
Logic and Prolog ILCS 2006

Introduction to
Logic in Computer Science: Autumn 2006

Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Logic and Prolog ILCS 2006

Plan for Today

Today we’ll look into the interplay of logic and Prolog from two
directions. First, we’ll discuss the logical foundations of Prolog:

• Translating Prolog programs into Horn clauses

• Resolution as the reasoning engine underlying Prolog

Then we’ll apply Prolog to logic and see how to implement a
tableau-based theorem prover in Prolog. This also involves:

• Translation into negation normal form

• Skolemisation

• Sound unification (as opposed to Prolog’s matching)

Along the way, we’ll also see a few more Prolog features (assert/1
and retract/1, copy_term/2, if-then-else, . . .).

Ulle Endriss 2

Logic and Prolog ILCS 2006

Horn Clauses

In logic, a clause is a disjunction of literals. A propositional Horn
clause is a clause with at most one positive literal. Observe that:

¬A1 ∨ · · · ∨ ¬An ∨B ≡ A1 ∧ · · · ∧An → B

A first-order Horn clause is a formula of the form (∀x1) · · · (∀xn)A,
with A being a propositional Horn clause.

“Pure” Prolog programs (without cuts, negation, or any built-ins
with side effects) can be translated into sets of Horn clauses:

• Commas separating subgoals become ∧.

• :- becomes →, with the order of head and body switched.

• All variables are universally quantified (scope: full formula).

• Queries are translated as negated formulas (Q → ⊥).

Ulle Endriss 3

Logic and Prolog ILCS 2006

Example

The following Prolog program (with a query) . . .

bigger(elephant, horse).

bigger(horse, donkey).

is_bigger(X, Y) :- bigger(X, Y).

is_bigger(X, Y) :- bigger(X, Z), is_bigger(Z, Y).

?- is_bigger(elephant, X), is_bigger(X, donkey).

. . . corresponds to the following set of FOL formulas:

{ bigger(elephant, horse),

bigger(horse, donkey),

∀x.∀y.(bigger(x, y) → is bigger(x, y)),

∀x.∀y.∀z.(bigger(x, z) ∧ is bigger(z, y) → is bigger(x, y))

∀x.(is bigger(elephant, x) ∧ is bigger(x, donkey) → ⊥) }

Alternative notation: set of sets of literals (implicit quantification)

Ulle Endriss 4

Logic and Prolog ILCS 2006

Prolog and Resolution

When Prolog resolves a query, it tries to build a proof for that
query from the premises given by the program (or equivalently:
it tries to refute the union of the program and the negated query).

Therefore, at least for pure Prolog, query resolution can be
explained in terms of deduction in FOL. In principle, any calculus
could be used, but historically Prolog is based on resolution.

What next?

• Resolution for full FOL

• Resolution for Horn clauses (to get a feel for why Prolog
“works”, despite the undecidability of FOL)

Ulle Endriss 5

Logic and Prolog ILCS 2006

Binary Resolution with Factoring

Aim: Show ∆ |= ϕ (for a set of sentences ∆ and a sentence ϕ).

Preparation: Compute Skolem Normal Form of formulas in ∆ and
of ¬ϕ and write them as a set of clauses (variables named apart).

Input: Set of clauses (which we want to show to be unsatisfiable).

Algorithm: Apply the following two rules. The proof succeeds if
the empty clause (usually written as 2) can be derived.

Binary Resolution Rule

{L1} ∪ C1

{Lc
2} ∪ C2

µ(C1 ∪ C2)

Lc
2 is the complement of L2

µ is an mgu of L1 and L2

Factoring

{L1, . . . , Ln} ∪ C

σ({L1} ∪ C)

σ unifies {L1, . . . , Ln}

Ulle Endriss 6

Logic and Prolog ILCS 2006

Why Factoring?

Try to derive the empty clause from the following (obviously
unsatisfiable) set of clauses without using the factoring rule.

