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Plan for Today

One of the grand success stories of logic in mainstream computer
science has been the application of various logics to the specification
and verification of both hardware and software systems.

This lecture will introduce several temporal logics that are being
used for this purpose, and it will outline a couple of model checking
algorithms that can be used to check whether a given model
(representing a system) satisfies certain properties (expressed as
temporal logic formulas).

• LTL (linear-time); CTL (branching-time); CTL∗ (both, sort of)

• Model checking in CTL and LTL

Remark: Temporal logics are generally considered useful for
specifying and verifying programs that run continuously (such as
operating systems), as opposed to input-output programs (which
are better tackled using Hoare logic or PDL).
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Linear-time Temporal Logic

LTL is the original temporal logic (also known as “tense logic”),
going back to work in philosophy by Arthur Prior (mid 1950s).
Early pioneers: Hans Kamp, Dov Gabbay, Johan van Benthem.

Amir Pnueli’s seminal paper (1977) started the field of program
specification and verification using temporal logic.

Syntax: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

Intuitive reading of the temporal operators:

• Xϕ: ϕ is true at the next state (alternative syntax: ◦ϕ)

• Fϕ: ϕ is true at some future state (3ϕ)

• Gϕ: ϕ is true at all future states, globally (2ϕ)

• ϕUψ: ϕ is true until ψ is true

A. Pnueli. The Temporal Logic of Programs. Proc. 18th Annual Symposium

on Foundations of Computer Science, 1977.
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Semantics of LTL

A transition system M = (S,R, V ) consists of a set of states S, a binary

relation R ⊆ S × S, and a valuation function V mapping atomic

propositions to sets of states (; Kripke model).

For ease of presentation, we assume that R is serial (not a serious

restriction: we could always add an explicit “deadlock state”).

A path π = s0, s1, s2, . . . is an infinite sequence of R-successors. Write πi

for the subpath starting at si. Define truth on a path π = s0, . . . like this:

• π |= p iff s0 ∈ V (p) for atomic propositions p;

• π |= ¬ϕ iff not π |= ϕ, and similarly for ∧, ∨ and →;

• π |= Xϕ iff π1 |= ϕ;

• π |= Fϕ iff there exists an i ≥ 0 such that πi |= ϕ;

• π |= Gϕ iff πi |= ϕ for all i ≥ 0;

• π |= ϕUψ iff there is an i ≥ 0 s.t. πi |= ψ and πj |= ϕ for all j < i.

Write M, s |= ϕ iff π |= ϕ for every path π in M starting at state s.
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Alternative Interpretations

Our definitions follow the standard way of defining LTL in the
context of program verification. Classically, models of LTL are
based on just a single linear time line (N, <): just one “path” in
our terminology here. Hence, the name linear -time temporal logic.

People have also considered LTL with respect to other flows of
time, such as the rational numbers . . .

Remark: Hans Kamp (1968) showed that our set of operators is
expressively complete: anything expressible in the first-order theory
of (N, <) can also be said in the temporal language . . .

J.A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,

Department of Philosophy, UCLA, 1968.
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Examples

Some properties that we can express in LTL:

• If a request occurs then it will eventually be acknowledged:

G(request→ F acknowledge)

• Some process is enabled infinitely often: GF enabled

• G(floor2 ∧ going-up ∧ pressed5→ (going-upU floor5))

Some properties that we cannot express in LTL:

• From any state it is possible to get to a restart state.

• The lift can remain idle on the third floor with its doors closed (from

that state, there is a path where it stays on the third floor . . . ).

LTL cannot express these properties, because we cannot freely quantify

over paths (universal quantification is implicit).

The examples on this slide are taken from Huth and Ryan (2004).

M. Huth and M. Ryan. Logic in Computer Science. Cambridge University

Press, 2nd edition, 2004.
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Computation Tree Logic

CTL is a branching-time temporal logic allowing for quantification
over paths. However, as formulas will be evaluated over states, all
quantifiers now have to come in pairs: first we quantify over paths
and then over states on the chosen path.

