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Computational Complexity

This part of the course will be an introduction to the theory of

computational complexity. Much of the material will be taken from

Papadimitriou’s textbook, although the same material can also be

found in most other books on the topic.

• Algorithms, problems, problem classes, complexity measures

• Big-O Notation (and variants) to describe complexity

• Definition of complexity classes, e.g. P, NP, coNP, PSPACE

• Relationships between different complexity classes

• Completeness with respect to a complexity class

• Examples for NP- and PSPACE-complete problems

• Proving complexity results by means of reduction

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
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Problems and Problem Classes

What can be computed at all is subject of computability (or

recursion) theory. Here we deal with solvable problems, but ask

how hard they are. Some examples for such problems:

• Find all prime numbers ≤ 500!

• Is ((P → Q) → P ) → P a theorem of classical logic?

• What is the shortest path from here to the central station?

Here we are not really interested in such specific problem instances,

but rather in classes of problems, parametrised by their size n ∈ N:

• Find all prime numbers ≤ n!

• For a given formula of length ≤ n, check whether it is a

theorem of classical logic!

• Find the shortest path between two given vertices on a given

graph with up to n vertices!
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Decision Problems

Furthermore, we are only going to be interested in decision

problems, problems that require “yes” or “no” as an answer.

But note that there are close connections between, say, optimisation

problems and decision problems. For instance, instead of asking

“what is the shortest path from here to the station?”

we may choose to ask

“is there a path ≤ K from here to the station

(with, say, K = 3km)?”

The two problems are not the same, but they are closely related.

Standard complexity theory only deals with decision problems.

Given another kind of problem, knowing the complexity of the

corresponding decision problem can at least give us some pretty

good indications regarding the original problem.
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Graph Reachability

Let us look at a specific problem class and an algorithm for solving

problems belonging to that class; and then analyse the complexity

of that algorithm . . .

Reachability

Instance: Directed graph G = (V, E) and two vertices v, v′ ∈ V

Question: Is there a path leading from v to v′?

Example: Let G = (V, E) with

• V = {1, 2, 3, 4, 5}

• E = {(1, 4), (2, 1), (2, 3), (3, 5), (4, 3), (5, 4)}

Is there a path leading from 1 to 5?

What would be a general algorithm for solving such a problem?
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An Algorithm

Here’s a generic algorithm for solving Reachability.

Given: G = (V, E) and v, v′ ∈ V (should find a path from v to v′)

The algorithm uses two sets to maintain information:

• FOC : set of vertices in focus

• VIS : set of vertices already visited

Initially, set FOC = VIS = {v}. Then iterate:

• Choose a vertex x ∈ FOC and remove it from FOC .

• For all edges (x, y) ∈ E with y 6∈ VIS , add y to FOC and VIS .

Observe that this will terminate (FOC will eventually be empty).

Vertex v′ is reachable from v iff v′ ∈ VIS in the end (and we could

choose to interrupt the above loop as soon as v′ is found).

What is the complexity of this algorithm (how long does it take)?
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Complexity Measures

Our algorithm “has quadratic complexity”—but what does that mean?

First of all, we have to specify the resource with respect to which we are

analysing the complexity of an algorithm.

• Time complexity: How long will it take to execute the algorithm?

• Space complexity: How much memory do we need to do so?

Then we might be interested in a worst-case or an average-case analysis.

• Worst-case analysis: How much time/memory will the algorithm

require in the worst case?

• Average-case analysis: How much will it use on average?

Giving a formal average-case analysis that is theoretically sound is

typically very difficult (where does the input distribution come from?).

Empirical studies using real-world data are often the only way.

The complexity of a problem is the complexity of the best algorithm

solving that problem.
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The Big-O Notation

Let f : N → N and g : N → N be two functions mapping natural

numbers to natural numbers (if not, think of f(n) as being short

for max{df(n)e, 0}, etc.).

Think of f as computing, for any problem size n, the worst-case

time complexity f(n). This may be rather complicated a function.

Think of g as a function that may be a “good approximation” of f

and that is more convenient when speaking about complexities.

The Big-O Notation is a way of making the idea of a suitable

approximation mathematically precise.

