
Communication Complexity ILCS 2007

Introduction to

Logic in Computer Science: Autumn 2007

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Communication Complexity ILCS 2007

Communication Complexity

This will be a brief introduction to communication complexity.

Rather than analysing the computational difficulty of computing

some function, communication complexity provides a formal

framework for analysing the amount of information that needs to

be exchanged when a function is computed in a distributed manner.

We will introduce the basics of the so-called two-party model put

forward by Yao (1979). This lecture is based on the first chapter of

the book by Kushilevitz and Nisan (1997).

A.C.-C. Yao. Some Complexity Questions Related to Distributive Computing.

Proc. STOC-1979, ACM Press, 1979.

E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge Univer-

sity Press, 1997.
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The Two-Party Model

Let X, Y, Z be finite sets and let f : X × Y → Z be some function.

Alice and Bob want to compute f(x, y) for some x ∈ X, y ∈ Y .

Alice only knows x; Bob only knows y.

How many bits of information do they need to exchange before

both of them know the answer?
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Protocols

A protocol P over domain X × Y with range Z is a binary tree, where

• each internal node v is labelled with either a function

av : X → {0, 1} or a function bv : Y → {0, 1}; and

• each leaf node is labelled with an element of Z.

Executing P, when Alice holds x and Bob holds y, works as follows:

• Start with the root node.

• Whenever we reach an internal node v labelled with a function av,

go to the left child if av(x) = 0 and to the right child otherwise.

That is, depending on the history of communication so far (branch

leading to v) and x, Alice decides what bit to send next.

• Similarly for internal nodes labelled with some bv (for Bob).

• The value of P for (x, y) is the label z of the leaf node we end up in.

P computes f iff the value of P for input (x, y) is always f(x, y).
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Example

Let X = {x1, x2, x3, x4} and Y = {y1, y2, y3, y4}.

Suppose f : X × Y → {0, 1} is defined as follows:

y1 y2 y3 y4

x1 0 1 1 1

x2 0 0 1 1

x3 0 0 0 1

x4 0 0 0 0

Give a protocol P that computes f .
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Communication Complexity

The cost of a protocol P on input (x, y) is the length of the branch

taken. The cost of a protocol P is the height of the tree defining P.

The communication complexity D(f) of the function f : X ×Y → Z

is the cost of the least costly protocol P computing f .

There’s a simple upper bound for arbitrary functions:

Proposition 1 D(f) ≤ log2 |X| + log2 |Z| for any f : X × Y → Z.

Alternative definitions of communication complexity are possible:

• We could drop the requirement that both players need to know

f(x, y) in the end. Changes complexity by at most log2 |Z|.

• We could require the protocol to be strictly alternating.

Changes complexity by at most a factor of 2.
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Example

Suppose X = Y = {1..n} and f = max.

That is, Alice and Bob each hold a positive integer ≤ n and they

want to compute the value of the larger one of their two numbers.

A possible protocol:

• Alice sends her x to Bob: log2 n bits.

• Bob computes the maximum and sends it back: log2 n bits.

Hence, D(max) ≤ 2 · log2 n. This exactly matches the upper bound

of Proposition 1, so is not too exciting . . .
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Example

Suppose X = Y = 2{1..n} and let f(x, y) be defined as the median of the

multiset x ∪ y in case |x ∪ y| is odd, and 0 otherwise.

Proposition 1 predicts D(f) ≤ n + log
2
(n + 1).

But there is a better protocol:

• Check we are not in the situation where |x ∪ y| is even: O(1).

• For the main protocol, Alice and Bob maintain an interval [i, j]

containing the median, initially [1, n].

• In each round, both compute k = 1

2
· (i + j). Alice tells Bob how

many of her numbers are below and above k: O(log n). Bob can then

check whether the median is below or above k and tell Alice (1 bit).

• So in each round the players can halve the interval. Hence, after

O(log n) rounds they must have narrowed it down to one number.

Hence, D(f) ∈ O(log2 n).

Btw, there’s an even better protocol (see Kushilevitz and Nisan).
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Boolean Functions

From now on we only consider Boolean functions f : Z = {0, 1}.

This is not a serious restriction. We could always decompose the

function f into several Boolean functions, one each for computing

each of the bits in the binary representation of the value of f .
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Lower Bounds

So far we have only discussed upper bounds for D(f). We have seen

one general (but fairly trivial) upper bound for arbitrary f , and we

have seen how clever protocols can provide better upper bounds.

Next we are going to see two results that will allow us to establish

lower bounds for D(f).

