a decision procedure.

Ulle Endriss 20

Tableaux for First-order Logic ILCS 2007

Countermodels

If a KE proof fails with a saturated open branch, you can use it to

help you define a model M for all the formulas on that branch:

• domain: set of all terms we can construct using the function

symbols appearing on the branch (so-called Herbrand universe)

• terms are interpreted as themselves

• interpretation of predicate symbols: see literals on branch

In particular, M will be a model for the premises ∆ and the

negated conclusion ¬ϕ, i.e. a counterexample for ∆ |= ϕ.

You can do the same with Smullyan-style tableaux, but for KE

distinct open branches always generate distinct models.

Take care: There’s a bug in WinKE—sometimes, what is

presented as a countermodel is in fact only part of a countermodel

(but it can always be extended to an actual model).

Ulle Endriss 21

Tableaux for First-order Logic ILCS 2007

Exercise

Construct a counterexample for the following argument:

• (∀x)(P (x) ∨Q(x)) |=? (∀x)P (x) ∨ (∀x)Q(x)

Ulle Endriss 22

Tableaux for First-order Logic ILCS 2007

Ulle Endriss 23

Tableaux for First-order Logic ILCS 2007

Extensions and Variations

Next we’ll be looking into several extensions and variations of the

tableau method for first-order logic:

• Free-variable tableaux to increase efficiency

• Tableaux for first-order logic with equality

• Clause tableaux for input in CNF

Ulle Endriss 24

Tableaux for First-order Logic ILCS 2007

Efficiency Issues

Due to the undecidability of first-order logic there can be no

general method for finding a closed tableau for a given theorem

(although its existence is guaranteed by completeness).

Nevertheless, there are some heuristics:

• As in the propositional case, use “deterministic” rules first:

propositional rules except PB and the delta rule.

• As in the propositional case, use beta simplification.

• Use the gamma rule a “reasonable” number of times (with

“promising” substitutions) before attempting to use PB.

Example: for the automated theorem prover implemented in

WinKE you can choose n, the maximum number of applications

of the gamma rule on a given branch before PB will be used.

• Use analytic PB only.

Ulle Endriss 25

Tableaux for First-order Logic ILCS 2007

A Problem and an Idea

One of the main drawbacks of either variant of the tableau method

for FOL, as presented so far, is that for every application of the

gamma rule we have to guess a good term for the substitution.

And idea to circumvent this problem would be to try to “postpone”

the decision of what substitution to choose until we attempt to

close branches, at which stage we would have to check whether

there are complementary literals that are unifiable.

Instead of substituting with ground terms we will use free variables.

As this would be cumbersome for KE-style tableaux, we will only

present free-variable Smullyan-style tableaux.

But first, we need to speak about unification in earnest . . .

Ulle Endriss 26

Tableaux for First-order Logic ILCS 2007

Unification

Definition 9 (Unification) A substitution σ (of possibly several

variables by terms) is called a unifier of a set of formulas

∆ = {ϕ1, . . . , ϕn} iff σ(ϕ1) = · · · = σ(ϕn) holds. We also write

|σ(∆)| = 1 and call ∆ unifiable.

Definition 10 (MGU) A unifier µ of a set of formulas ∆ is

called a most general unifier (mgu) of ∆ iff for every unifier σ of ∆

there exists a substitution σ′ with σ = µ ◦ σ′.

(The composition µ ◦ σ′ is the substitution we get by first applying

µ to a formula and then σ′.)

Remark. We also speak of unifiers (and mgus) for sets of terms.

Ulle Endriss 27

Tableaux for First-order Logic ILCS 2007

Unification Algorithm: Preparation

We shall formulate a unification algorithm for literals only, but it

can easily be adapted to work with general formulas (or terms).

Subexpressions. Let ϕ be a literal. We refer to formulas and

terms appearing within ϕ as the subexpressions of ϕ. If there is a

subexpression in ϕ starting at position i we call it ϕ(i) (otherwise

ϕ(i) is undefined; say, if there is a comma at the ith position).