I We say that f(n) is in O(g(n)) iff there exist an n0 ∈ N and a

c ∈ R
+ such that f(n) ≤ c · g(n) for all n ≥ n0.

That is, from a certain n0 onwards, the function f grows at most as

fast as the reference function g, modulo some constant factor c

about which we don’t really care.

Ulle Endriss 8



Computational Complexity ILCS 2007

Examples

(1) Let f(n) =
√

n + 100. Then f(n) is in O(
√

n).

Proof: Use c = 2 and n0 = 10000.

(2) Let f(n) = 5 · n2 + 20. Then f(n) is in O(n2).

Proof: Use c = 6 and n0 = 5.

(3) Let f(n) = 5 · n2 + 20. Then f(n) is also in O(n3), but this is

not very interesting. We want complexity classes to be “sharp”.

(4) Let f(n) = 500 · n200 + n17 + 1000. Then f(n) is in O(2n).

Proof: Use c = 1 and n0 = 3000. In general, an exponential

function always grows much faster than any polynomial

function. So O(2n) is not at all a sharp complexity class for f .

A better choice would be O(n200).
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Variants of the Big-O Notation

The Big-O Notation is used to specify an upper bound (which is

usually supposed to be “sharp”, but it doesn’t have to be).

The following notation is useful for specifying lower bounds:

Ω(g(n)) = {f : N → N | ∃c ∈ R
+ ∃n0 ∈ N ∀n ≥ n0 : f(n)≥ c · g(n)}

A different way of putting it:

f(n) ∈ Ω(g(n)) iff g(n) ∈ O(f(n))

Finally, we also have this notation:

f(n) ∈ Θ(g(n)) iff both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))
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Tractability and Intractability

Problems for which it is possible to devise a polynomial time algorithm

are usually considered to be tractable. Problems that require exponential

algorithms are considered intractable. Some remarks:

• Of course, a polynomial algorithm running in n1000 may behave a

lot worse than an exponential algorithm running in 2
n

100 . However,

experience suggests that such large factors do not actually come up

for “real” problems. In any case, for very large n, the polynomial

algorithm will always do better.

• It should also be noted that there are empirically successful

algorithms for problems that are known not to be solvable in

polynomial time. Such algorithms can never be efficient in the

general case, but may perform very well on the problem instances

that come up in practice.
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The Travelling Salesman Problem

The decision problem variant of a famous problem:

Travelling Salesman Problem (TSP)

Instance: n cities; distance between each pair; K ∈ N

Question: Is there a route ≤ K visiting each city exactly once?

A possible algorithm for TSP would be to enumerate all complete

paths without repetitions and then to check whether one of them is

short enough. The complexity of this algorithm is O(n!).

Slightly better algorithms are known, but even the very best of

these are still exponential (and many people tried). This suggests a

fundamental problem: maybe an efficient solution is impossible?

Note that if someone guesses a potential solution path, then

checking the correctness of that solution can be done in linear time.

So checking a solution is a lot easier than finding one.

Ulle Endriss 12



Computational Complexity ILCS 2007

Summary and Further Reading

Topics covered so far:

• Decision problems, problem classes, algorithms, worst-case vs.

average-case complexity, time vs. space complexity,

(in)tractability and (super-)polynomial complexity, . . .

• Big-O Notation: O(f(n)), as well as Ω(f(n)) and Θ(f(n)) to

define the complexity of a problem/algorithm

More details can be found in Papadimitriou’s textbook:

• Read Chapter 1 for an introduction to algorithms, a definition

of the Big-O Notation, and a discussion of the appropriateness

of the general approach (why worst-case complexity?; and why

equate polynomial complexity with tractability?).
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Complexity Classes

A complexity class is a set of classes of decision problems

(or languages) with the same worst-case complexity.

• TIME(f(n)) is the set of all classes of decision problems that

can be solved by an algorithm with a runtime of O(f(n)).

For example, we have seen that Reachability ∈ TIME(n2).

• SPACE(f(n)) is the set of all classes of decision problems that

can be solved by an algorithm with memory requirements

within O(f(n)).

For instance, TSP ∈ SPACE(n), because our brute-force

algorithm only needs to store the route currently being tested

and the route that is the best so far (together that’s roughly

twice the size of the input).

