
Introduction to
Logic in Computer Science: Autumn 2006

Description Logics Crash Course

Andreas Witzel

Institute for Logic, Language and Computation
University of Amsterdam

Why Description Logics?

The goal of AI is to create systems with intelligent behaviour.

Crucial for this is

I acquiring knowledge about the world / application domain

I representing the knowledge

I reasoning with the knowledge

Conclusion: We need a logic formalism to represent knowledge and
facilitate reasoning.

Outline

In this lecture, we will introduce one example of such a description
logic formalism, see how to reason with it, and discuss some
properties and modifications. The topics are:

The Attributive Language with Complement (ALC)

Reasoning with ALC

ALC with Number Restrictions (ALCN)

Computational Issues

Summary

Outline

The Attributive Language with Complement (ALC)
Syntax
Semantics
Terminology (TBox)
Assertions (ABox)

Reasoning with ALC

ALC with Number Restrictions (ALCN)

Computational Issues

Summary

Syntax of ALC

Let NC and NR be disjoint sets of concept names and role names.

ALC concept terms are defined inductively:

1. Each concept name A ∈ NC is an ALC concept term

2. If C, D are ALC concept terms and r ∈ NR is a role name,
then the following are also ALC concept terms:

I ⊥,> (Bottom, Top)
I C u D, C t D,¬C (Boolean Operators)
I ∀r.C,∃r.C (value restriction and existential restriction)

Example

I Human u ¬Female describes “male”

I ∃has-child.> describes “parent”

I Human u ∀has-child.Female describes “humans
having only daughters”

Semantics of ALC

An interpretation I over a non-empty domain ∆I assigns

I to each concept name A ∈ NC a subset AI ⊆ ∆I

I to each role name r ∈ NR a binary relation rI ⊆ ∆I ×∆I

and is inductively extended to all ALC concept terms:

⊥I := ∅
>I := ∆I

(¬C)I := ∆I \ CI

(C u D)I := CI ∩ DI

(C t D)I := CI ∪ DI

(∀r.C)I :=
{

d ∈ ∆I|∀e ∈ ∆I.(d , e) ∈ rI ⇒ e ∈ CI
}

(∃r.C)I :=
{

d ∈ ∆I|∃e ∈ ∆I.(d , e) ∈ rI ∧ e ∈ CI
}

Semantics of ALC

Example

For a language with concept names A, B and role names r, s, we
consider an example interpretation I with ∆I := {α, β, γ, δ} and

AI := {α, β} rI := {(α, β), (α, δ), (β, δ)}
BI := {β, δ} sI := {(β, γ), (γ, γ)}

?>=<89:;α
A r //

r

��
>>

>>
>>

>>
>

GFED@ABCβ

A, B
s //

r

��

?>=<89:;γ s
ii

?>=<89:;δ
B

(¬A)I = {γ, δ} (¬A u B)I = {δ} (∀r.B)I = {α, β, γ, δ}
(∀r.A)I = {γ, δ} (∃s.¬A)I = {β, γ} (∃s.A)I = ∅

Terminology (TBox): Syntax

In a realistic setting there will commonly be complex concepts, i.e.
concepts built from simpler ones. We want to be able to give them
abbreviating names, in this way defining the terminology of the
setting.
A TBox allows us to do just that. It contains (finitely many) pairs
of concept names and complex concept terms defining them.

Example (TBox)
Male

.
= ¬Female

Woman
.
= Human u Female

Man
.
= Human u Male

Mother
.
= Woman u ∃has-child.Human

Father
.
= Man u ∃has-child.Human



Note: Multiple definitions and cycles are not allowed!

Terminology (TBox): Semantics
An interpretation I is a model of a TBox T iff we have:

AI = CI for all A
.
= C ∈ T

Two TBoxes are equivalent iff they have the same models.

For every TBox T there is an equivalent unfolded TBox T̂ where
only primitive concept names (i.e. names which are not themselves
being defined in T̂) occur on right-hand sides.

An interpretation of the primitive concept names and role names in
T can be uniquely extended to a model of T.

Example[
Woman

.
= Human u Female

Mother
.
= Human u Female u ∃has-child.Human

]

Note: This may result in exponential blowup!