Syntax: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | AXϕ | EXϕ |
AFϕ | EFϕ | AGϕ | EGϕ | A(ϕUϕ) | E(ϕUϕ)

Intuitive reading of some of the temporal operators:

• AXϕ: on all paths starting here, ϕ will be true next.

• EFϕ: there exists a path emanating from the current state on
which ϕ will be true at some future state.

CTL has been introduced by Clarke and Emerson (1981), together
with a suitable model checking algorithm.
E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic. Logics of Programs, 1981.
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Semantics of CTL

Truth at a state s0 in a transition system M = (S,R, V ):

• M, s0 |= p iff s0 ∈ V (p) for atomic propositions p;

• M, s0 |= ¬ϕ iff not M, s0 |= ϕ, and similarly for ∧, ∨ and →;

• M, s0 |= AXϕ iff M, s1 |= ϕ for all s1 ∈ S with s0Rs1;

• M, s0 |= EXϕ iff M, s1 |= ϕ for some s1 ∈ S with s0Rs1;

• M, s0 |= AFϕ iff for all paths s0, s1, . . . ∃ si s.t. M, si |= ϕ;

• M, s0 |= EFϕ iff for some path s0, s1, . . . ∃ si s.t. M, si |= ϕ;

• M, s0 |= AGϕ iff for all paths s0, s1, . . ., M, si |= ϕ for all si;

• M, s0 |= EGϕ iff for some path s0, s1, . . ., M, si |= ϕ for all si;

• M, s0 |= A(ϕUψ) iff for all paths s0, s1, . . . there exists an si s.t.

M, si |= ψ and M, sj |= ϕ for all j < i;

• M, s0 |= E(ϕUψ) iff for some path s0, s1, . . . there exists an si s.t.

M, si |= ψ and M, sj |= ϕ for all j < i.

Ulle Endriss 8



Temporal Logic and Model Checking ILCS 2006

Some Equivalences

The following equivalences show that we can eliminate most of the
temporal operators:

AXϕ ≡ ¬EX¬ϕ (1)

EGϕ ≡ ¬AF¬ϕ (2)

AGϕ ≡ ¬EF¬ϕ (3)

EFϕ ≡ E(>Uϕ) (4)

A(ϕUψ) ≡ AFψ ∧ ¬E[¬ψU (¬ϕ ∧ ¬ψ)] (5)
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Examples

Again, these are taken from Huth and Ryan (2004).

• We are now able to express that the lift can remain idle on the
third floor with the doors closed:
AG(floor3 ∧ idle ∧ closed→ EG(floor3 ∧ idle ∧ closed))

• In CTL, we cannot express “all paths which make p true at one
of their states also make q true at one of their states”.

But in LTL this is easy: F p→ F q
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CTL∗: The Best of Both Worlds

CTL∗ has been introduced by Emerson and Halpern (1983). It
allows you to freely mix all operators and thereby generalises both
LTL and CTL (think of LTL formulas as being preceded by an A).

State formulas ϕ are evaluated over states:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | Aα | Eα

Path formulas α are evaluated over paths:

α ::= ϕ | ¬α | α ∧ α | α ∨ α | α→ α | Xα | Fα | Gα | αUα

The semantics of CTL∗ is defined in the obvious manner . . .
(note that if a path formula is also a state formula, then it is
evaluated at the first state of the path in question).

E.A. Emerson and J.Y. Halpern. “Sometimes” and “not never” Revisited: On

Branching versus Linear Time. Proc. POPL-1983.
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CTL Model Checking

Given a model M, a state s, and a formula ϕ, the model checking
problem is the problem of determining whether M, s |= ϕ holds.

Alternative formulation: Given M and ϕ, find all s s.t. M, s |= ϕ.

Recall that we can restrict ourselves to the temporal operators EX,
AF and EU (and ¬ and ∧) . . .
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Labelling Algorithm

Recursively go through all subformulas ψ of ϕ (starting with the shortest

formulas) and decide which states to label with ψ. If ψ is of the form . . .