These are also called deterministic complexity classes (because the

algorithms used are required to be deterministic).
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Remarks

• The definitions on the previous slide are somewhat informal.

• To be absolutely precise, we should first fix a machine model

with respect to which our algorithms are being executed.

Usually, Turing machines are used for this.

• But once the definitions are clear, the next step is usually to

understand that the precise machine model does in fact not

affect the deeper ideas very much at all; so in this short

introduction we can certainly do without Turing machines . . .

• Another sense in which we are (and going to continue to be)

somewhat informal is that functions f : N → N need to be

restricted to proper complexity functions when used to define

complexity classes. Broadly speaking, these are non-decreasing

functions that are themselves computable within the time and

space bounds they specify.
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Non-deterministic Complexity Classes

Remember that we said that checking whether a proposed solution

is correct is different from finding one (it’s easier).

We can think of a decision problem as being of the form “is there

an X with property P?”. This may already be the chosen form (e.g.

“is there a route that is short enough?”); or we can reformulate

(e.g. “is ϕ satisfiable?” ; “is there a model M s.t. M |= ϕ?”).

• NTIME(f(n)) is the set of classes of decision problems for

which a candidate solution can be checked in time O(f(n)).

For instance, TSP ∈ NTIME(n), because checking whether a

given route is short enough is possible in linear time (just add

up the distances and compare to K).

• Accordingly for NSPACE(f(n)).

So why are they called non-deterministic complexity classes?
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Ways of Interpreting Non-determinism

• Think of an algorithm as being implemented on a machine that

moves from one state to the next (a state is characterised by

the machine’s current memory configuration).

For a non-deterministic algorithm the state transition function

would be underspecified, and there could be more than one

possible follow-up state.

• A machine is said to solve a problem using a non-deterministic

algorithm iff there exists a run answering “yes”.

For comparison, with a deterministic machine model, there is

just on possible run for each input (answering “yes” or “no”).

• A common interpretation of non-determinism is that whenever

there is a choicepoint in an algorithm, an oracle tells us which

is the best computation path to pursue (think of a search tree

with the oracle telling us which branch to follow).
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Ways of Interpreting Non-determinism (cont.)

• The “oracle interpretation” is equivalent to our earlier

interpretation based on the ability to check a candidate

solution using the given time/space resources:

All the “little oracles” along a computation path can be packed

together into one “big initial oracle” to guess a solution; then

all that remains to be done is to check its correctness.

• The “checking interpretation” is probably the best way of

understanding non-deterministic complexity classes.

• The story about the oracle is important to understand where

the N in the names is coming from.
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P and NP

The two most important complexity classes:

P =
⋃

k>1

TIME(nk)

NP =
⋃

k>1

NTIME(nk)

From our discussion so far, you know that this means that:

• P is the class of problems that can be solved in polynomial

time by a deterministic algorithm; and

• NP is the class of problems for which a proposed solution can

be verified in polynomial time (or that could be solved by a

non-deterministic algorithm in polynomial time . . . if such a

thing actually existed outside of mathematics).
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Further Common Complexity Classes

We are also going to discuss the following complexity classes:

PSPACE =
⋃

k>1

SPACE(nk)

NPSPACE =
⋃

k>1

NSPACE(nk)

EXPTIME =
⋃

k>1

TIME(2(nk))
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Summary and Further Reading

This is where we are now:

• We have given definitions of several complexity classes.

Examples include SPACE(f(n)) and NP, amongst others.

These are groups of problems of comparable hardness.

• Note that we have taken some shortcuts here; in particular we

have kept the bit on Turing machines informal.

• Chapter 2 of Papadimitriou’s textbook gives a more thorough

definition of complexity classes (recommended in particular if

you have not come across Turing machines before).
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What next?

The remaining lectures on computational complexity will basically

be concerned with three important topics:

• Establishing relationships between different complexity classes

(e.g. one does or does not include the other, etc.).

• Providing a definition of what are the most difficult problems

within a given complexity class (theory of completeness).

• Examples for how to prove whether a given problem belongs to

or is complete with respect to a given complexity class.

We usually show completeness for one problem only and then

reduce any other problems to that reference problem.