Assertions (ABox): Syntax
Having fixed the terminology of a setting, we may want to assign
names to individuals and make assertions about them.
That is what an ABox is used for. It contains (again finitely many)
assertions over individual names NI (disjoint from NC and NR).

a : C (concept assertion)

(a, b) : r (role assertion)

a 6= b (distinct individuals) generalized ABox

Example (NI = {gunther, gundula, gisbert})

gunther : Man

gundula : Woman

gisbert : Man

(gunther, gisbert) : has-child

(gundula, gisbert) : has-child



Assertions (ABox): Semantics

An interpretation I now additionally assigns, to each individual
name a ∈ NI , an element aI ∈ ∆I.

Remark: Normally, we make the unique name assumption,
implicitly requiring that aI 6= bI for any two (unequal) individual
names a and b. However, later on we need to use generalized
ABoxes, where these statements are made explicitly.

An interpretation I is a model of an ABox A iff

aI ∈ CI for all a : C ∈ A, and

(aI, bI) ∈ rI for all (a, b) : r ∈ A

Given a TBox T and an ABox A, one is often interested in
common models of T and A.

Example26666664

Male
.
= ¬Female

Woman
.
= Human u Female

Man
.
= Human u Male

Mother
.
= Woman u ∃has-child.Human

Father
.
= Man u ∃has-child.Human

37777775

∆I := HumanI := {ind1, ind2, ind3}

FemaleI := {ind2}

has-childI := {(ind1, ind3), (ind2, ind3)}

This uniquely defines the remaining
concepts:

MaleI = {ind1, ind3}

WomanI = {ind2}

ManI = {ind1, ind3}

MotherI = {ind2}

FatherI = {ind1}

8>>>>>><>>>>>>:

gunther : Man

gundula : Woman

gisbert : Man

(gunther, gisbert) : has-child

(gundula, gisbert) : has-child

9>>>>>>=>>>>>>;
guntherI := ind1

gundulaI := ind2

gisbertI := ind3

GFED@ABCind1

Human

Male

Man

Father

gunther

has-child

!!DD
DD

DD
DD

D
GFED@ABCind2

Human

Female

Woman

Mother

gundula

has-child

}}zz
zz

zz
zz

z

GFED@ABCind3Human

Male

Man

gisbert

Outline

The Attributive Language with Complement (ALC)

Reasoning with ALC

Reasoning Tasks
Tableau Rules

ALC with Number Restrictions (ALCN)

Computational Issues

Summary

Terminological Reasoning Tasks
Purpose: Extract implicit terminological knowledge from explicitly
given one
Terminological reasoning:

I Satisfiability: is there an interpretation I with CI 6= ∅?
I Satisfiability wrt T: is there a model I of T with CI 6= ∅?
I Subsumption (C v D): is CI ⊆ DI in all interpretations I?

I Subsumption wrt T (C vT D): is CI ⊆ DI in all models I of T?

Example

With respect to the TBox from the earlier examples, we have

I Mother u Man is not satisfiable (it can be unfolded to
. . . u Female u . . . u ¬Female u . . .)

I Mother u ∃has-child.¬Human is satisfiable (this would be a
Woman with a Human and a ¬Human child...)

I Mother vT Human

I Man 6vT Father

TBox Classification

Description Logic systems usually offer various services, for
example computing the concept hierarchy (wrt the subsumption
relation) of all occurring concept names.

>
v

hhhhhhhhhhhhhhhhhhhhh
w

UUUUUUUUUUUUUUUUUUUUU

Female

MMMMMMMMMM Human

rrrrrrrrrr

LLLLLLLLLL Male

ssssssssss

Woman Man

Mother

LLLLLLLLLLL Father

rrrrrrrrrrr

⊥

Assertional Reasoning Tasks
Purpose: Extract implicit knowledge about individuals from
explicitly given one

Assertional reasoning:

I Consistency: does A have a model?

I Consistency wrt T: do A and T have a common model?

I Instance wrt A (A |= a : C): is aI ∈ CI in all models I of A?

I Instance wrt A and T (T,A |= a : C): is aI ∈ CI in all
common models I of A and T?

Example

With respect to A and T from the earlier examples, we have

I A is consistent and consistent wrt T

I A |= gundula : Woman

I A 6|= gundula : Human

I T,A |= gundula : Human

Realization and Retrieval

Services offered by Description Logic systems in the context of
ABoxes include:

I Realization of an individual name a: What are the (minimal)
concept names of which a is an instance?

gunther Father, Man, Human, Male (all)

gunther Father (minimal)

I Retrieval: Which individuals are instances of C?

