
Description Logics ILCS 2007

Introduction to

Logic in Computer Science: Autumn 2007

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Description Logics ILCS 2007

Description Logics

Description logics (DLs) have been developed in the late 1980s and

early 1990s to provide sound logical foundations for some of the

semi-formal knowledge representation (KR) languages developed in

AI. Nowadays one of the main applications is the Semantic Web.

Today we will

• introduce the basic DL ALC and some of its variants;

• discuss connections to modal and to first-order logic;

• discuss typical inference problems and their complexity; and

• present some tableau-based decision procedures for DLs.

Much of the material on these slides is taken from the handbook

chapter by Baader and Nutt (2003).

F. Baader and W. Nutt. Basic Description Logics. In The Description Logic

Handbook. Cambridge University Press, 2003.

Ulle Endriss 2

Description Logics ILCS 2007

Knowledge Representation

r r

Mother

Female

Father

M a l e

Homo sapiens

Child

Eve Adam

-

6 6

6 6

����*

HHHHY

�
�

�
��3

Q
Q

Q
QQk

Q
Q

QQk
�

�
��3

loves

is is

is is

is is

has has

has has

We would like to be able to

ask a computer questions

regarding this knowledge.

But what is the precise

meaning of this “semantic

network”, e.g. what is the

difference between Adam

and Male or what is the

difference between a loves-

and an is-arrow?

Picture credits: D. Gabbay et al., Many-Dimensional Modal Logics. Elsevier, 2003.

Ulle Endriss 3

Description Logics ILCS 2007

Formalising Semantic Networks

It seems useful to distinguish the following:

• Specific objects (or individuals) such as Adam and Eve.

• Classes or sets of objects, such as Female (later called concepts).

• The use of is as a subset-relation between concepts (like between

Mother and Female).

• The use of is as a membership-relation between individuals and

concepts (like between Adam and Father).

• Other binary relations (which we will call roles) between

individuals, such as loves between Eve and Adam.

• The use of the same kinds of relations (roles) between individuals

and concepts (e.g. has). In that case we may want to distinguish (at

least) whether the relation is meant to hold for all of the individuals

belonging to the concept or just for some of them.

Ulle Endriss 4

Description Logics ILCS 2007

Description Logic Philosophy

• Develop logics with features that seem useful for KR.

• Be modular: include or exclude various features, develop

reasoning algorithms for all variations, understand the

complexity of all variations.

• Stay decidable (so don’t use FOL).

• Distinguish terminological and assertional knowledge:

– TBox: knowledge about concepts and how they relate to

each other

– ABox: knowledge about individuals, to what concepts they

belong, how they relate to each other

We will first focus on languages for concept descriptions . . .

Ulle Endriss 5

Description Logics ILCS 2007

The Language AL

One of the most basic DLs is AL (“attributive language”).

Let A stand for atomic concepts and R for atomic roles.

Syntax for concept descriptions C in the basic language AL:

C ::= > | ⊥ | A | ¬A | C u C | ∀R.C | ∃R.>

Note that negation is restricted to atomic concepts and existential

quantification is limited. The universal quantification is also known

as value restriction. Examples:

• Person u ¬Female

• Person u ∃hasChild.> u ∀hasChild.(Female u Student)

• Person u ∀hasChild.⊥

Ulle Endriss 6

Description Logics ILCS 2007

Semantics of AL

An interpretation I = (∆I , ·I) consists of a domain ∆I and an

interpretation function mapping atomic concepts A to sets

AI ⊆ ∆I and atomic roles R to binary relations RI ⊆ ∆I × ∆I .

And:

>I = ∆I

⊥I = ∅

(¬A)I = ∆I \ AI

(C u D)I = CI ∩ DI

(∀R.C)I = {a ∈ ∆I | {b ∈ ∆I | (a, b) ∈ RI} ⊆ CI}

(∃R.>)I = {a ∈ ∆I | {b ∈ ∆I | (a, b) ∈ RI} 6= ∅}

Ulle Endriss 7

Description Logics ILCS 2007

Extensions of AL

AL may be extended with any of the following:

• Union of concepts: C t D with (C t D)I = CI ∪ DI

• Full negation: ¬C with (¬C)I = ∆I \ CI

• Full existential quantification: ∃R.C with

(∃R.C)I = {a ∈ ∆I | {b ∈ ∆I | (a, b) ∈ RI} ∩ CI 6= ∅}

• Number restrictions (at-least): ≥ n R with

(≥ n R)I = {a ∈ ∆I | #{b ∈ ∆I | (a, b) ∈ RI} ≥ n}

• Number restrictions (at-most): ≤ n R with

(≤ n R)I = {a ∈ ∆I | #{b ∈ ∆I | (a, b) ∈ RI} ≤ n}

Ulle Endriss 8

Description Logics ILCS 2007

Naming Conventions

To name an extension of AL add the letters corresponding to the

additional constructs allowed (omitting redundant extensions):

• U for concept unions

• C for full negation (complements)

• E for full existential quantification

• N for number restrictions

But the literature knows many more description logics: e.g.