Remark: Any results stated in the sequel assume that all functions

f : N → N involved are “proper complexity functions”.
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Relationships between Complexity Classes

Now that we have defined a whole range of complexity classes, we

would like to understand how they relate to each other . . .

The following result is obvious, given that a deterministic

algorithm is just a special case of a non-deterministic one:

Proposition 1 Let C be any deterministic complexity class and let

NC be the corresponding non-deterministic class. Then C ⊆ NC.

For instance, we have P ⊆ NP.
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Relating Time and Space

The next result is also obvious, given that even a non-deterministic

algorithm can fill up at most as many “space units” as it has “time

units” at its disposal:

Proposition 2 We have NTIME(f(n)) ⊆ SPACE(f(n)) for any

function f : N → N.

As a consequence, we have NP ⊆ PSPACE.

Ulle Endriss 24



Computational Complexity ILCS 2007

Relating Space and Time

This one is a bit more tricky:

Proposition 3 We have PSPACE ⊆ EXPTIME.

Proof sketch: Take any deterministic algorithm requiring a

polynomially bound number of memory cells. WLOG assume each

cell stores either a 0 or a 1 at any one time. During a run of the

algorithm, each “memory configuration” can come up at most once

(otherwise we’d enter an infinite loop). That is, if f(n) cells are

used, the algorithm must terminate after at most 2f(n) steps (= the

number of possible memory configurations). X
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The Time Hierarchy Theorem

Not all complexity classes are the same (we weren’t sure before!):

Theorem 1 We have TIME(f(n)) ⊂ TIME((f(2n + 1))3) for

any function f : N → N with f(n) ≥ n.

Proof idea: Define a time-bound halting problem as follows:

Hf = {M ; x | machine M accepts x after ≤ f(|x|) steps}
Then prove the following lemmas:

(1) Hf ∈ TIME((f(n))3): Roughly, each step can be simulated in

quadratic time; so the whole thing takes cubic time (see book).

(2) Hf 6∈ TIME(f(bn
2 c))

Proof by contradiction: Suppose there exists a machine MHf

deciding Hf in f(bn
2 c). Define machine Df such that

Df (M) says “yes” iff MHf
(M ; M) says “no” (else “no”)

Then wonder what the output for Df (Df ) would be . . . X
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P and EXPTIME

Recall the theorem: TIME(f(n)) ⊂ TIME((f(2n + 1))3).

Corollary 1 We get P ⊂ EXPTIME.

Proof: Apply the Time Hierarchy Theorem to f(n) = 2n, yielding

TIME(2n) ⊂ TIME(2(2n+1)·3). The result then follows from

P ⊆ TIME(2n) and TIME(2(2n+1)·3) ⊆ EXPTIME. X
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Savitch’s Theorem

Savitch’s Theorem is a non-trivial result relating deterministic and

non-deterministic polynomial space:

Theorem 2 (Savitch) NSPACE(f(n)) ⊆ SPACE(f 2(n)) for any

function f : N → N with f(n) ≥ log n.

Proof idea: First show that Reachability ∈ SPACE(log2 n):

• Let Path(x, y, t) be the problem: is there a path ≤ t from x to y?

Algorithm: Recursively try all nodes z and check if both

Path(x, z, t/2) and Path(z, y, t/2) hold.

Analysis: Recursion depth is at most log t. Storing one node takes

log n space (binary representation). The claim then follows from

Reachability = Path(x, y, n).

Now take any problem ∈ NSPACE(f(n)). The machine solving it can

have at most cf(n) states. Solve Reachability for the corresponding

graph of ≤ cf(n) nodes ⇒ problem ∈ SPACE(f2(n)). X

Ulle Endriss 28



Computational Complexity ILCS 2007

Consequences

Recall Savitch’s Theorem: NSPACE(f(n)) ⊆ SPACE(f 2(n)).

Corollary 2 We get PSPACE = NPSPACE.

Compare this with the situation for time: we don’t know whether

P = NP, but strongly suspect not, namely P ⊂ NP.
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Summary of Complexity Class Relationships

This is what we know so far:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME

P ⊂ EXPTIME

Hence, one of the ⊆’s above must actually be strict, but we don’t

know which. Most experts believe they are probably all strict. In

the case of P ⊂? NP, the answer is worth $1.000.000.
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Complements

• Let P be a class of decision problems. The complement P of P

is the set of all instances that are not correct solutions for P .