{ {P (x), P (y)}, {¬P (u),¬P (v)} }

⇒ It’s not possible!

This means that our binary resolution rule alone (without
factoring) would not be a complete deduction system for FOL.

Remark: The general resolution rule allows us to resolve using
subclauses (rather than just literals). In that case we can do
without factoring.

Ulle Endriss 7

Logic and Prolog ILCS 2006

SLD Resolution for Horn Clauses

SLD Resolution stands for Selective Linear Resolution for Definite
clauses, where:

• linear means we always use the latest resolvent in the next step;

• we have a selection function telling us which literal to use; and

• the input is restricted to Horn clauses, all but one of which
have to be definite clauses (that’s another word for Horn
clauses with exactly one positive literal).

SLD Resolution is complete for the Horn fragment (proof omitted).

Ulle Endriss 8

Logic and Prolog ILCS 2006

SLD Resolution in Logic Programming

Prolog implements SLD Resolution:

• Linearity: we start with the only negative clause (the negated
query) and then always use the previous resolvent (new query).

• The selection function is very simple: it always chooses the
first literal (in the current “query”).

• The input is restricted to one negative Horn clause (negated
query) and a number of positive Horn clauses (rules and facts).

In practice, one problem remains: if there is more than one way to
resolve with the selected literal (i.e. more than one matching rule
or fact) then we don’t know which one will eventually lead to a
successful refutation. In Prolog, always the first one is chosen and
if this turns out not to be successful, backtracking is used to try
another one.

Ulle Endriss 9

Logic and Prolog ILCS 2006

Worked Example

Consider the following Prolog program:

parent(elisabeth, charles).

parent(charles, harry).

ancestor(X, Y) :- parent(X, Y).

ancestor(X, Z) :- parent(X, Y), ancestor(Y, Z).

What will happen if we submit the following query after the above
program has been consulted by Prolog?

?- ancestor(elisabeth, harry).

Ulle Endriss 10

Logic and Prolog ILCS 2006

Step 1: Translate into FOL

For the program we get the following formulas:

(1) P (e, c)

(2) P (c, h)

(3) (∀x)(∀y)(P (x, y) → A(x, y))

(4) (∀x)(∀y)(∀z)(P (x, y) ∧A(y, z) → A(x, z))

For the negation of the query we get:

(5) ¬A(e, h)

Ulle Endriss 11

Logic and Prolog ILCS 2006

Step 2: Rewrite Formulas as Clauses

Formulas we get from translating a Prolog program already are in
Prenex Normal Form and we don’t need to Skolemise either
(because there are no existential quantifiers).

We have to rewrite the implications as disjunctions. Here, we
directly give the clauses (which correspond to disjunctions).
Don’t forget that variables have to be named apart.

(1) {P (e, c)}

(2) {P (c, h)}

(3) {¬P (x1, y1), A(x1, y1)}

(4) {¬P (x2, y2), ¬A(y2, z2), A(x2, z2)}

(5) {¬A(e, h)}

Ulle Endriss 12

Logic and Prolog ILCS 2006

Step 3: Apply SLD Resolution

(1) {P (e, c)}
(2) {P (c, h)}
(3) {¬P (x1, y1), A(x1, y1)}
(4) {¬P (x2, y2), ¬A(y2, z2), A(x2, z2)}
(5) {¬A(e, h)}

(6) {¬P (e, y3), ¬A(y3, h)} from (4,5) with [x2/e, z2/h]

(7) {¬A(c, h)} from (1,6) with [y3/c]

(8) {¬P (c, h)} from (3,7) with [x1/c, y1/h]

(9) 2 from (2,8)

Remark: If there had been variables in our query, then the
substitutions made to them would have been part of the answer.

