
Complexity Classes, Reductions and Completeness ILCS 2006

Introduction to
Logic in Computer Science: Autumn 2006

Ulle Endriss
Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Complexity Classes, Reductions and Completeness ILCS 2006

Plan for Today

We are going to cover the following topics:

• More on relationships between complexity classes

• Complements of complexity classes

• Completeness with respect to a complexity class: what are the
“most difficult” problems within a given class?

Regarding relationships, we sketch proofs for some important
(difficult) results. Concerning completeness, we just introduce the
definitions; the real stuff is for next week.

Remark: Any results stated in the sequel assume that all functions
f : N → N are “proper complexity functions” (; last week).

Ulle Endriss 2

Complexity Classes, Reductions and Completeness ILCS 2006

The Time Hierarchy Theorem

Not all complexity classes are the same (we weren’t sure before!):

Theorem 1 We have TIME(f(n)) ⊂ TIME((f(2n + 1))3) for
any function f : N → N with f(n) ≥ n.

Proof idea: Define a time-bound halting problem as follows:

Hf = {M ;x | machine M accepts x after ≤ f(|x|) steps}

Then prove the following lemmas:

(1) Hf ∈ TIME((f(n))3): Roughly, each step can be simulated in
quadratic time; so the whole thing takes cubic time (see book).

(2) Hf 6∈ TIME(f(bn
2 c))

Proof by contradiction: Suppose there exists a machine MHf

deciding Hf in f(bn
2 c). Define machine Df such that

Df (M) says “yes” iff MHf
(M ;M) says “no” (else “no”)

Then wonder what the output for Df (Df) would be . . . X

Ulle Endriss 3

Complexity Classes, Reductions and Completeness ILCS 2006

P and EXPTIME

Recall the theorem: TIME(f(n)) ⊂ TIME((f(2n + 1))3).

Corollary 1 We get P ⊂ EXPTIME.

Proof: Apply the Time Hierarchy Theorem to f(n) = 2n, yielding
TIME(2n) ⊂ TIME(2(2n+1)·3). The result then follows from
P ⊆ TIME(2n) and TIME(2(2n+1)·3) ⊆ EXPTIME. X

Ulle Endriss 4

Complexity Classes, Reductions and Completeness ILCS 2006

Savitch’s Theorem

Theorem 2 (Savitch) NSPACE(f(n)) ⊆ SPACE(f2(n)) for any

function f : N → N with f(n) ≥ log n.

Proof idea: First show that Reachability ∈ SPACE(log2 n):

• Let Path(x, y, t) be the problem: is there a path ≤ t from x to y?

Algorithm: Recursively try all nodes z and check if both

Path(x, z, t/2) and Path(z, y, t/2) hold.

Analysis: Recursion depth is at most log t. Storing one node takes

log n space (binary representation). The claim then follows from

Reachability = Path(x, y, n).

Now take any problem ∈ NSPACE(f(n)). The machine solving it can

have at most cf(n) states. Solve Reachability for the corresponding

graph of ≤ cf(n) nodes ⇒ problem ∈ SPACE(f2(n)). X

Corollary 2 We get PSPACE = NPSPACE.

Compare this with the situation for time: we don’t know whether

P = NP, but strongly suspect not, namely P ⊂ NP.

Ulle Endriss 5

Complexity Classes, Reductions and Completeness ILCS 2006

Summary of Complexity Class Relationships

This is what we know so far:

P ⊆ NP ⊆ PSPACE = NPSPACE ⊆ EXPTIME
P ⊂ EXPTIME

Hence, one of the ⊆’s above must actually be strict, but we don’t
know which. Most experts believe they are probably all strict. In
the case of P ⊂? NP, the answer is worth $1.000.000.

Ulle Endriss 6

Complexity Classes, Reductions and Completeness ILCS 2006

Complements

• Let P be a class of decision problems. The complement P of P

is the set of all instances that are not correct solutions for P .

If you think of a class of problems as a language, then this is
the usual notion of complementation.

• Example: Sat is the problem of checking whether a given
formula of propositional logic is satisfiable. The complement of
Sat is checking whether a given formula is not satisfiable
(which is equivalent to checking whether its negation is valid).

• For any complexity class C, we define coC = {P | P ∈ C}.