If you think of a class of problems as a language, then this is

the usual notion of complementation.

• Example: Sat is the problem of checking whether a given

formula of propositional logic is satisfiable. The complement of

Sat is checking whether a given formula is not satisfiable

(which is equivalent to checking whether its negation is valid).

• For any complexity class C, we define coC = {P | P ∈ C}.

• Example: coNP is the class of problems for which a negative

answer can be verified in polynomial time.

Ulle Endriss 31

Computational Complexity ILCS 2007

Problems and Languages

Sometimes a small shift in terminology can make things clearer . . .

A class of problems can be understood as a language over some

given alphabet: each problem instance can be encoded as a word

over the alphabet, and the language is the set of all words

corresponding to problem instances with a positive answer.

For instance, for Reachability, we can describe any graph

G = (V, E) together with two chosen vertices as a string ⊆ {0, 1}∗.
The language corresponding to Reachability would then be the

set of words encoding an instance of this class of problems for

which the correct answer would be “yes”.

The complement of a language L (class of problems) with respect

to an alphabet Σ is then easily defined as L = Σ∗ \ L.

A complexity class C is said to be closed under complementation iff

L ∈ C implies L ∈ C (similar for union and intersection).
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Results for Complements

The following result follows from the fact that a deterministic

algorithm for a given problem can be turned into a deterministic

algorithm for the complement of that problem by simply swapping

“yes” and “no” in the output.

Proposition 4 C = coC for any deterministic complexity class C.

For example, we have P = coP. But nobody knows whether

NP =? coNP (people tend to think not).
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The Immerman-Szelepscényi Theorem

An important theorem that we just state here without proof:

Theorem 3 (Immerman-Szelepscényi) If f(n) ≥ log n, then

NSPACE(f(n)) = coNSPACE(f(n)).

That is, non-deterministic space is closed under complementation.

An example would be NPSPACE = coNPSPACE.
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Summary and Further Reading

We have established several results relating different complexity classes:

• Non-deterministic is more powerful than deterministic: C ⊆ NC

• Space is more powerful than time: NTIME(f(n)) ⊆ SPACE(f(n))

• . . . unless we have much more time: PSPACE ⊆ EXPTIME

• The Time Hierarchy Theorem confirms that the hierarchy of time

complexity classes does not collapse, particularly P ⊂ EXPTIME.

• Savitch’s Theorem shows that non-determinism does not help

further for polynomial space: PSPACE = NPSPACE

• The complement of a problem is as hard as the original for

deterministic algorithms: C = coC for deterministic classes C

• By the Immerman-Szelepscényi Theorem, also non-det. space is

closed under complements: NSPACE(f(n)) = coNSPACE(f(n))

This material is covered in Chapter 7 of Papadimitriou’s book.
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Reductions

To compare the hardness of different classes of problems, we

introduce the concept of reduction.

Problem A reduces to problem B if we can translate any instance

of A into an instance of B that we can then feed into a solver for B

to obtain an answer to our original question (of type A).

If the translation (reduction) process itself is not too complex,

then we can rightfully claim that problem B is at least as hard as

problem A. This is because a B-solver can solve any instance of A,

and maybe many more problems.

There are several ways of making this notion precise . . .
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Polynomial-Time Reductions

The important bit is that it has to be possible that the reduction

be computed in polynomial time (this makes sense if we are

interested in complexity classes P and above). Two variants:

• Karp reduction (aka. many-one reduction): Reduce an

A-instance to a B-instance in polynomial time and then solve it

using the B-solver (one call at the very end of the reduction).

• Turing reduction (aka. Cook reduction): Solve an A-instance in

polynomial time using a polynomial number of B-oracles.

We’ll usually gloss over the details (as is common practice in the

literature) and not explicitly state which type of reduction we use.

Remark: Papadimitriou uses logarithmic-space rather than

polynomial-time reductions in his book . . . more powerful as he

explains, but also less standard.
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Hardness and Completeness

Let C be a complexity class.