Ulle Endriss 13

Logic and Prolog ILCS 2006

LeanTAP: Lean Tableau-based Deduction

The abstract of a 1995 paper in the Journal of Automated Reasoning:

“prove((E,F),A,B,C,D) :- !, prove(E,[F|A],B,C,D).

prove((E;F),A,B,C,D) :- !, prove(E,A,B,C,D), prove(F,A,B,C,D).

prove(all(H,I),A,B,C,D) :- !,

\+ length(C,D), copy_term((H,I,C),(G,F,C)),

append(A,[all(H,I)],E), prove(F,E,B,[G|C],D).

prove(A,_,[C|D],_,_) :-

((A=-(B); -(A)=B)) -> (unify(B,C); prove(A,[],D,_,_)).

prove(A,[E|F],B,C,D) :- prove(E,F,[A|B],C,D).”

implements a first-order theorem prover based on free-variable

semantic tableaux. It is complete, sound, and efficient.

B. Beckert and J. Posegga. LeanTAP: Lean Tableau-based Deduction. Journal

of Automated Reasoning 15:339–358, 1995.

Ulle Endriss 14

Logic and Prolog ILCS 2006

Implementing Tableaux

So how does this work then?

The remainder of today’s lecture is largely based on the original
paper by Beckert and Posegga (1995) and the review article by
Posegga and Schmitt (1999).

I’ve changed the programs a little bit though, in particular the
preprocessing bits. The original is more compact and should be a
little faster. My version should be easier to understand (. . . but
please note that it has not been tested very carefully).

B. Beckert and J. Posegga. LeanTAP: Lean Tableau-based Deduction. Journal

of Automated Reasoning 15:339–358, 1995.

J. Posegga and P.H. Schmitt. Implementing Semantic Tableau. Handbook of

Tableau Methods, Kluwer, 1999.

Ulle Endriss 15

Logic and Prolog ILCS 2006

Representing Formulas

The authors of LeanTAP reuse existing Prolog operators (comma
and semicolon) to represent formulas.

We’ll use nice home-made operators instead:

:- op(100, fy, neg),

op(200, yfx, and),

op(300, yfx, or),

op(400, yfx, implies),

op(500, yfx, iff).

Quantified formulas will be represented as follows:

• all(X,Fml)

• ex(X,Fml)

Variables will be represented using actual Prolog variables.

Example: all(X, all(Y, r(X,Y) implies r(Y,X)))

Ulle Endriss 16

Logic and Prolog ILCS 2006

Negation Normal Form

The main program of LeanTAP assumes that the input is provided
in negation normal form (NNF). That is, the only propositional
connectives used are negation, conjunction, and disjunction, and
negation only occurs right in front of atoms.

This makes the main program shorter, as we have to consider fewer
tableau rules. Unlike for CNF, for instance, computing the NNF of
a formula only takes linear time (so that’s ok).

For ease of presentation (it’s slightly less efficient), we split
computing the NNF of a given formula in two subtasks:

(1) Eliminate any occurrences of implies and iff.

(2) Push negation inside for the resulting formulas.

So the overall program will have the following form:

nnf(Fml, NNF) :- eliminate(Fml, X), push(X, NNF).

Ulle Endriss 17

Logic and Prolog ILCS 2006

Prolog: Term Decomposition

Given a term T, the predicate =../2 (which is defined as an infix
operator) can be used to generate a list, the head of which is the
functor of T and the tail of which is the list of arguments of T:

?- loves(john,mary) =.. List.

List = [loves, john, mary]

Yes

You can also use =../2 to compose new terms:

?- member(X, [f,g]), Y =.. [X,a,b].