Disagreement pairs. Let ϕ and ψ be literals with ϕ 6= ψ and let

i be the smallest number such that ϕ(i) and ψ(i) are defined and

ϕ(i) 6= ψ(i). Then (ϕ(i), ψ(i)) is called the disagreement pair of ϕ

and ψ. Example:

ϕ = P (g1(c), f1(a, g1(x), g2(a, g1(b)))

ψ = P (g1(c), f1(a, g1(x), g2(f2(x, y), z))

↑
Disagreement pair: (a, f2(x, y))

Ulle Endriss 28

Tableaux for First-order Logic ILCS 2007

Robinson’s Unification Algorithm

set µ := [] (empty substitution)

while |µ(∆)| > 1 do {

pick a disagreement pair p in µ(∆);

if no variable in p then {

stop and return ‘not unifiable’;

} else {

let p = (x, t) with x being a variable;

if x occurs in t then∗ {

stop and return ‘not unifiable’;

} else {

set µ := µ ◦ [t/x];

}

}

}

return µ;

Input: ∆ (set of literals)

Output: µ (mgu of ∆)

or ‘not unifiable’

∗ so-called occurs-check

Ulle Endriss 29

Tableaux for First-order Logic ILCS 2007

Exercise

Run Robinson’s Unification Algorithm to compute the mgu of the

following set of literals (assuming x, y and z are the only variables):

∆ = {Q(f(x, g(x, a)), z), Q(y, h(x)), Q(f(b, w), z)}

Ulle Endriss 30

Tableaux for First-order Logic ILCS 2007

Free-variable Tableaux

The Smullyan-style tableau method for propositional logic can be

extended with the following quantifier rules.

Gamma Rules:

γ

γ1(y)

Delta Rules:

δ

δ1(f(x1, . . . , xn))

Here y is a (new) free variable, f is a new function symbol, and

x1, . . . , xn are the free variables occurring in δ.

An additional tableau rule is added to the system: an arbitrary

substitution may be applied to the entire tableau.

The closure rule is being restricted to complementary literals (to

avoid dealing with unification for formulas with bound variables).

Ulle Endriss 31

Tableaux for First-order Logic ILCS 2007

Closing Branches

There are different ways in which to use the interplay of the

substitution rule and the closure rule:

• One approach is to develop the tableau until a single

application of the substitution rule produces complementary

literals on all branches. Nice in theory, but not that efficient.

• Another approach is to compute mgus of potentially

complementary literals to close branches as you go along.

This is more goal-directed, but as substitutions carry over to

other branches, we may make suboptimal choices.

Ulle Endriss 32

Tableaux for First-order Logic ILCS 2007

Exercises

Give free-variable tableaux for the following theorems:

• |= (∃x)(P (x) → (∀y)P (y))

• |= (∃x)(∀y)(∀z)(P (y) ∨Q(z) → P (x) ∨Q(x))

• |= (∃x)(P (x) ∨Q(x)) → (∃x)P (x) ∨ (∃x)Q(x)

Ulle Endriss 33

Tableaux for First-order Logic ILCS 2007

Handling Equality

Three approaches to tableaux for first-order logic with equality:

• Introduce a binary predicate symbol to represent equality and

explicitly axiomatise it as part of the premises. This requires

no extension to the calculus. ; Possible, but very inefficient.

• Add expansion and closure rules to your favourite tableau

method to handle equality. There are different ways of doing

this (we’ll look at some of them next).

• For free-variable tableaux, take equalities and inequalities into

account when searching for substitutions to close branches

(“E-unification”). ; Requires serious work on algorithms for

E-unification, but is potentially the best method.

We use the symbol ≈ to denote the equality predicate.

Ulle Endriss 34

Tableaux for First-order Logic ILCS 2007

Axiomatising Equality

We can use our existing tableau methods for first-order logic with

equality if we explicitly axiomatise the (relevant) properties of the

special predicate symbol ≈ (using infix-notation for readability):

• Reflexivity axiom: (∀x)(x ≈ x)

• Replacement axiom for each n-place function symbol f :

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)[(x1 ≈ y1) ∧ · · · ∧ (xn ≈ yn) →

f(x1, . . . , xn) ≈ f(y1, . . . , yn)]

• Replacement axiom for each n-place predicate symbol P :

(∀x1) · · · (∀xn)(∀y1) · · · (∀yn)[(x1 ≈ y1) ∧ · · · ∧ (xn ≈ yn) →

(P (x1, . . . , xn) → P (y1, . . . , yn))]

This is taken from Fitting’s textbook, where you can also find a

proof showing that it works.

Ulle Endriss 35

Tableaux for First-order Logic ILCS 2007

Jeffrey’s Tableau Rules for Equality

These are the classical tableau rules for handling equality and

apply to ground tableaux:

A(t)
t ≈ s

A(s)

A(t)
s ≈ t

A(s)

¬(t ≈ t)

×

Exercise: Show |= (a ≈ b) ∧ P (a, a) → P (b, b).