• A language L is C-hard iff any L′ ∈ C is polynomial-time

reducible to L. That is, the C-hard problems include the very

hardest problems inside of C, and even harder ones.

• A language L is C-complete iff L is C-hard and L ∈ C. That is,

these are the hardest problems in C, and only those.

Example: As we shall see later, Sat is an example for an

NP-complete problem. That means, it is as hard as any other

problem in NP; any other such problem can be reduced to Sat.
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What next?

Now that we have a basic understanding of what complexity classes

are and how they relate to each other, we will identify specific

problems that are complete wrt. interesting complexity classes:

• The original NP-complete problem: the satisfiability problem

for propositional logic

• Variants of the satisfiability problem, some of which are also

NP-complete, and some of which are not

• NP-complete problems in graph theory

• An example for a PSPACE-complete problem: satisfiability

for quantified boolean formulas

For each complexity class we will have to prove completeness

(of some representative problem) once from first principles; all

subsequent results rely on reductions.
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Cook’s Theorem

The first decision problem ever to be shown to be NP-complete is

the satisfiability problem for propositional logic.

Satisfiability (Sat)

Instance: Propositional formula ϕ

Question: Is ϕ satisfiable?

The size of an instance of Sat is the length of ϕ. Clearly, Sat can

be solved in exponential time (by trying all possible models), but

no (deterministic) polynomial algorithm is known.

Theorem 4 (Cook) Sat is NP-complete.

Proof: NP-membership is easy to show: if someone guesses a

satisfying assignment of truth values to propositional letters

(model), then we can check its correctness in polynomial time. X

The proof of NP-hardness is sketched on the following slides . . .
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Proof of NP-Hardness (1)

We need to show that any problem in NP can be reduced to Sat. By

definition, for any problem in NP there is a non-deterministic algorithm

that accepts or rejects all instances of the problem in polynomial time.

We now sketch how to encode this algorithm as a propositional formula.

Suppose the algorithm runs in time ≤ nk. So it will use at most nk

memory cells. Hence, there exists (non-determinism!) a table of size

nk × nk for each possible run of the algorithm, with each table cell

holding an element belonging to some (small) alphabet.

Introduce a propositional variable xijs for each row i, column j, symbol

s, saying whether or not cell (i, j) is holding symbol s. The number of

these variables is polynomial in n.

If we can fully specify all constraints these xijk have to meet to represent

a well-formed computation table for an accepting run as a formula (of

polynomial size), then we are done, as that formula will be satisfiable iff

there is an accepting run.
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Proof of NP-Hardness (2)

Follows Sipser (1997). Each table cell must hold exactly one symbol:

ϕcell =
^

1≤i,j≤nk

2

4

_

s∈S

xijs ∧
^

s,s′∈S

¬(xijs ∧ xijs′)

3

5

We can also encode the initial configuration as a conjunction ϕstart , and

the characteristics of an accepting configuration as a formula ϕaccept.

To encode what is a legal move from one configuration to the next, we

need to be more specific about our machine model. As any algorithm

can be implemented on a Turing machine, we may assume that the

contents of memory cell (i, j) will only depend on the content of its

predecessor and that cell’s neighbours: (i−1, j−1), (i−1, j), (i−1, j+1).

We can write a formula ϕmove(i,j ) specifying all possible moves of this sort

for (i, j). Then ϕmove =
V

1≤i,j≤nk ϕmove(i,j ) describes all legal moves.

Finally, ϕcell ∧ ϕstart ∧ ϕaccept ∧ ϕmove encodes the algorithm. X

M. Sipser. Introduction to the Theory of Computation. Thomson, 1997.
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Checking Tautologies

This is a simple corollary to Cook’s Theorem:

Corollary 3 Checking whether a given propositional formula is a

tautology is a coNP-complete decision problem.

Proof: A formula ϕ is a tautology iff ¬ϕ is satisfiable. Hence,

tautology checking is the complementary problem of satisfiability

checking, and the claim follows from Cook’s Theorem. X
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Variants of Satisfiability

If we restrict the structure of propositional formulas, then there’s a

chance that the satisfiability problem will become easier.

k-Satisfiability (kSat)

Instance: Conjunction ϕ of disjunctions of k literals each

Question: Is ϕ satisfiable?

