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Plan for Today

Today’s class will be an introduction to analytic tableaux for

classical first-order logic:

• Quick review of syntax and semantics of first-order logic

• Quantifier rules for Smullyan-style and KE-style tableaux

• Soundness and completeness proofs

• Discussion of efficiency issues, undecidability

• Countermodel generation
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Syntax of FOL

The syntax of a language defines the way in which basic elements of

the language may be put together to form clauses of that language.

In the case of FOL, the basic ingredients are (besides the logic

operators): variables, function symbols, and predicate symbols. Each

function and predicate symbol is associated with an arity n ≥ 0.

Definition 1 (Terms) We inductively define the set of terms as

the smallest set such that:

(1) every variable is a term;

(2) if f is a function symbol of arity k and t1, . . . , tk are terms,

then f(t1, . . . , tk) is also a term.

Function symbols of arity 0 are better known as constants.
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Syntax of FOL (2)

Definition 2 (Formulas) We inductively define the set of

formulas as the smallest set such that:

(1) if P is a predicate symbol of arity k and t1 . . . , tk are terms,

then P (t1, . . . , tk) is a formula;

(2) if ϕ and ψ are formulas, so are ¬ϕ, ϕ ∧ ψ, ϕ ∨ ψ, and ϕ→ ψ;

(3) if x is a variable and ϕ is a formula, then (∀x)ϕ and (∃x)ϕ are

also formulas.

Syntactic sugar: ϕ↔ ψ ≡ (ϕ→ ψ) ∧ (ψ → ϕ); > ≡ P ∨ ¬P

(for an arbitrary 0-place predicate symbol P ); ⊥ ≡ ¬>.

Also recall: atoms, literals, ground terms, bound and free

variables, closed formulas (aka sentences), . . .
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Semantics of FOL

The semantics of a language defines the meaning of clauses in that

language. In the case of FOL, we do this through the notion of

models (and variable assignments).

Definition 3 (Models) A model is a pair M = (D, I), where D

(the domain) is a non-empty set of objects and I (the

interpretation function) is mapping each n-place function symbol f

to some n-ary function fI : Dn → D and each n-place predicate

symbol P to some n-ary relation P I : Dn → {true, false}.

Note that this definition also covers the cases of 0-place function

symbols (constants) and predicate symbols.
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Semantics of FOL (2)

Definition 4 (Assignments) A variable assignment over a

domain D is a function g from the set of variables to D.

Definition 5 (Valuation of terms) We define a valuation

function valI,g over terms as follows:

valI,g(x) = g(x) for variables x

valI,g(f(t1, . . . , tn)) = fI(valI,g(t1), . . . , valI,g(tn))

Definition 6 (Assignment variants) Let g and g′ be

assignments over D and let x be a variable, Then g′ is called an

x-variant of g iff g(y) = g′(y) for all variables y 6= x.
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Semantics of FOL (3)

Definition 7 (Satisfaction relation) We write M, g |= ϕ to say

that the formula ϕ is satisfied in the model M = (I,D) under the

assignment g. The relation |= is defined inductively as follows:

(1) M, g |= P (t1, . . . , tn) iff P I(valI,g(t1), . . . , valI,g(tn)) = true;

(2) M, g |= ¬ϕ iff not M, g |= ϕ;

(3) M, g |= ϕ ∧ ψ iff M, g |= ϕ and M, g |= ψ;

(4) M, g |= ϕ ∨ ψ iff M, g |= ϕ or M, g |= ψ;

(5) M, g |= ϕ→ ψ iff not M, g |= ϕ or M, g |= ψ;

(6) M, g |= (∀x)ϕ iff M, g′ |= ϕ for all x-variants g′ of g; and

(7) M, g |= (∃x)ϕ iff M, g′ |= ϕ for some x-variant g′ of g.
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Semantics of FOL (4)

Observe that in the case of closed formulas ϕ the variable

assignment g does not matter (we just write M |= ϕ).

Satisfiability. A closed formula ϕ is called satisfiable iff it has a

model, i.e. there exists a model M with M |= ϕ.

Validity. A closed formula ϕ is called valid iff for every model M

we have M |= ϕ. We write |= ϕ.