X = f

Y = f(a, b) ;

X = g

Y = g(a, b) ;

No

Ulle Endriss 18

Logic and Prolog ILCS 2006

Eliminating Non-NNF Operators

eliminate(neg A, neg Formula) :- !, eliminate(A, Formula).

eliminate(A implies B, Formula) :- !,

eliminate(neg A or B, Formula).

eliminate(A iff B, Formula) :- !,

eliminate((A implies B) and (B implies A), Formula).

eliminate(Formula, NewFormula) :-

Formula =.. [Op,A,B], member(Op, [and,or]), !,

eliminate(A, NewA), eliminate(B, NewB),

NewFormula =.. [Op,NewA,NewB].

eliminate(Formula, NewFormula) :-

Formula =.. [Op,X,A], member(Op, [all,ex]), !,

eliminate(A, NewA), NewFormula =.. [Op,X,NewA].

eliminate(Atom, Atom).

Ulle Endriss 19

Logic and Prolog ILCS 2006

Pushing Negation Inside

push(neg neg A, NNF) :- !, push(A, NNF).

push(neg(A and B), NNF) :- !, push((neg A) or (neg B), NNF).

push(neg(A or B), NNF) :- !, push((neg A) and (neg B), NNF).

push(neg all(X,A), NNF) :- !, push(ex(X,neg A), NNF).

push(neg ex(X,A), NNF) :- !, push(all(X,neg A), NNF).

push(Formula, NNF) :-

Formula =.. [Op,A,B], member(Op, [and,or]), !,

push(A, NNF1), push(B, NNF2), NNF =.. [Op,NNF1,NNF2].

push(Formula, NNF) :-

Formula =.. [Op,X,A], member(Op, [all,ex]), !,

push(A, NNF1), NNF =.. [Op,X,NNF1].

push(Literal, Literal).

Ulle Endriss 20

Logic and Prolog ILCS 2006

Skolemisation

The main program of LeanTAP does not implement a delta rule
(for existentially quantified formulas). So all existential
quantification needs to be eliminated during preprocessing by
means of Skolemisation.

An outline of the Skolemisation algorithm (for formulas in NNF):

• Step through the formula from the outside to the inside, and
collect any universally quantified variables in a list Vars.

• Whenever you encounter an exist. quant. formula ex(X,Fml):

– Generate a new Skolem function symbol ski.

– Replace any occurrence of X within Fml by “ski(Vars)” to
obtain Fml’ and continue with Fml’ in place of ex(X,Fml).

Ulle Endriss 21

Logic and Prolog ILCS 2006

Prolog: Assert and Retract

Prolog evaluates queries with respect to a knowledge base (your
program + definitions of built-in predicates). It is possible to
dynamically add clauses to this knowledge base.

• Executing a goal of the form assert(+Clause) will add the
clause +Clause to the Prolog knowledge base.

• Executing retract(+Clause) will remove that clause again.

• Using retractall(+Clause) will remove all the clauses
matching Clause.

A typical application would be to dynamically create and
manipulate a database. In that case the Clauses will usually be
simple facts. Be careful when using assert/1 and retract/1; they
can make programs a lot more difficult to understand (and check).

Ulle Endriss 22

Logic and Prolog ILCS 2006

Generating Skolem Function Symbols

Code to generate Skolem function symbols:

get_new_symbol(Symbol) :-

step_counter(Num), atom_concat(sk, Num, Symbol).

set_counter(Num) :-

retractall(counter(_)), assert(counter(Num)).

step_counter(Num) :-

counter(Num), Num1 is Num + 1, set_counter(Num1).

:- set_counter(1).

If you run this, you will get a new symbol each time:

?- get_new_symbol(S). ?- get_new_symbol(S).

S = sk1 S = sk2

Yes Yes

Ulle Endriss 23

Logic and Prolog ILCS 2006

Prolog: Copying Terms

Prolog comes with a built-in predicate copy_term/2 that can be
used to make a copy of a given term, whilst replacing all the
variables in that term with new unbound variables.

It works as if it had been implemented like this:

copy_term(Input, Output) :-

assert(copy(Input)),

retract(copy(Output)).

Example:

?- copy_term(test(a,X,X), Term).