Alternative formulation: check whether a given set S of k-clauses is

satisfiable.

By close inspection of the proof for Sat, it is possible to show

(see Papadimitriou’s book for details):

Theorem 5 3Sat is NP-complete.

Only once we go down from 3 to 2, we get a positive result . . .
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2SAT is in P

Theorem 6 2Sat is in P.

Proof sketch: Recall that Reachability ∈ P. We are going to

reduce 2Sat to Reachability.

Let ϕ be a formula in CNF with clauses of length 2 and let P be

the set of propositional variables in ϕ.

Build a graph G = (V, E) with V = P ∪ {¬p | p ∈ P} and

(x, y) ∈ E iff a there is a clause in ϕ that is equivalent to x → y.

Observe that ϕ is unsatisfiable iff there is a p ∈ P such that there is

both a path from p to ¬p and from ¬p to p in G.

This condition can be tested by running our algorithm for

Reachability several times. X
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Counting Clauses

If not all clauses of a given formula in CNF can be satisfied

simultaneously, what is the maximum number of clauses that can?

Maximum k-Satisfiability (MaxkSat)

Instance: Set S of k-clauses and K ∈ N

Question: Is there a satisfiable S′ ⊆ S such that |S′| ≥ K?

For this kind of problem, we cross the border between P and NP

already for k = 2 (rather than k = 3, as before):

Theorem 7 Max2Sat is NP-complete.

Proof sketch: Max2Sat is clearly in NP: if someone guesses an

S′ ⊆ S and a model with |S′| ≥ K, we can check whether S′ is true

in that model in polynomial time. X

Next we show NP-hardness by reducing 3Sat to Max2Sat . . .
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Reduction from 3SAT to MAX2SAT

Consider the following 10 clauses:

(x), (y), (z), (w),

(¬x ∨ ¬y), (¬y ∨ ¬z), (¬z ∨ ¬x),

(x ∨ ¬w), (y ∨ ¬w), (z ∨ ¬w)

Observe: any model satisfying (x∨ y ∨ z) can be extended to satisfy

(at most) 7 of them; all other models satisfy at most 6 of them.

Given an instance of 3Sat, construct an instance of Max2Sat:

For each clause Ci = (xi ∨ yi ∨ zi) in ϕ, write down these 10 clauses

with a new wi. If the input has n clauses, set K = 7n.

Then ϕ is satisfiable iff (at least) K of the 2-clauses in the new

problem are satisfiable. X
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Satisfiability for Horn Clauses

Another restriction of the satisfiability problem:

Horn Satisfiability (HornSat)

Instance: Conjunction ϕ of Horn clauses

Question: is ϕ satisfiable?

Recall that Prolog is built around Horn clauses.

Theorem 8 HornSat is in P.

Proof sketch: The following (polynomial) algorithm does the job.

Distinguish negative Horn clauses: (¬x1 ∨ · · · ∨ ¬xk); and implications

(including atoms: x1 = true): (x1 ∧ · · · ∧ x` → y).

Initially, make all variables false. Iterate: if (x1 ∧ · · · ∧ x` → y) not

satisfied, then make y true ; minimal model M for implications.

Full formula can only be satisfiable if M satisfies all negative clauses as

well. For if not, we’d get {x1, . . . , xk} ⊆ M and we’d have to make one of

the xi false, thereby contradicting minimality. X
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Independent Sets

Many conceptually simple problems that are NP-complete can be

formulated as problems in graph theory. Example:

Let G = (V, E) be an undirected graph. An independent set is a set

I ⊆ V such that there are no edges between any of the vertices in I.

Independent Set

Instance: Undirected graph G = (V, E) and K ∈ N

Question: Does G have an independent set I with |I| ≥ K?

Theorem 9 Independent Set is NP-complete.

Proof sketch: NP-membership: easy X

NP-hardness: by reduction from 3Sat with n clauses —

Given a conjunction ϕ of 3-clauses, construct a graph G = (V, E).

V is the set of occurrences of literals in ϕ. Edges: make a “triangle” for

each 3-clause, and connect complementary literals. Set K = n.