Consequence relation. Let ϕ be a closed formula and let ∆ be a

set of closed formulas. We write ∆ |= ϕ iff whenever M |= ψ holds

for all ψ ∈ ∆ then also M |= ϕ holds.
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Quantifier Rules

Both the KE-style and the Smullyan-style tableau method for

propositional logic can be extended with the following rules.

Gamma Rules:

(∀x)A

A[x/t]

¬(∃x)A

¬A[x/t]

Delta Rules:

(∃x)A

A[x/c]

¬(∀x)A

¬A[x/c]

Here, t is an arbitrary ground term and c is a constant symbol that

is new to the branch.

Unlike all other rules, the gamma rule may have to be applied more

than once to the same formula on the same branch.

Substitution. ϕ[x/t] denotes the formula we get by replacing each

free occurrence of the variable x in the formula ϕ by the term t.
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Smullyan’s Uniform Notation

Formulas of universal (γ) and existential (δ) type:

γ γ1(u)

(∀x)A A[x/u]

¬(∃x)A ¬A[x/u]

δ δ1(u)

(∃x)A A[x/u]

¬(∀x)A ¬A[x/u]

We can now state gamma and delta rules as follows:

γ

γ1(t)

δ

δ1(c)

where:

• t is an arbitrary ground term

• c is a constant symbol new to

the branch
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Exercises

Give Smullyan-style or KE-style tableau proofs for the following

arguments:

• (∀x)P (x) ∨ (∀x)Q(x) |= ¬(∃x)(¬P (x) ∧ ¬Q(x))

• |= (∃x)(P (x) ∨Q(x)) ↔ (∃x)P (x) ∨ (∃x)Q(x)
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Soundness and Completeness

Let ϕ be a first-order formula and ∆ a set of such formulas. We

write ∆ ` ϕ to say that there exists a closed tableau for ∆ ∪ {¬ϕ}.

Theorem 1 (Soundness) If ∆ ` ϕ then ∆ |= ϕ.

Theorem 2 (Completeness) If ∆ |= ϕ then ∆ ` ϕ.

We shall prove soundness and completeness only for Smullyan-style

tableaux (but it’s almost the same for KE-style tableaux).

Important note: The mere existence of a closed tableau does not

mean that we have an effective method of finding it! Concretely:

we don’t know how often we need to apply the gamma rule and

what terms to use for the substitutions.
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Proof of Soundness

This works exactly as in the propositional case (; last week).

The central step is to show that each of the expansion rules

preserves satisfiability:

• If a non-branching rule is applied to a satisfiable branch, the

result is another satisfiable branch.

• If a branching rule is applied to a satisfiable branch, at least

one of the resulting branches is also satisfiable.

Ulle Endriss 13

Tableaux for First-order Logic ILCS 2006

Proof of Soundness (cont.)

Gamma rule: If γ appears on a branch, you may add γ1(t) for

any ground term t to the same branch.

Proof: suppose branch B with γ ≡ (∀x)γ1(x) ∈ B is satisfiable

⇒ there exists M = (D, I) s.t. M |= B and hence M |= (∀x)γ1(x)

⇒ for all var. assignments g: M, g |= γ1(x); choose g′ s.t. g′(x) = tI

⇒ M, g′ |= γ1(x) ⇒ M |= γ1(t) ⇒ M |= B ∪ {γ1(t)} X

Delta rule: If δ appears on a branch, you may add δ1(c) for any

new constant symbol c to the same branch.

Proof: suppose branch B with δ ≡ (∃x)δ1(x) ∈ B is satisfiable

⇒ there exists M = (D, I) s.t. M |= B and hence M |= (∃x)δ1(x)

⇒ there exists a variable assignment g s.t. M, g |= δ1(x)

now suppose g(x) = d ∈ D; define new model M′ = (D, I ′) with I ′

like I but additionally cI
′

= d (this is possible, because c is new)

⇒ M′ |= δ1(c) and M′ |= B ⇒ M′ |= B ∪ {δ1(c)} X
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Hintikka’s Lemma

Definition 8 (Hintikka set) A set of first-order formulas H is

called a Hintikka set provided the following hold:

(1) not both P ∈ H and ¬P ∈ H for propositional atoms P ;

(2) if ¬¬ϕ ∈ H then ϕ ∈ H for all formulas ϕ;

(3) if α ∈ H then α1 ∈ H and α2 ∈ H for alpha formulas α;

(4) if β ∈ H then β1 ∈ H or β2 ∈ H for beta formulas β.