X = _G181

Term = test(a, _G254, _G254)

Yes

Ulle Endriss 24

Logic and Prolog ILCS 2006

Substitution

We’ll have to be able to carry out a substitution Var/Term in a
given expression. A very simple implementation uses copy_term/2.
As copy_term/2 will rename all variables by default, we need to
state explicitly which ones cannot be renamed.

substitute(Var/Term, Vars, Expression, Result) :-

copy_term(Var:Vars:Expression, Term:Vars:Result).

Examples:

?- substitute(X/f(Y), [], p(X), Formula).

X = _G182, Y = _G180, Formula = p(f(_G180))

Yes

?- substitute(X/f(Y), [Z], p(X,Z,U), Formula).

X = _G182, Y = _G180, Z = _G185, U = _G190,

Formula = p(f(_G180), _G185, _G341)

Yes

Ulle Endriss 25

Logic and Prolog ILCS 2006

Skolemisation

skolem(NNF, SNNF) :- skolem(NNF, [], SNNF).

skolem(all(X,NNF), Vars, all(X,SNNF)) :- !,

skolem(NNF, [X|Vars], SNNF).

skolem(ex(X,NNF), Vars, SNNF) :- !,

get_new_symbol(F), SkolemTerm =.. [F|Vars],

substitute(X/SkolemTerm, Vars, NNF, SNNF).

skolem(NNF1 and NNF2, Vars, SNNF1 and SNNF2) :- !,

skolem(NNF1, Vars, SNNF1), skolem(NNF2, Vars, SNNF2).

skolem(NNF1 or NNF2, Vars, SNNF1 or SNNF2) :- !,

skolem(NNF1, Vars, SNNF1), skolem(NNF2, Vars, SNNF2).

skolem(Literal, _, Literal).

Caveat: Variables need to be named apart for this to work correctly.

Ulle Endriss 26

Logic and Prolog ILCS 2006

Examples

For the following examples, I’ve simplified the output a little bit (if
Prolog comes back with something like X=_G182, I’m just using X).

?- skolem(ex(X,p(X)), Result).

Result = p(sk4)

Yes

?- skolem(all(X,all(Y,ex(Z,q(X,Y,Z)) or ex(U,p(U)))), Fml).

Fml = all(X, all(Y, q(X,Y,sk7(Y,X)) or p(sk8(Y,X))))

Yes

?- nnf(all(X, p(X) implies ex(Y, r(X,Y))), NNF),

skolem(NNF, SNNF).

NNF = all(X, neg p(X) or ex(Y, r(X, Y)))

SNNF = all(X, neg p(X) or r(X, sk12(X)))

Yes

Ulle Endriss 27

Logic and Prolog ILCS 2006

LeanTAP: Overview

LeanTAP checks, for a given list of formulas in SNNF, whether the
resulting tableau will close (i.e. whether the list is unsatisfiable).

Predicate: prove(+Fml, +UnExp, +Lits, +FreeV, +VarLim)

• Fml: the formula to which we want to apply a rule next

• UnExp: the rest of the current branch (unexpanded formulas)

• Lits: the literals encountered so far on the current branch

• FreeV: the list of free variables on the current branch

• VarLim: max. no. of free variables per branch (gamma rule)

Initialisation: Fml is the head of the input list; UnExp is the tail.
Lits and FreeVars are []. VarLim is specified by the user.

The predicate succeeds when all branches can be closed.

Ulle Endriss 28

Logic and Prolog ILCS 2006

LeanTAP: Alpha and Beta Rules

Because we assume the input to be in NNF, we have to consider
only a single alpha and a single beta rule . . .

Alpha rule: proceed with the first conjunct and store the second
in the list of unexpanded formulas.

prove(A and B, UnExp, Lits, FreeV, VarLim) :-!,

prove(A, [B|UnExp], Lits, FreeV, VarLim).

Beta rule: first check that the left branch will close; then check
the right branch.

prove(A or B, UnExp, Lits, FreeV, VarLim) :-!,

prove(A, UnExp, Lits, FreeV, VarLim),

prove(B, UnExp, Lits, FreeV, VarLim).