Mother gundula

Man u ¬Father gisbert

Reducing Reasoning Tasks

Instead of writing reasoners for each single reasoning task, one can
try to reduce some tasks to other ones. For example,

Is concept C satisfiable?

can be reduced as follows:

⇔ Is there a model I such that CI is non-empty?
⇔ Is it not the case that for all models I, CI is empty?
⇔ Is concept C not subsumed by the empty concept ⊥?

That is, C is satisfiable iff C 6v ⊥.

Similarly,

I C v D iff C u ¬D is unsatisfiable

I C is satisfiable iff the ABox {a : C} is consistent

I A |= a : C iff A ∪ {a : ¬C} is inconsistent

The Reduction Hierarchy

Subsumption
wrt TBox

Satisfiability
wrt TBox


terminological

reasoningSubsumption

SSSSSSSSS

Satisfiability

Instance
wrt TBox

Consistency
wrt TBox


assertional
reasoningInstance

TTTTTTTTT

Consistency

worst-case exponential

linear

Tableau Algorithm

We present a tableau algorithm to decide ABox consistency.

Given an ABox A with unique name assumption, we

I drop the unique name assumption and add a 6= b for all
a, b ∈ NI

I transform the resulting ABox into Negation Normal Form (i.e.
negation occurs only in front of concept names)

We then exhaustively apply the tableau rules on the following slide.
A is consistent iff there remains an open branch. As with earlier
Tableau systems, such a branch can be used to build a model of
the ABox.

In order to guarantee termination, rules cannot be applied if the
resulting formulas are already on the branch under consideration
(note the special case with ∃).

Tableau Rules

u and t rules:
a : C u D
a : C
a : D

a : C t D
a : C a : D

∀ and ∃ rules:
(a, b) : r
a : ∀r.C
b : C

a : ∃r.C
(a, c) : r
c : C

Closure rules:
a : C
a : ¬C
×

a 6= a
×

In the ∃ rule, c is a new individual name unused in A.
Furthermore, the ∃ rule is not applicable if there is any individual
name b such that (a, b) : r and b : C are already on the branch.

Outline

The Attributive Language with Complement (ALC)

Reasoning with ALC

ALC with Number Restrictions (ALCN)
Syntax and Semantics
Tableau Rules

Computational Issues

Summary

Number Restrictions: Syntax and Semantics
Sometimes it is important not only to make statements about
existence of roles, but also about their quantity. ALCN introduces
number restrictions for any role name r ∈ NR :

I (≥ n r) (at least restriction)

Semantics: (≥ n r)I :=
{
d ∈ ∆I

∣∣∣∣∣{e ∈ ∆I|(d , e) ∈ rI}
∣∣ ≥ n

}
I (≤ n r) (at most restriction)

Semantics: (≤ n r)I :=
{
d ∈ ∆I

∣∣∣∣∣{e ∈ ∆I|(d , e) ∈ rI}
∣∣ ≤ n

}
ALCN concept terms are all concept terms built analogously to
ALC concept terms, where now additionally these two new basic
concept terms can be used.

Example

I (≤ 3 has-child) u Woman describes “mother of at
most 3 children”

I ∃has-child.(≥ 2 has-child) describes “grandparent of
at least 2 siblings”

Number Restrictions: Tableau Rules

The tableau rules for number restrictions are a bit more involved.
In particular, the ≤ rule requires renaming of individuals along the
branch, which isn’t really compatible with our notation. It also
requires constraints on the rule application order to preserve
termination.

For these reasons, we only consider the ≥ rule here.

≥ rule:
a : (≥ n r)
(a, c1) : r

. . .
(a, cn) : r
ci 6= cj (1 ≤ i < j ≤ n)

Again, the ci are new individual names unused in A. Furthermore,
the rule is not applicable if there are individual names b1, . . . , bn

such that all (a, bi) : r and all bi 6= bj are already on the branch.