Then ϕ is satisfiable iff there is an independent set of size K. X
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More Graph-theoretic Problems

All of the following are also NP-complete problems. They each

take an undirected graph G = (V, E) and an integer K as input.

• Clique: Is there a V ′ ⊆ V with |V ′| ≥ K such that any two

vertices in V ′ are joined by an edge in E?

• Vertex Cover: Is there a V ′ ⊆ V with |V ′| ≤ K such that

for any edge (x, y) ∈ E either x ∈ V ′ or y ∈ V ′?

• Hamilton Path: Does G have a Hamilton path (that is, a

path visiting every vertex)? (no K needed as input)

• Travelling Salesman Problem: Is there a path ≤ K

visiting each vertex once? (additional input: distances)

• MaxCut: Is there a V ′ ⊆ V such that the number of edges

between nodes in V ′ and in V \V ′ exceeds K?
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Quantified Boolean Formulas

The canonical example for a PSPACE-complete problem is the

satisfiability problem for quantified boolean formulas.

A quantified boolean formula (QBF) is a propositional formula ϕ

preceded by either ∀x or ∃x for each propositional variable in ϕ:

∀x.∃y.∀z.[(x → y) ∨ z]

The semantics is exactly what you would expect it to be . . .

This gives rise to a new decision problem:

Quantified Satisfiability (QSat)

Instance: Quantified boolean formula ϕ

Question: Is ϕ satisfiable (true)?

The size of a QSat instance is the length of ϕ.
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PSPACE-Completeness

Theorem 10 QSat is PSPACE-complete.

Proof idea: PSPACE-membership: Recursively go through the

formula in the obvious manner. The recursion depth is given by the

number of propositional variables, and at each state we have to

remember what “satisfiability requirements” we still need to meet

(polynomial space). X

PSPACE-hardness: We need to chow that any problem in

PSPACE can be encoded as a QBF. Use the same idea as for

Cook’s Theorem: encode the computation table as a formula.

Problem: the number of rows in the table might be exponential.

Solution: Use the idea from the proof of Savitch’s Theorem and

write a QBF expressing that you can go from configuration c1 to

configuration c2 in t steps if there’s another configuration c such

that you can go from c1 to c and from c to c2 in d t
2e steps each . . .
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Remark

The satisfiability and the validity problem coincide for QBFs. This

matches up nicely with PSPACE = coPSPACE.

For comparison, in propositional logic these are distinct problems

and we don’t know whether NP =? coNP.
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Summary

We have seen a range of NP-complete problems:

• Logic: Sat, 3Sat, Max2Sat, but not 2Sat and HornSat

• Graph Theory: Independent Set and others

Recall that the P-NP borderline is widely considered to represent

the move from tractable to intractable problems, so developing a

feel for what sort of problems are NP-complete is important to

understand what can and what cannot be computed in practice.

In logic, in particular, we also encounter problems that are a lot

harder: the PSPACE-completeness result for QSat is an example.

Remember: Complexity proofs need not be difficult. Once

completeness has been established for a reference problem, further

results can be obtained by reduction.
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Further Reading

All material on reductions and completeness results can be found in

Papadimitriou’s textbook:

• Cook’s Theorem is proved in Chapter 8, and further

NP-completeness results are established in Chapter 9.

• The PSPACE-completeness proof for quantified boolean

formulas may be found in Chapter 19.

For large collections of NP-complete problems, the books by Garey

and Johnson (1979) and Ausiello et al. (1999) are useful references.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W.H. Freeman and Company, 1979.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-Spaccamela,

and M. Protasi. Complexity and Approximation. Springer-Verlag, 1999.
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Conclusion

• Topics covered: definition of complexity classes; relationships

between complexity classes; definition of hardness and completeness

wrt. a class; proving complexity results directly and by reduction

• Really understanding complexity is difficult and requires some

dedication (we have glossed over some of the technical details).

• But most logicians and computer scientists are only users of

complexity theory: a proof by reduction need not be that difficult,

but is still very useful.

• For every problem you study, every algorithm you propose, every

logic you invent . . . it’s always a good idea to ask yourself how

complex these are: this puts your work into perspective.
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