(5) for all terms t built from function symbols in H (at least one

constant symbol): if γ ∈ H then γ1(t) for gamma formulas γ;

(6) if δ ∈ H then δ1(t) ∈ H for some term t, for delta formulas δ.

Lemma 1 (Hintikka) Every Hintikka set is satisfiable.
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Proof of Hintikka’s Lemma

Construct a model M = (D, I) from a given Hintikka set H:

• D: set of terms constructible from function symbols appearing

in H (add one constant symbol in case there are none)

• I: (1) function symbols are being interpreted “as themselves”:

fI(d1, . . . , dn) = f(d1, . . . , dn); (2) predicate symbols:

P I(d1, . . . , dn) = true iff P (d1, . . . , dn) ∈ H

Claim: ϕ ∈ H entails M |= ϕ.

Proof: By structural induction. [. . . ] X
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Proof of Completeness

Fairness. We call a tableau proof fair iff every non-literal gets

eventually analysed on every branch and, additionally, every

gamma formula gets eventually instantiated with every term

constructible from the function symbols appearing on a branch.

Proof sketch. We will show the contrapositive: assume ∆ 6` ϕ and

try to conclude ∆ 6|= ϕ.

If there is no proof for ∆ ∪ {¬ϕ} (assumption), then there can also

be no fair proof. Observe that any fairly constructed non-closable

branch enumerates the elements of a Hintikka set H.

H is satisfiable (Hintikka’s Lemma) and we have ∆ ∪ {¬ϕ} ⊆ H.

So there is a model for ∆ ∪ {¬ϕ}, i.e. we get ∆ 6|= ϕ. X
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Efficiency Issues

Due to the undecidability of first-order logic there can be no

general method for finding a closed tableau for a given theorem

(although its existence is guaranteed by completeness).

Nevertheless, there are some heuristics:

• As in the propositional case, use “deterministic” rules first:

propositional rules except PB and the delta rule.

• As in the propositional case, use beta simplification.

• Use the gamma rule a “reasonable” number of times (with

“promising” substitutions) before attempting to use PB.

Example: for the automated theorem prover implemented in

WinKE you can choose n, the maximum number of applications

of the gamma rule on a given branch before PB will be used.

• Use analytic PB only.
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Saturated Branches

An open branch is called saturated iff every non-literal has been

analysed at least once and, additionally, every gamma formula has

been instantiated with every term we can construct using the

function symbols on the branch.

Failing proofs. A tableau with an open saturated branch can

never be closed, i.e. we can stop an declare the proof a failure.

The solution? This only helps us in special cases though.

(A single 1-place function symbol together with a constant is

already enough to construct infinitely many terms . . . )

Propositional logic. In propositional logic (where we have no

gamma formulas), after a limited number of steps, every branch will

be either closed or saturated. This gives us a decision procedure.
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Countermodels

If a KE proof fails with a saturated open branch, you can use it to

help you define a model M for all the formulas on that branch:

• domain: set of all terms we can construct using the function

symbols appearing on the branch (so-called Herbrand universe)

• terms are interpreted as themselves

• interpretation of predicate symbols: see literals on branch

In particular, M will be a model for the premises ∆ and the

negated conclusion ¬ϕ, i.e. a counterexample for ∆ |= ϕ.

You can do the same with Smullyan-style tableaux, but for KE

distinct open branches always generate distinct models.

Careful: There’s a bug in WinKE: sometimes, what is presented

as a countermodel is in fact only part of a countermodel (but it can

always be extended to an actual model).
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Exercise

Construct a counterexample for the following argument:

• (∀x)(P (x) ∨Q(x)) |=? (∀x)P (x) ∨ (∀x)Q(x)
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Summary

• Two tableau methods for first-order logic: Smullyan-style

(syntactic branching) and KE-style (semantic branching)

• Soundness and completeness

• Undecidability: gamma rule is the culprit

• Countermodels: sometimes we get termination for failed proofs

and can extract a counterexample (particularly nice for KE)
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