
Algorithms and Complexity ILCS 2006

Introduction to
Logic in Computer Science: Autumn 2006

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Algorithms and Complexity ILCS 2006

Plan for Today

The next three lectures are going to be an introduction to the

theory of computational complexity. Much of the material will be

taken from Papadimitriou’s textbook, although the same material

can also be found in most other books on the topic.

Main issues to be covered today:

• Algorithms, problems, problem classes, complexity measures

• Big-O Notation (and variants) to describe complexity

• Definition of complexity classes, such as P, NP, PSPACE

• Relationships between different complexity classes

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Ulle Endriss 2

Algorithms and Complexity ILCS 2006

Problems and Problem Classes

What can be computed at all is subject of computability (or

recursion) theory. Here we deal with solvable problems, but ask

how hard they are. Some examples for such problems:

• Find all prime numbers ≤ 500!

• Is ((P → Q) → P ) → P a theorem of classical logic?

• What is the shortest path from here to the central station?

Here we are not really interested in such specific problem instances,

but rather in classes of problems, parametrised by their size n ∈ N:

• Find all prime numbers ≤ n!

• For a given formula of length ≤ n, check whether it is a

theorem of classical logic!

• Find the shortest path between two given vertices on a given

graph with up to n vertices!

Ulle Endriss 3

Algorithms and Complexity ILCS 2006

Decision Problems

Furthermore, we are only going to be interested in decision

problems, problems that require “yes” or “no” as an answer.

But note that there are close connection between, say, optimisation

problems and decision problems. For instance, instead of asking

“what is the shortest path from here to the station?”

we may choose to ask

“is there a path ≤ K from here to the station

(with, say, K = 3km)?”

The two problems are not the same, but they are closely related.

Standard complexity theory only deals with decision problems.

Given another kind of problem, knowing the complexity of the

corresponding decision problem can at least give us some pretty

good indications regarding the original problem.

Ulle Endriss 4



Algorithms and Complexity ILCS 2006

Graph Reachability

Let us look at a specific problem class and an algorithm for solving

problems belonging to that class; and then analyse the complexity

of that algorithm . . .

Reachability

Instance: Directed graph G = (V, E) and two vertices v, v′
∈ V

Question: Is there a path leading from v to v′?

Example: Let G = (V, E) with

• V = {1, 2, 3, 4, 5}

• E = {(1, 4), (2, 1), (2, 3), (3, 5), (4, 3), (5, 4)}

Is there a path leading from 1 to 5?

What would be a general algorithm for solving such a problem?

Ulle Endriss 5

Algorithms and Complexity ILCS 2006

An Algorithm

Here’s a generic algorithm for solving Reachability.

Given: G = (V, E) and v, v′ ∈ V (should find a path from v to v′)

The algorithm uses two sets to maintain information:

• FOC : set of vertices in focus

• VIS : set of vertices already visited

Initially, set FOC = VIS = {v}. Then iterate:

• Choose a vertex x ∈ FOC and remove it from FOC .

• For all edges (x, y) ∈ E with y 6∈ VIS , add y to FOC and VIS .

Observe that this will terminate (FOC will eventually be empty).

Vertex v′ is reachable from v iff v′ ∈ VIS in the end (and we could

choose to interrupt the above loop as soon as v′ is found).

What is the complexity of this algorithm (how long does it take)?

Ulle Endriss 6

Algorithms and Complexity ILCS 2006

Complexity Measures

Our algorithm for Reachability “has quadratic complexity”—what

does that mean exactly?

• First of all, we have to specify the resource with respect to which we

are analysing the complexity of an algorithm.

– Time complexity: How long will it take to execute the algorithm?

– Space complexity: How much memory do we need to do so?

• A second dimension of complexity is this:

– Worst-case analysis: How much time/memory will the algorithm

require in the worst case?

– Average-case analysis: How much will it use on average?

The latter is typically very difficult. Empirical studies using

real-world data are often the only way.

• The complexity of a problem is the complexity of the best algorithm

solving that problem.

Ulle Endriss 7

Algorithms and Complexity ILCS 2006

The Big-O Notation

Let f : N → N and g : N → N be two functions mapping natural

numbers to natural numbers (if not, think of f(n) as being short

for max{df(n)e, 0}, etc.).

