
Temporal Logic and Model Checking ILCS 2006

Introduction to

Logic in Computer Science: Autumn 2006

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Temporal Logic and Model Checking ILCS 2006

Plan for Today

One of the grand success stories of logic in mainstream computer

science has been the application of various logics to the specification

and verification of both hardware and software systems.

This lecture will introduce several temporal logics that are being

used for this purpose, and it will outline a couple of model checking

algorithms that can be used to check whether a given model

(representing a system) satisfies certain properties (expressed as

temporal logic formulas).

• LTL (linear-time); CTL (branching-time); CTL∗ (both, sort of)

• Model checking in CTL and LTL

Remark: Temporal logics are generally considered useful for

specifying and verifying programs that run continuously (such as

operating systems), as opposed to input-output programs (which

are better tackled using Hoare logic or PDL).

Ulle Endriss 2

Temporal Logic and Model Checking ILCS 2006

Linear-time Temporal Logic

LTL is the original temporal logic (also known as “tense logic”),

going back to work in philosophy by Arthur Prior (mid 1950s).

Early pioneers: Hans Kamp, Dov Gabbay, Johan van Benthem.

Amir Pnueli’s seminal paper (1977) started the field of program

specification and verification using temporal logic.

Syntax: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ

Intuitive reading of the temporal operators:

• Xϕ: ϕ is true at the next state (alternative syntax: ◦ϕ)

• Fϕ: ϕ is true at some future state (3ϕ)

• Gϕ: ϕ is true at all future states, globally (2ϕ)

• ϕUψ: ϕ is true until ψ is true

A. Pnueli. The Temporal Logic of Programs. Proc. 18th Annual Symposium

on Foundations of Computer Science, 1977.

Ulle Endriss 3

Temporal Logic and Model Checking ILCS 2006

Semantics of LTL

A transition system M = (S,R, V ) consists of a set of states S, a binary

relation R ⊆ S × S, and a valuation function V mapping atomic

propositions to sets of states (; Kripke model).

For ease of presentation, we assume that R is serial (not a serious

restriction: we could always add an explicit “deadlock state”).

A path π = s0, s1, s2, . . . is an infinite sequence of R-successors. Write πi

for the subpath starting at si. Define truth on a path π = s0, . . . like this:

• π |= p iff s0 ∈ V (p) for atomic propositions p;

• π |= ¬ϕ iff not π |= ϕ, and similarly for ∧, ∨ and →;

• π |= Xϕ iff π1 |= ϕ;

• π |= Fϕ iff there exists an i ≥ 0 such that πi |= ϕ;

• π |= Gϕ iff πi |= ϕ for all i ≥ 0;

• π |= ϕUψ iff there is an i ≥ 0 s.t. πi |= ψ and πj |= ϕ for all j < i.

Write M, s |= ϕ iff π |= ϕ for every path π in M starting at state s.

Ulle Endriss 4



Temporal Logic and Model Checking ILCS 2006

Alternative Interpretations

Our definitions follow the standard way of defining LTL in the

context of program verification. Classically, models of LTL are

based on just a single linear time line (N, <): just one “path” in

our terminology here. Hence, the name linear -time temporal logic.

People have also considered LTL with respect to other flows of

time, such as the rational numbers . . .

Remark: Hans Kamp (1968) showed that our set of operators is

expressively complete: anything expressible in the first-order theory

of (N, <) can also be said in the temporal language . . .

J.A.W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis,

Department of Philosophy, UCLA, 1968.

Ulle Endriss 5

Temporal Logic and Model Checking ILCS 2006

Examples

Some properties that we can express in LTL:

• If a request occurs then it will eventually be acknowledged:

G(request → F acknowledge)

• Some process is enabled infinitely often: GF enabled

• G(floor2 ∧ going-up ∧ pressed5 → (going-upU floor5))

Some properties that we cannot express in LTL:

• From any state it is possible to get to a restart state.

• The lift can remain idle on the third floor with its doors closed (from

that state, there is a path where it stays on the third floor . . . ).

LTL cannot express these properties, because we cannot freely quantify

over paths (universal quantification is implicit).

The examples on this slide are taken from Huth and Ryan (2004).

M. Huth and M. Ryan. Logic in Computer Science. Cambridge University

Press, 2nd edition, 2004.

Ulle Endriss 6

Temporal Logic and Model Checking ILCS 2006

Computation Tree Logic

CTL is a branching-time temporal logic allowing for quantification

over paths. However, as formulas will be evaluated over states, all

quantifiers now have to come in pairs: first we quantify over paths

and then over states on the chosen path.