For even just slightly more complex examples, these rules quickly

give rise to a huge search space . . .

Ulle Endriss 36

Tableaux for First-order Logic ILCS 2007

Reeves’ Tableau Rules for Equality

These rules, also for ground tableaux, are more “goal-oriented” and

hence somewhat reduce the search space (let P be atomic):

P (t1, . . . , tn)
¬P (s1, . . . , sn)

¬((t1 ≈ s1) ∧ · · · ∧ (tn ≈ sn))

¬(f(t1, . . . , tn) ≈ f(s1, . . . , sn))

¬((t1 ≈ s1) ∧ · · · ∧ (tn ≈ sn))

We also need a rule for symmetry, and the closure rule from before:

t ≈ s

s ≈ t

¬(t ≈ t)

×

Exercise: Show |= (∀x)(∀y)(∀z)[(x ≈ y) ∧ (y ≈ z) → (x ≈ z)].

Ulle Endriss 37

Tableaux for First-order Logic ILCS 2007

Fitting’s Tableau Rules for Equality

Jeffrey’s approach can also be combined with free-variable

tableaux, but we need to interleave substitution steps with other

steps to make equality rules applicable. Alternatively, equality

rules can also be formulated so as to integrate substitution:

A(t)
t′ ≈ s

[A(s)]µ

A(t)
s ≈ t′

[A(s)]µ

¬(t ≈ t′)

×µ

Here µ is an mgu of t and t′ and must be applied to the entire tree.

Exercise: Show that the following set of formulas is unsatisfiable:

{ (∀x)[(g(x) ≈ f(x)) ∨ ¬(x ≈ a)],

(∀x)(g(f(x)) ≈ x), b ≈ c,

P (g(g(a)), b), ¬P (a, c) }

Ulle Endriss 38

Tableaux for First-order Logic ILCS 2007

Tableaux and Resolution

The most popular deduction system in automated reasoning is the

resolution method (to be discussed briefly later on in the course).

Resolution works for formulas in CNF. This restriction to a normal

form makes resolution very efficient. Still, the tableau method has

several advantages:

• Tableaux proofs are a lot easier to read than resolution proofs.

• Input may not be in CNF and translation may result in an

exponential blow-up.

• For some non-classical logic, translation may be impossible.

Nevertheless, people interested in developing powerful theorem

provers for FOL (rather than in using tableaux as a more general

framework) are often interested in tableaux for CNF, also to allow

for better comparison with resolution.

Ulle Endriss 39

Tableaux for First-order Logic ILCS 2007

Normal Forms

Recall: Conjunctive Normal Form (CNF) and Disjunctive Normal

Form (DNF) for propositional logic

Prenex Normal Form. A FOL formula ϕ is said to be in Prenex

Normal Form iff all its quantifiers (if any) “come first”. The

quantifier-free part of ϕ is called the matrix of ϕ.

Every sentence can be transformed into a logically equivalent

sentence in Prenex Normal Form.

Ulle Endriss 40

Tableaux for First-order Logic ILCS 2007

Transformation into Prenex Normal Form

If necessary, rewrite the formula first to ensure that no two

quantifiers bind the same variable and no variable has both a free

and a bound occurrence (variables need to be “named apart”).

¬(∀x)A ≡ (∃x)¬A

((∀x)A) ∧B ≡ (∀x)(A ∧B)

((∀x)A) ∨B ≡ (∀x)(A ∨B)

¬(∃x)A ≡ (∀x)¬A

((∃x)A) ∧B ≡ (∃x)(A ∧B)

((∃x)A) ∨B ≡ (∃x)(A ∨B)

etc.

To avoid making mistakes, formulas involving → or ↔ should first

be translated into formulas using only ¬, ∧ and ∨ (and quantifiers).

Ulle Endriss 41

Tableaux for First-order Logic ILCS 2007

Skolemisation

Skolemisation is the process of removing existential quantifiers from

a formula in Prenex Normal Form (without affecting satisfiability).

Algorithm. Given: a formula in Prenex Normal Form.

(1) If necessary, turn the formula into a sentence by adding (∀x) in

front for every free variable x (“universal closure”).

(2) While there are still existential quantifiers, repeat: replace

• (∀x1) · · · (∀xn)(∃y)ϕ with

• (∀x1) · · · (∀xn)ϕ[f(x1, . . . , xn)/y],

where f is a new function symbol.

Ulle Endriss 42

Tableaux for First-order Logic ILCS 2007

Skolemisation (cont.)