• p (atomic proposition), then label s with p if s ∈ V (p).

• ¬ψ1, then label s with ¬ψ1 if s is not labelled with ψ.

• ψ1 ∧ ψ2, then label s with ψ1 ∧ ψ2 if s is labelled with ψ1 and ψ2.

• EXψ1: label any state with EXψ1 if one of its immediate successor

states is labelled with ψ1.

• AFψ1: (1) label any state labelled with ψ1 also with AFψ1;

(2) repeat: label any state with AFψ1 if all its immediate successor

states are labelled with AFψ1.

• E(ψ1 Uψ2): (1) label any state labelled with ψ2 with E(ψ1 Uψ2);

(2) repeat: label any state with E(ψ1 Uψ2) if it is labelled with ψ1

and one of its immediate successors is labelled with E(ψ1 Uψ2).

Finally, return the set of states s labelled with the full formula ϕ.
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LTL Model Checking

First of all, observe that the simple approach taken for CTL won’t
work for LTL: now subformulas are evaluated over paths.

The general idea for checking whether M, s |= ϕ is the following:

(1) Construct an automaton A¬ϕ for the formula ¬ϕ. States are
maximally consistent sets of subformulas of ϕ (or their
complements) and the transition relation is arranged
“appropriately” (see next slide).

(2) Combine A¬ϕ and M to get another transition system. The
paths in that system are both paths in A¬ϕ and M. Model
checking succeeds iff there is no path in this transition system.

We assume that ϕ only uses negation, conjunction, X and U (F and
G are definable in terms of U).
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Constructing the Automaton

We construct A¬ϕ as follows. Introduce a state q for each maximally

consistent subset of the set of subformulas of ϕ and their complements:

• For all non-negated ψ, either ψ ∈ q or ¬ψ ∈ q (but not both).

• (ψ1 ∧ ψ2) ∈ q iff both ψ1 ∈ q and ψ2 ∈ q.

• If (ψ1 Uψ2) ∈ q then ψ1 ∈ q or ψ2 ∈ q.

• If ¬(ψ1 Uψ2) ∈ q then ¬ψ2 ∈ q.

The initial states are those including ¬ϕ. For the transition relation δ,

we define (q, q′) ∈ δ iff all of the following conditions hold:

• ψ ∈ q′ whenever (Xψ) ∈ q; and ¬ψ ∈ q′ whenever (¬Xψ) ∈ q.

• (ψ1 Uψ2) ∈ q′ whenever (ψ1 Uψ2) ∈ q and ψ2 6∈ q.

• ¬(ψ1 Uψ2) ∈ q′ whenever ¬(ψ1 Uψ2) ∈ q and ψ1 ∈ q.

Acceptance condition: the run has infinitely many states satisfying

¬(ψ1 Uψ2) ∨ ψ2 for each subformula of the form ψ1 Uψ2.
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Complexity Results

Our intuitions about the simplicity of various model checking
algorithms are confirmed by formal complexity results:

Theorem 1 (Clarke and Emerson, 1981) CTL model checking
is in P.

Theorem 2 (Sistla and Clarke, 1982) LTL (and CTL∗) model
checking are both PSPACE-complete.

But note that the main parameter determining the problem size is
the number of states—and this number may itself be exponential in
some other, more interesting parameter.

E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic. Logics of Programs, 1981.

A.P. Sistla and E.M. Clarke. The Complexity of Propositional Linear Temporal

Logics. Proc. STOC-1982.
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Summary

• We have introduced three temporal logics:

– LTL for linear time

– CTL for branching time

– CTL∗: a generalisation of CTL that allows for arbitrary
combinations of path and state quantification

• The general idea of using temporal logic and model checking
for program verification is that a transition system can serve as
a model of the system to be checked and formulas of the
temporal logic of choice can express desirable properties.

• We have seen algorithms for CTL and LTL model checking.

• Much work has gone into optimising model checking algorithms
by finding suitable forms of representation for very large
models: symbolic model checking
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