Outline

The Attributive Language with Complement (ALC)

Reasoning with ALC

ALC with Number Restrictions (ALCN)

Computational Issues
ALC is hard
Useful Restrictions

Summary

Quantified Boolean Formulas (QBF)
Idea: Reduce QBF validity to ALC concept satisfiability, thus
showing PSPACE-hardness (‘in PSPACE’ also holds, but not shown here).
Reminder from last lecture: A QBF is a propositional formula
preceded by either ∀x or ∃x for each occurring propositional
variable x . For example:

∀x∃y∀z . (x → (y ∨ z))

A QBF is valid iff it has a quantifier tree:

x=0

xxppppppppppppppp
x=1

&&NNNNNNNNNNNNNNN ∀x

y=0

��

y=1

��

∃y

z=0

����
��

��
��

z=1

��
<<

<<
<<

<<

z=0

����
��

��
��

z=1

��
<<

<<
<<

<< ∀z

0 → (0 ∨ 0)
√

0 → (0 ∨ 1)
√

1 → (1 ∨ 0)
√

1 → (1 ∨ 1)
√

Reducing QBF validity to ALC concept satisfiability

Idea: Use ALC concepts to describe quantifier trees

Given: QBF Q = Q1x1 . . .Qnxn.ϕ.

Find: CQ which is satisfiable iff Q has a quantifier tree

Concepts: X1, . . . , Xn (=̂ the xi)
L1, . . . , Ln (=̂ nodes of level i in the tree)

Roles: r (=̂ edges from nodes to children)

We define CQ := L1 u ∀r.(L2 u ∀r.(L3 u . . .∀r.(Ln u ∀r.Cϕ) . . .)),
where:

I Li := Di u

{
∃r.> if Qi = ∃
∃r.Xi u ∃r.¬Xi if Qi = ∀

I Di :=
d

j<i (Xj ⇒ ∀r.Xj) u (¬Xj ⇒ ∀r.¬Xj)

I Y⇒ Z := ¬Y t Z

I Cϕ is obtained from ϕ by replacing all xi by Xi , ∧ by u, ∨ by t

Useful Restrictions

If we want to guarantee reasoning tasks to be tractable, we can
consider sub-Boolean fragments of ALC. These typically allow for
conjunction, but prohibit disjunction and/or negation.

Two examples for such logics are:

I FL0, featuring u, ∀ and >
I EL, featuring u, ∃ and >

Satisfiability for such logics without negation is often trivial (i.e. all
concept terms are satisfiable). Therefore, we are now interested in
other notions such as least common subsumers (LCS).

LCS are intended to describe the commonalities of concept terms.
We call E the least common subsumer of C and D if

(i) C v E and D v E

(ii) E v F for all F with C v F and D v F

In FL0 and EL, the LCS always exists.

Least Common Subsumer Application Example
The LCS can be used to add more structure to “flat” knowledge
bases by introducing “meaningful” intermediate concepts into the
concept hierarchy.

•

iiiiiiiiiiiiiiiiiiiii

nnnnnnnnnnnnnn

||
||

||
||

BB
BB

BB
BB

PPPPPPPPPPPPPP

UUUUUUUUUUUUUUUUUUUUU

• • • . . . • • •

becomes

•

ttttttttttttttt

JJJJJJJJJJJJJJJ

•

��
��
��
��

//
//

//
//

•

��
��
��
��

//
//

//
//

•

��
��
��
��

//
//

//
//

LCS of the
original concepts

oo

• • • • • • • • •

Outline

The Attributive Language with Complement (ALC)

Reasoning with ALC

ALC with Number Restrictions (ALCN)

Computational Issues

Summary

Summary
We have introduced and discussed Description Logics, in particular

I Syntax and Semantics of ALC as an exemplary language

I TBoxes and ABoxes for terminology and assertions

I Common reasoning tasks

I Tableau rules

I Computational complexity of ALC

I An extension and two restrictions of ALC

Related topics include

I Historical approaches (semantic networks, frames,
non-monotonic inheritance networks)

I First description logic system (KL-ONE)

I Modal Logic (ALC is a syntactic variant of Kn)

I State of the art (OWL, FaCT, RACER, KAON 2)

Based on “Logic-based Knowledge Representation” by F. Baader.
http://lat.inf.tu-dresden.de/teaching/ss2006/lbkr/

http://lat.inf.tu-dresden.de/teaching/ss2006/lbkr/

	Introduction
	The Attributive Language with Complement (ALC)
	Syntax
	Semantics
	Terminology (TBox)
	Assertions (ABox)

	Reasoning with ALC
	Reasoning Tasks
	Tableau Rules

	ALC with Number Restrictions (ALCN)
	Syntax and Semantics
	Tableau Rules

	Computational Issues
	ALC is hard
	Useful Restrictions

	Summary