• Example: coNP is the class of problems for which a negative
answer can be verified in polynomial time.

Ulle Endriss 7

Complexity Classes, Reductions and Completeness ILCS 2006

Problems and Languages

Sometimes a small shift in terminology can make things clearer . . .

A class of problems can be understood as a language over some
given alphabet: each problem instance can be encoded as a word
over the alphabet, and the language is the set of all words
corresponding to problem instances with a positive answer.

For instance, for Reachability, we can describe any graph
G = (V,E) together with two chosen vertices as a string ⊆ {0, 1}∗.
The language corresponding to Reachability would then be the
set of words encoding an instance of this class of problems for
which the correct answer would be “yes”.

The complement of a language L (class of problems) with respect
to an alphabet Σ is then easily defined as L = Σ∗ \ L.

A complexity class C is said to be closed under complementation iff
L ∈ C implies L ∈ C (similar for union and intersection).

Ulle Endriss 8

Complexity Classes, Reductions and Completeness ILCS 2006

Results for Complements

The following result follows from the fact that a deterministic
algorithm for a given problem can be turned into a deterministic
algorithm for the complement of that problem by simply swapping
“yes” and “no” in the output.

Proposition 1 C = coC for any deterministic complexity class C.

For example, we have P = coP. But nobody knows whether
NP =? coNP (people tend to think not).

An important theorem that we just state here without proof:

Theorem 3 (Immerman-Szelepscényi) If f(n) ≥ log n, then
NSPACE(f(n)) = coNSPACE(f(n)).

That is, non-deterministic space is closed under complementation.
An example would be NPSPACE = coNPSPACE.

Ulle Endriss 9

Complexity Classes, Reductions and Completeness ILCS 2006

Reductions

To compare the hardness of different classes of problems, we
introduce the concept of reduction.

Problem A reduces to problem B if we can translate any instance
of A into an instance of B that we can then feed into a solver for B

to obtain an answer to our original question (of type A).

If the translation (reduction) process itself is not too complex,
then we can rightfully claim that problem B is at least as hard as
problem A. This is because a B-solver can solve any instance of A,
and maybe many more problems.

There are several ways of making this notion precise . . .

Ulle Endriss 10

Complexity Classes, Reductions and Completeness ILCS 2006

Polynomial-Time Reductions

The important bit is that it has to be possible that the reduction
be computed in polynomial time (this makes sense if we are
interested in complexity classes P and above). Two variants:

• Karp reduction (aka. many-one reduction): Reduce an
A-instance to a B-instance in polynomial time and then solve it
using the B-solver (one call at the very end of the reduction).

• Turing reduction (aka. Cook reduction): Solve an A-instance in
polynomial time using a polynomial number of B-oracles.

We’ll usually gloss over the details (as is common practice in the
literature) and not explicitly state which type of reduction we use.

Remark: Papadimitriou uses logarithmic-space rather than
polynomial-time reductions in his book . . . more powerful as he
explains, but also less standard.

Ulle Endriss 11

Complexity Classes, Reductions and Completeness ILCS 2006

Hardness and Completeness

Let C be a complexity class.

• A language L is C-hard iff any L′ ∈ C is polynomial-time
reducible to L. That is, the C-hard problems include the very
hardest problems inside of C, and even harder ones.

• A language L is C-complete iff L is C-hard and L ∈ C. That is,
these are the hardest problems in C, and only those.

Example: As we shall see later, Sat is an example for an
NP-complete problem. That means, it is as hard as any other
problem in NP; any other such problem can be reduced to Sat.

Ulle Endriss 12

Complexity Classes, Reductions and Completeness ILCS 2006

Summary

Today’s material is covered in Chapters 7 and 8 of Papadimitriou’s book.

• Review of definition of complexity classes and simple relationships

between them (mostly previous set of slides).

• Time Hierarchy Theorem and Savitch’s Theorem

• Complements and Immerman-Szelepscényi Theorem

• Polynomial-time reductions between different problems

• Completeness with respect to a complexity class

What next?

• We are going to see actual examples for decision problems that are

complete with respect to specific complexity classes.

• For each such class we will have to prove completeness once from

first principles; all subsequent results rely on reductions.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Ulle Endriss 13