EL, FL0, FL−, ALCRI, ALCH, DLR, SIN , SHIF , SHIQ,

SHOIQ, SHOQ(D) . . . as expected, this is the subject of some

occasional ridicule directed at DL researchers. :-)

We will largely concentrate on ALC: AL with full negation, which

also buys us concept unions and full existential quantification.

Ulle Endriss 9

Description Logics ILCS 2007

ALC and Modal Logic

ALC is equivalent to the modal logic Kn (multi-modal K):

∀Ri.ϕ ∼ 2iϕ

∃Ri.ϕ ∼ 3iϕ

Ulle Endriss 10

Description Logics ILCS 2007

Standard Translation

We can translate ALC concepts into formulas of classical first-order

logic with a single free variable x.

We translate each atomic concept A as a unary predicate A′ and

each atomic role R as a binary predicate R′.

The standard translation ·∗ of concepts is defined inductively:

A∗ = A′(x)

(¬C)∗ = ¬C∗

(C u D)∗ = C∗ ∧ D∗

(C t D)∗ = C∗ ∨ D∗

(∀R.C)∗ = (∀y)(R′(x, y) → C∗[y/x])

(∃R.C)∗ = (∃y)(R′(x, y) ∧ C∗[y/x])

Here y is meant to be a fresh variable symbol each time it is needed.

Ulle Endriss 11

Description Logics ILCS 2007

ALC and the Two-Variable Fragment of FOL

By renaming bound variables in a clever way, we can translate any

ALC concept description into a FOL formula using only two

variable symbols (x and y). Example:

(∀R1.(C u ∃R2.D))∗

= (∀y)[R′

1(x, y) → C ′(y) ∧ (∃z)(R′

2(y, z) ∧ D′(z))]

= (∀y)[R′

1(x, y) → C ′(y) ∧ (∃x)(R′

2(y, x) ∧ D′(x))]

The two-variable fragment of FOL (w/o proper function symbols)

is known to be decidable an NEXPTIME-complete.

This gives us a first (fairly unattractive) upper complexity bound

(we’ll do better later on).

Ulle Endriss 12

Description Logics ILCS 2007

TBox: Terminological Knowledge

The TBox is used to collect knowledge on concepts.

Syntax: A TBox is a list of concept equalities (C ≡ D).

If C is atomic, then C ≡ D may be considered a concept definition.

Examples:

• Woman ≡ Person u Female

• Mother ≡ Woman u ∃hasChild.Person

• Person ≡ ∃hasParent.Person

Acyclic TBoxes without multiple definitions are of particular

interest (but not only those).

Semantics: An interpretation I is a model for C ≡ D iff CI = DI ,

and accordingly for an entire TBox.

Ulle Endriss 13

Description Logics ILCS 2007

ABox: Assertional Knowledge

The ABox is used to specify knowledge regarding individuals.

Syntax: An ABox is a list of concept assertions and role assertions.

a : C (a, b) : R

Examples:

• alice : Mother

• bob : ¬Father u ∀hasParent.Lawyer

• (alice, bob) : hasChild

We make the unique name assumption (UNA): all individuals in an

ABox are pairwise distinct (not really important for ALC).

Semantics: Extend I = (∆I , ·I) to individuals (aI ∈ ∆I).

I is a model for a : C iff aI ∈ CI and for (a, b) : R iff (aI , bI) ∈ RI ,

and accordingly for an entire ABox (or an ABox wrt. a TBox).

Ulle Endriss 14

Description Logics ILCS 2007

Common Reasoning Tasks

We would like to be able to perform the following types of

reasoning tasks in a KR system:

• Concept Satisfiability: given a concept description C, is there

an interpretation I such that CI 6= ∅?

• Concept Subsumption: given two concept descriptions C and

D, is it the case that CI ⊆ DI for all I? We may also be

interested in the full subsumption hierarchy of a set of

concepts.

• ABox Consistency: does the given ABox have a model?

• Instance Checking: given an ABox, an individual a, and a

concept C, is aI ∈ CI for all models I of the ABox?

All of the above can also be defined with respect to a given TBox.

Ulle Endriss 15

Description Logics ILCS 2007

Reduction of Reasoning Tasks

All of the aforementioned reasoning tasks (w/o TBox) can be

reduced to ABox consistency checking:

• Satisfiability: take ABox {a : C} and show consistency

• Subsumption: take ABox {a : C u ¬D} and show inconsistency

• Instance Checking: add a : ¬C to ABox and show inconsistency

For reasoning with respect to a TBox that is acyclic and has

unique definitions, we can simply unfold the defined concepts into

the ABox (but note that this can worsen complexity!).