Observe that variable instantiations made on one branch will carry
over to the other (; closure by unification).

Ulle Endriss 29

Logic and Prolog ILCS 2006

LeanTAP: Gamma Rule

The gamma rule will only be applied if the list of free variables
(FreeV) has not yet reached the maximum length (VarLim):

prove(all(X,Fml), UnExp, Lits, FreeV, VarLim) :- !,

\+ length(FreeV, VarLim),

copy_term(X:Fml:FreeV, X1:Fml1:FreeV),

append(UnExp, [all(X,Fml)], UnExp1),

prove(Fml1, UnExp1, Lits, [X1|FreeV], VarLim).

The copy_term/2-line makes a copy of the matrix of the gamma
formula, replacing X by X1 and making sure all the free variables
stay intact (we could have used our substitute/4 instead).

The gamma formula is moved to the end of the list of unexpanded
formulas (fairness); and we proceed with the new formula.

Ulle Endriss 30

Logic and Prolog ILCS 2006

Prolog: Sound Unification

Prolog’s matching algorithm does not implement the occurs-check.
This is a good thing, because Prolog would be very inefficient
otherwise, but special care is required if in the rare cases where
sound unification is important.

This is how SWI-Prolog reacts to a query where this matters:

?- X = f(X).

X = f(**)

Yes

It used to be something like this, which makes things clearer:

?- X = f(X).

X = f(f(f(f(f(f(f(f(f(f(f(f(...))))))))))))

Yes

But note that this is still wrong, if you want real unification . . .

Ulle Endriss 31

Logic and Prolog ILCS 2006

Prolog: Sound Unification (cont.)

Fortunately, SWI-Prolog comes with a built-in predicate for sound
unification that we can use. Examples:

?- unify_with_occurs_check(X, f(X)).

No

?- unify_with_occurs_check(X, f(Y)).

X = f(_G180)

Y = _G180

Yes

An alternative would be to implement this ourselves, using
Robinson’s algorithm . . . but for now, we just abbreviate:

unify(X, Y) :- unify_with_occurs_check(X, Y).

Ulle Endriss 32

Logic and Prolog ILCS 2006

Prolog: If-Then-Else

To satisfy a goal of the form If -> Then ; Else, Prolog will
search for the first solution to the goal If and succeed if Then
succeeds without backtracking into If. If If fails, then Else must
succeed for the overall goal to succeed.

If -> Then is short for If -> Then ; fail.

If-then-else works as if (part of) ;/2 had been defined like this:

(If -> Then) ; _ :- If, !, Then.

(_ -> _) ; Else :- !, Else.

Without the else-part, it works as if implemented like this:

If -> Then :- If, !, Then.

This is not easy to get your head around, and I recommend to use
this construct sparingly. In a nutshell, think of it as a “local cut”.

Ulle Endriss 33

Logic and Prolog ILCS 2006

LeanTAP: Literals

If none of the previous rules applied, then the formula in focus
must be a literal. Succeed if its complement unifies with the head
of the list of literals; otherwise recurse . . .

prove(Lit, _, [L|Lits], _, _) :-

(Lit = neg Neg ; neg Lit = Neg) ->

(unify(Neg, L) ; prove(Lit, [], Lits, _, _)).

Note the rather nifty use of [] to ensure that the head of the next
rule below will never match this call to prove/5. That is, prove/5
is “abused” for checking unification for all members of Lits.

If the above fails (eventually), then we store the literal in focus in
Lits and proceed with the next unexpanded formula:

prove(Lit, [Next|UnExp], Lits, FreeV, VarLim) :-

prove(Next, UnExp, [Lit|Lits], FreeV, VarLim).