Syntax: ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | AXϕ | EXϕ |

AFϕ | EFϕ | AGϕ | EGϕ | A(ϕUϕ) | E(ϕUϕ)

Intuitive reading of some of the temporal operators:

• AXϕ: on all paths starting here, ϕ will be true next.

• EFϕ: there exists a path emanating from the current state on

which ϕ will be true at some future state.

CTL has been introduced by Clarke and Emerson (1981), together

with a suitable model checking algorithm.

E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic. Logics of Programs, 1981.

Ulle Endriss 7

Temporal Logic and Model Checking ILCS 2006

Semantics of CTL

Truth at a state s0 in a transition system M = (S,R, V ):

• M, s0 |= p iff s0 ∈ V (p) for atomic propositions p;

• M, s0 |= ¬ϕ iff not M, s0 |= ϕ, and similarly for ∧, ∨ and →;

• M, s0 |= AXϕ iff M, s1 |= ϕ for all s1 ∈ S with s0Rs1;

• M, s0 |= EXϕ iff M, s1 |= ϕ for some s1 ∈ S with s0Rs1;

• M, s0 |= AFϕ iff for all paths s0, s1, . . . ∃ si s.t. M, si |= ϕ;

• M, s0 |= EFϕ iff for some path s0, s1, . . . ∃ si s.t. M, si |= ϕ;

• M, s0 |= AGϕ iff for all paths s0, s1, . . ., M, si |= ϕ for all si;

• M, s0 |= EGϕ iff for some path s0, s1, . . ., M, si |= ϕ for all si;

• M, s0 |= A(ϕUψ) iff for all paths s0, s1, . . . there exists an si s.t.

M, si |= ψ and M, sj |= ϕ for all j < i;

• M, s0 |= E(ϕUψ) iff for some path s0, s1, . . . there exists an si s.t.

M, si |= ψ and M, sj |= ϕ for all j < i.

Ulle Endriss 8



Temporal Logic and Model Checking ILCS 2006

Some Equivalences

The following equivalences show that we can eliminate most of the

temporal operators:

AXϕ ≡ ¬EX¬ϕ (1)

EGϕ ≡ ¬AF¬ϕ (2)

AGϕ ≡ ¬EF¬ϕ (3)

EFϕ ≡ E(>Uϕ) (4)

A(ϕUψ) ≡ AFψ ∧ ¬E[¬ψU (¬ϕ ∧ ¬ψ)] (5)

Ulle Endriss 9

Temporal Logic and Model Checking ILCS 2006

Examples

Again, these are taken from Huth and Ryan (2004).

• We are now able to express that the lift can remain idle on the

third floor with the doors closed:

AG(floor3 ∧ idle ∧ closed → EG(floor3 ∧ idle ∧ closed))

• In CTL, we cannot express “all paths which make p true at one

of their states also make q true at one of their states”.

But in LTL this is easy: F p→ F q

Ulle Endriss 10

Temporal Logic and Model Checking ILCS 2006

CTL∗: The Best of Both Worlds

CTL∗ has been introduced by Emerson and Halpern (1983). It

allows you to freely mix all operators and thereby generalises both

LTL and CTL (think of LTL formulas as being preceded by an A).

State formulas ϕ are evaluated over states:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ→ ϕ | Aα | Eα

Path formulas α are evaluated over paths:

α ::= ϕ | ¬α | α ∧ α | α ∨ α | α→ α | Xα | Fα | Gα | αUα

The semantics of CTL∗ is defined in the obvious manner . . .

(note that if a path formula is also a state formula, then it is

evaluated at the first state of the path in question).

E.A. Emerson and J.Y. Halpern. “Sometimes” and “not never” Revisited: On

Branching versus Linear Time. Proc. POPL-1983.

Ulle Endriss 11

Temporal Logic and Model Checking ILCS 2006

CTL Model Checking

Given a model M, a state s, and a formula ϕ, the model checking

problem is the problem of determining whether M, s |= ϕ holds.

Alternative formulation: Given M and ϕ, find all s s.t. M, s |= ϕ.

Recall that we can restrict ourselves to the temporal operators EX,

AF and EU (and ¬ and ∧) . . .

Ulle Endriss 12



Temporal Logic and Model Checking ILCS 2006

Labelling Algorithm

Recursively go through all subformulas ψ of ϕ (starting with the shortest

formulas) and decide which states to label with ψ. If ψ is of the form . . .

• p (atomic proposition), then label s with p if s ∈ V (p).

• ¬ψ1, then label s with ¬ψ1 if s is not labelled with ψ.

• ψ1 ∧ ψ2, then label s with ψ1 ∧ ψ2 if s is labelled with ψ1 and ψ2.

• EXψ1: label any state with EXψ1 if one of its immediate successor

states is labelled with ψ1.