Definition 11 (Skolem Normal Form) A formula ϕ is said to

be in Skolem Normal Form (SNF) iff it is of the following form:

ϕ = (∀x1)(∀x2) · · · (∀xn)ϕ′,

where ϕ′ is a quantifier-free formula in CNF (with n ∈ N0).

Theorem 3 (Skolemisation) For every formula ϕ there exists a

formula ϕsk in SNF such that ϕ is satisfiable iff ϕsk is satisfiable.

ϕsk can be obtained from ϕ through the process of Skolemisation.

Proof: By induction over the sequence of transformation steps in

the Skolemisation algorithm [details omitted].

Note that ϕ and ϕsk are not (necessarily) equivalent.

Ulle Endriss 43

Tableaux for First-order Logic ILCS 2007

Exercise

Compute the Skolem Normal Form of the following formula:

(∀x)(∃y)[P (x, g(y)) → ¬(∀x)Q(x)]

Ulle Endriss 44

Tableaux for First-order Logic ILCS 2007

Clauses

Clauses. A clause is a set of literals. Logically, it corresponds to

the disjunction of these literals.

Sets of clauses. A set of clauses logically corresponds to the

conjunction of the clauses in the set.

This means, any formula in Skolem Normal Form can be rewritten

as a set of clauses. Variables are understood to be implicitly

universally quantified. Example:

{ {P (x), Q(y)}, {¬P (f(y))} } ∼ (∀x)(∀y)[(P (x)∨Q(y))∧¬P (f(y))]

Ulle Endriss 45

Tableaux for First-order Logic ILCS 2007

Clause Tableaux

The input (root of the tree) is a set of clauses. We need a beta rule

and a closure rule for literals:

{L1, . . . , Ln}

{L1} · · · {Ln}

{L}
{¬L}

×

We also need a rule that allows us to add any number of copies of

the input clauses to a branch, with variables being renamed

(corresponds to multiple applications of the gamma rule).

The substitution rule is the same as before: arbitrary substitutions

may be applied to the entire tableau (but will typically be guided

by potentially complementary literals).

Ulle Endriss 46

Tableaux for First-order Logic ILCS 2007

Clause Tableaux: Alternative Presentation

The presentation on the previous slide attempts to be as close as

possible to what we have done before, but the following alternative

presentation is more common:

• Initialise the tableau with > and keep the set of clauses S to be

shown unsatisfiable separate.

• Applying an extension rule means choosing a branch B and a

new instance {L1, . . . , Ln} of a clause in S, and then appending

n children below B and labelling them with {L1} to {Ln}.

• Close branches (on literals) using suitable mgu’s as usual.

Observe how this extension rule combines beta and gamma rules.

Ulle Endriss 47

Tableaux for First-order Logic ILCS 2007

Exercises

Give a closed tableau for the following set of clauses:

• {{P (x), Q(x)}, {¬Q(x),¬R(x)}, {¬P (a)}, {R(x)}}

Give a proof using clause tableaux for the following theorem:

• |= (∃x)(∀y)(∀z)(P (y) ∨Q(z) → P (x) ∨Q(x))

Ulle Endriss 48

Tableaux for First-order Logic ILCS 2007

Guiding Proofs

Even for clause tableaux, the search space is generally still huge.

A lot of research has gone into finding refinements of the basic

procedure to guide proof search. For instance:

• A connection tableau is a clause tableau in which every non-leaf

node labelled with a literal L has a child labelled with the

complement of L.

• A clause tableau is called regular iff no branch contains more

than one copy of the same literal.

Completeness can still be guaranteed if we restrict search to regular

connection tableaux. See the handbook chapter by Hähnle (2001)

for a precise statement of this result.

Ulle Endriss 49

Tableaux for First-order Logic ILCS 2007

Summary: Extensions and Variations

• Free-variable tableaux: postpone instantiations and close by

unification (; compute mgus with Robinson’s algorithm)

• Handling equality: several approaches, including several ways

of defining additional expansion rules

• Clause tableaux: simplified system for clauses rather than

general formulas (; requires translation into SNF)

• Much of the material covered can be found in:

– R. Hähnle. Tableaux and Related Methods. In: A. Robinson

and A. Voronkov (eds.), Handbook of Automated Reasoning,

Elsevier Science and MIT Press, 2001.

The material on handling equality is taken from:

– B. Beckert. Semantic Tableaux with Equality. Journal of

Logic and Computation, 7(1):39–58, 1997.

Ulle Endriss 50