Ulle Endriss 34

Logic and Prolog ILCS 2006

One more time . . .

prove(A and B, UnExp, Lits, FreeV, VarLim) :-!,

prove(A, [B|UnExp], Lits, FreeV, VarLim).

prove(A or B, UnExp, Lits, FreeV, VarLim) :-!,

prove(A, UnExp, Lits, FreeV, VarLim),

prove(B, UnExp, Lits, FreeV, VarLim).

prove(all(X,Fml), UnExp, Lits, FreeV, VarLim) :-

\+ length(FreeV, VarLim),

copy_term(X:Fml:FreeV, X1:Fml1:FreeV),

append(UnExp, [all(X,Fml)], UnExp1),

prove(Fml1, UnExp1, Lits, [X1|FreeV], VarLim).

prove(Lit, _, [L|Lits], _, _) :-

(Lit = neg Neg ; neg Lit = Neg) ->

(unify(Neg, L) ; prove(Lit, [], Lits, _, _)).

prove(Lit, [Next|UnExp], Lits, FreeV, VarLim) :-

prove(Next, UnExp, [Lit|Lits], FreeV, VarLim).

Ulle Endriss 35

Logic and Prolog ILCS 2006

Using LeanTAP

The following code makes using the program more convenient . . .

The predicate prove/2 takes care of translating the list of input
formulas into Skolem NNF and initalises prove/5 correctly.

Recall that the second argument (VarLim) specifies the maximum
number of applications of the gamma rule on each branch.

prove(Input, VarLim) :-

preprocess(Input, [Fml|Fmls]),

prove(Fml, Fmls, [], [], VarLim).

Recursive application of the normalisation predicates:

preprocess([], []).

preprocess([Fml|Fmls], [SNNF|SNNFs]) :-

nnf(Fml, NNF), skolem(NNF, SNNF),

preprocess(Fmls, SNNFs).

Ulle Endriss 36

Logic and Prolog ILCS 2006

Examples

Answers are instant for examples such as these:

?- prove([neg all(X, (p or q(X))) iff (p or all(Y, q(Y)))], 5).

X = _G180, Y = _G190

Yes

?- prove([all(X, p(X) and q(X)), neg all(X,p(X))], 0).

No

I did not manage to get the following to work though (also not with the

original LeanTAP)—but I may have overlooked a problem with the

example and it’s not actually a real challenge for LeanTAP . . .

?- Ref = all(X, r(X,X)),

Sym = all(X, all(Y, r(X,Y) implies r(Y,X))),

Tra = all(X, all(Y, all(Z, r(X,Y) and (Y,Z) implies r(X,Z)))),

Ser = all(X, ex(Y, r(X,Y))),

Claim = Sym and Tra and Ser implies Ref,

prove([neg(Claim)], 20).

Ulle Endriss 37

Logic and Prolog ILCS 2006

Advanced Prolog

In this short crash course, we have only discussed the very core
features of the Prolog programming language. However, these
should be sufficient for 95% of all tasks you are ever likely to face.

For the rest, your best source of information is usual the reference
manual of your Prolog system.

A few “advanced features” (some of which were already mentioned
today) are also discussed in the slides for my undergraduate class
(“Lecture 6”, available from the usual place):

• Decomposing terms with =../2

• Collecting answers: findall/3 etc.

• Dynamic predicates: assert/1 and retract/1

• Input/output and file handling

Ulle Endriss 38

Logic and Prolog ILCS 2006

Summary

• Pure Prolog corresponds to sets of Horn clauses.

• The reasoning engine underlying Prolog can be explained in
terms of SLD Resolution.

• We have discussed the implementation of the LeanTAP prover
in detail, including the translation into Skolem NNF.

• LeanTAP is a great example showing that Prolog allows you to
write powerful programs in a simple and elegant manner.

• We have seen various new Prolog features along the way,
namely =../2, assert/2 and retract/2, copy_term/2,
unify_with_occurs_check/2, and if-then-else (->).

Ulle Endriss 39