Reasoning with respect to general TBoxes is more difficult.

Ulle Endriss 16

Description Logics ILCS 2007

Tableaux for ALC ABox Consistency Checking

Input: An ALC ABox to be checked for consistency. For simplicity,

assume all concept descriptions have been translated into NNF.

Rules:

a : C u D

a : C
a : D

a : C t D

a : C a : D

a : ∀R.C
(a, b) : R

b : C

a : ∃R.C

(a, b) : R
b : C

a : C
a : ¬C

×

Note: ∀-formulas need to be analysed for every b with (a, b) : R on

the branch. The b in the ∃-rule is a new individual name.

The ∃-rule need not be applied if there already is a witness.

Ulle Endriss 17

Description Logics ILCS 2007

Soundness, Completeness, Termination

The tableau algorithm on the previous slide gives us a decision

procedure for checking the consistency of an ABox in ALC:

• Soundness: easy

• Completeness: similar to what we have seen earlier on

• Termination: First observe that any concept formula added to

a branch must be a subformula of a formula appearing in the

input ABox.

So the only potential problem could be that an infinite number

of individuals get generated (through some interplay of ∀ and

∃). But this cannot happen: the “further away” from one of

the original individuals we get, the shorter the concept

formulas, so at some point there will be no more ∃-formulas

that could generate new individuals. X

Ulle Endriss 18

Description Logics ILCS 2007

Complexity

Consistency checking of ALC-ABox is PSPACE-complete. Here

are some pointers towards a proof:

• PSPACE-membership: While the size of the tableau may be

exponential, each branch will be linear wrt. the size of the

input. If we use a non-deterministic algorithm, we only need to

store one such branch. This gives an NPSPACE algorithm.

By Savitch’s Theorem, we get membership in PSPACE.

• PSPACE-hardness: By reduction from the satisfiability

problem for Quantified Boolean Formulas.

Ulle Endriss 19

Description Logics ILCS 2007

Reasoning wrt. a TBox

We now want to extend our tableau algorithm to be able to check

consistency of an ABox wrt. a TBox. The basic algorithm will be

the same, but now we have a problem with termination.

Example:

• TBox includes > ≡ ¬Person t ∃hasParent.Person.

• ABox includes mary : Person.

• Basically, we have to label each newly generated individual

with ¬Person t ∃hasParent.Person, which results in an

infinite hasParent-chain.

• This does correspond to the intuitive semantics (so is certainly

sound), but we lose termination.

Ulle Endriss 20

Description Logics ILCS 2007

Tableaux for ABox Consistency wrt. a TBox

We want to check whether a given ABox is consistent wrt. a given TBox,

i.e. whether there exists a model satisfying both of them.

Preparation: Suppose the TBox = {C1 ≡ D1, . . . , Cn ≡ Dn}.

Define Ĉ = (¬C1 t D1) u (C1 t ¬D1) u · · · u (¬Cn t Dn) u (Cn t ¬Dn).

Note that every individual should belong to this concept Ĉ.

Näıve algorithm: Use exactly the same algorithm as before, but add

a : Ĉ to every branch for every individual a (from the input or generated

along the way). This works, except for the termination problem.

To get a terminating algorithm we can use the blocking technique . . .

Ulle Endriss 21

Description Logics ILCS 2007

Blocking

The application of the ∃-rule to a formula labelled by individual a

is blocked by individual b (on branch A) if this condition holds:

{C | [a : C] ∈ A} ⊆ {D | [b : D] ∈ A}

That is, b labels the same set of concepts as a (and possibly more).

Then anything that the current branch could force upon role

successors of a would also be present in the role successors of b. So

we can use the successors of b in place of generating new ones for a.

To avoid cyclic blocking (of a by b and b by a, for instance), we

impose an (arbitrary) ordering on individuals, and only allow

blocking of a by individuals b further down that ordering.

Some careful thinking reveals that blocking will ensure termination

without affecting completeness.

Remark: Similar techniques can be used to handle transitive roles.

Ulle Endriss 22

Description Logics ILCS 2007

Conclusion

• Description logic have been developed to formlaise early AI

approaches to knowledge representation.

• We have discussed the following topics:

– Family of logics extending AL, including ALC

– Connections to modal logic and FOL (standard translation)

– TBox, ABox, common reasoning tasks, complexity issues

– Tableaux algorithms for ALC (with blocking for TBox-reasoning)

• Very well understood family of logics with real real-world

applications (e.g. Semantic Web) as well as strong impact on

research in neighbouring areas of logic (e.g. modal and hybrid logic).

• In DL, tableaux are the predominat reasoning algorithms (unlike for

FOL, where resolution is most widely used).

• Testbed for the development of efficient decsion algorithms for

problems of very high complexity (PSPACE and higher).

Ulle Endriss 23