Think of f as being represented by a matrix (; earlier example).

Whenever we go left (right) from an a-node, we are excluding some

rows; and similarly for b-nodes and columns. That is, we are

partitioning the matrix into (not necessarily connected) rectangles.
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Rectangles

A rectangle in X × Y is a subset R ⊆ X × Y such that there exist

some A ⊆ X and B ⊂ Y with R = A × B.

An alternative characterisation: R ⊆ X × Y is a rectangle iff

(x, y′) ∈ R whenever (x, y) ∈ R and (x′, y′) ∈ R.

Lemma 1 Let P be a protocol and let R` be the set of inputs (x, y)

for which P reaches the leaf `. Then R` is a rectangle.

Proof: Suppose (x, y), (x′, y′) ∈ R`. Need to show that (x, y′) ∈ R`.

Follow the branch taken for input (x, y′). Whenever we are in an

a-node, Alice will only consider her part of the input and behave as

for (x, y). Whenever we are in a b-node, Bob will only consider his

part of the input and behave as for (x′, y′). hence, we take the

same branch in all three cases. X
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Monochromatic Rectangles

A subset R ⊆ X × Y is called f -monochromatic iff f gives the same

value for all (x, y) ∈ R.

Observe that for any protocol computing f , R` (the set of inputs

reaching leaf `) must be f -monochromatic.

Proposition 2 If partitioning X × Y into f -monochromatic

rectangles requires at least t rectangles, then D(f) ≥ log2 t.

Proof: By Lemma 1 and above observation, any protocol P

computing f induces a partition (given by the R`’s) of X × Y into

f -monochromatic rectangles. If t is the number of rectangles

(leafs), then the tree has a height ≥ log2 t. X

Of course, this condition is not easy to check . . .
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Fooling Sets

The fooling set technique is a technique for proving lower bounds: Find a

(large) set of input pairs such that no two of them can belong to the

same monochromatic rectangle. Then the previous result becomes

applicable for a large value of t.

A set S ⊂ X × Y is called a fooling set for f : X × Y → {0, 1} iff there

exists a z ∈ {0, 1} such that

• f(x, y) = z for all (x, y) ∈ S; and

• f(x, y′) 6= z or f(x′, y) 6= z for all distinct (x, y), (x′, y′) ∈ S.

Proposition 3 If f has a fooling set of size t, then D(f) ≥ log
2
t.

Proof: We show that no f -monochromatic rectangle R can contain more

than one pair from S. Suppose otherwise: (x, y), (x′, y′) ∈ R. Because R

is a rectangle, we have (x, y′), (x′, y) ∈ R. By the second condition

f(x, y′) 6= z or f(x′, y) 6= z, which contradicts the first condition.

; At least t monochromatic rectangles, and Proposition 2 applies. X
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Fooling Sets: Refinement

For any fooling set S we need to choose a value z ∈ {0, 1}.

To be precise, the size t of S is a lower bound on the number of

rectangles of colour z. If we can find one fooling set for z = 0 and

one for z = 1 then the sum of their sizes is a lower bound for the

number of rectangles.

Hence, we can use this refined fooling set technique:

• Find a fooling set S0 of size t0 using z = 0.

• Find a fooling set S1 of size t1 using z = 1.

• Then D(f) ≥ log2(t0 + t1).
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Example

Let X = Y = {0, 1}n be the set of n-bit strings and let f be the

equality function returning f(x, y) = 1 iff x = y.

Upper bound: D(f) ≤ n + 1 (= log2 |X| + log2 |Z|)

Fooling set for z = 1: S1 = {(α, α) | α ∈ {0, 1}n}

We check the two conditions:

• f(x, y) = 1 for all (x, y) ∈ S1 X

• f(x, y′) 6= z or f(x′, y) 6= z for all distinct (x, y), (x′, y′) ∈ S1. X

The size of S1 is t1 = 2n.

Fooling set for z = 0 of size t0 = 2n: similar (corresponding to

righthand neighbours of cells on diagonal)

Hence, we get as a lower bound D(f) ≥ log2(2
n + 2n) = n + 1.
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Conclusion

• Communication complexity studies the amount of information

that a number of players need to exchange to jointly compute

the value of a function, if each of them only know part of the

input. Computational restrictions are not considered.

• We have presented some basic results and examples for the

two-part model introduced by Yao in 1979. This is a big

research area with many extensions to the basic model.

• Fooling sets provide a powerful technique for proving lower

bounds for the communication complexity of a given function.
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