• AFψ1: (1) label any state labelled with ψ1 also with AFψ1;

(2) repeat: label any state with AFψ1 if all its immediate successor

states are labelled with AFψ1.

• E(ψ1 Uψ2): (1) label any state labelled with ψ2 with E(ψ1 Uψ2);

(2) repeat: label any state with E(ψ1 Uψ2) if it is labelled with ψ1

and one of its immediate successors is labelled with E(ψ1 Uψ2).

Finally, return the set of states s labelled with the full formula ϕ.

Ulle Endriss 13

Temporal Logic and Model Checking ILCS 2006

LTL Model Checking

First of all, observe that the simple approach taken for CTL won’t

work for LTL: now subformulas are evaluated over paths.

The general idea for checking whether M, s |= ϕ is the following:

(1) Construct an automaton A
¬ϕ for the formula ¬ϕ. States are

maximally consistent sets of subformulas of ϕ (or their

complements) and the transition relation is arranged

“appropriately” (see next slide).

(2) Combine A
¬ϕ and M to get another transition system. The

paths in that system are both paths in A
¬ϕ and M. Model

checking succeeds iff there is no path in this transition system.

We assume that ϕ only uses negation, conjunction, X and U (F and

G are definable in terms of U).

Ulle Endriss 14

Temporal Logic and Model Checking ILCS 2006

Constructing the Automaton

We construct A¬ϕ as follows. Introduce a state q for each maximally

consistent subset of the set of subformulas of ϕ and their complements:

• For all non-negated ψ, either ψ ∈ q or ¬ψ ∈ q (but not both).

• (ψ1 ∧ ψ2) ∈ q iff both ψ1 ∈ q and ψ2 ∈ q.

• If (ψ1 Uψ2) ∈ q then ψ1 ∈ q or ψ2 ∈ q.

• If ¬(ψ1 Uψ2) ∈ q then ¬ψ2 ∈ q.

The initial states are those including ¬ϕ. For the transition relation δ,

we define (q, q′) ∈ δ iff all of the following conditions hold:

• ψ ∈ q′ whenever (Xψ) ∈ q; and ¬ψ ∈ q′ whenever (¬Xψ) ∈ q.

• (ψ1 Uψ2) ∈ q′ whenever (ψ1 Uψ2) ∈ q and ψ2 6∈ q.

• ¬(ψ1 Uψ2) ∈ q′ whenever ¬(ψ1 Uψ2) ∈ q and ψ1 ∈ q.

Acceptance condition: the run has infinitely many states satisfying

¬(ψ1 Uψ2) ∨ ψ2 for each subformula of the form ψ1 Uψ2.

Ulle Endriss 15

Temporal Logic and Model Checking ILCS 2006

Complexity Results

Our intuitions about the simplicity of various model checking

algorithms are confirmed by formal complexity results:

Theorem 1 (Clarke and Emerson, 1981) CTL model checking

is in P.

Theorem 2 (Sistla and Clarke, 1982) LTL (and CTL∗) model

checking are both PSPACE-complete.

But note that the main parameter determining the problem size is

the number of states—and this number may itself be exponential in

some other, more interesting parameter.

E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization

Skeletons Using Branching Time Temporal Logic. Logics of Programs, 1981.

A.P. Sistla and E.M. Clarke. The Complexity of Propositional Linear Temporal

Logics. Proc. STOC-1982.

Ulle Endriss 16



Temporal Logic and Model Checking ILCS 2006

References

The main reference in the area of model checking:

• E.M. Clarke, O. Grumberg, D.A. Peled. Model Checking. MIT

Press, 1999.

Chapter 3 of the following undergraduate textbook is about model

checking and has been my main reference for this lecture:

• M. Huth and M. Ryan. Logic in Computer Science. Cambridge

University Press, 2nd edition, 2004.

The following are excellent books on temporal logic per se, without

paying special attention to applications in computer science:

• D.M. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic,

Vol. 1. Oxford University Press, 1994.

• R. Goldblatt. Logics of Time and Computation. CSLI, 2nd

edition, 1992.

Ulle Endriss 17

Temporal Logic and Model Checking ILCS 2006

Summary

• We have introduced three temporal logics:

– LTL for linear time

– CTL for branching time

– CTL∗: a generalisation of CTL that allows for arbitrary

combinations of path and state quantification

• The general idea of using temporal logic and model checking

for program verification is that a transition system can serve as

a model of the system to be checked and formulas of the

temporal logic of choice can express desirable properties.

• We have seen algorithms for CTL and LTL model checking.

• Much work has gone into optimising model checking algorithms

by finding suitable forms of representation for very large

models: symbolic model checking

Ulle Endriss 18