Think of f as computing, for any problem size n, the worst-case

time complexity f(n). This may be rather complicated a function.

Think of g as a function that may be a “good approximation” of f

and that is more convenient when speaking about complexities.

The Big-O Notation is a way of making the idea of a suitable

approximation mathematically precise.

I We say that f(n) is in O(g(n)) iff there exist an n0 ∈ N and a

c ∈ R
+ such that f(n) ≤ c · g(n) for all n ≥ n0.

That is, from a certain n0 onwards, the function f grows at most as

fast as the reference function g, modulo some constant factor c

about which we don’t really care.

Ulle Endriss 8



Algorithms and Complexity ILCS 2006

Examples

(1) Let f(n) =
√

n + 100. Then f(n) is in O(
√

n).

Proof: Use c = 2 and n0 = 10000.

(2) Let f(n) = 5 · n2 + 20. Then f(n) is in O(n2).

Proof: Use c = 6 and n0 = 5.

(3) Let f(n) = 5 · n2 + 20. Then f(n) is also in O(n3), but this is

not very interesting. We want complexity classes to be “sharp”.

(4) Let f(n) = 500 · n200 + n17 + 1000. Then f(n) is in O(2n).

Proof: Use c = 1 and n0 = 3000. In general, an exponential

function always grows much faster than any polynomial

function (we all know that; part of the homework will be to

prove it formally). So O(2n) is not at all a sharp complexity

class for f . A better choice would be O(n200).

Ulle Endriss 9

Algorithms and Complexity ILCS 2006

Variants of the Big-O Notation

The Big-O Notation is used to specify an upper bound (which is

usually supposed to be “sharp”, but it doesn’t have to be).

The following notation is useful for specifying lower bounds:

Ω(g(n)) = {f : N → N | ∃c ∈ R
+ ∃no ∈ N ∀n ≥ n0 : f(n)≥ c · g(n)}

A different way of putting it:

f(n) ∈ Ω(g(n)) iff g(n) ∈ O(f(n))

Finally, we also have this notation:

f(n) ∈ Θ(g(n)) iff both f(n) ∈ O(g(n)) and f(n) ∈ Ω(g(n))

Ulle Endriss 10

Algorithms and Complexity ILCS 2006

Tractability and Intractability

Problems for which it is possible to devise a polynomial time algorithm

are usually considered to be tractable. Problems that require exponential

algorithms are considered intractable. Some remarks:

• Of course, a polynomial algorithm running in n1000 may behave a

lot worse than an exponential algorithm running in 2
n

100 . However,

experience suggests that such large factors do not actually come up

for “real” problems. In any case, for very large n, the polynomial

algorithm will always do better.

• It should also be noted that there are empirically successful

algorithms for problems that are known not to be solvable in

polynomial time. Such algorithms can never be efficient in the

general case, but may perform very well on the problem instances

that come up in practice.

Ulle Endriss 11

Algorithms and Complexity ILCS 2006

The Travelling Salesman Problem

The decision problem variant of a famous problem:

Travelling Salesman Problem (TSP)

Instance: n cities; distance between each pair; K ∈ N

Question: Is there a route ≤ K visiting each city exactly once?

A possible algorithm for TSP would be to enumerate all complete

paths without repetitions and then to check whether one of them is

short enough. The complexity of this algorithm is O(n!).

Slightly better algorithms are known, but even the very best of

these are still exponential (and many people tried). This suggests a

fundamental problem: maybe an efficient solution is impossible?

Note that if someone guesses a potential solution path, then

checking the correctness of that solution can be done in linear time.

So checking a solution is a lot easier than finding one.

Ulle Endriss 12



Algorithms and Complexity ILCS 2006

Complexity Classes

A complexity class is a set of classes of decision problems

(or languages) with the same worst-case complexity.

• TIME(f(n)) is the set of all classes of decision problems that

can be solved by an algorithm with a runtime of O(f(n)).

For example, we have seen that Reachability ∈ TIME(n2).

• SPACE(f(n)) is the set of all classes of decision problems that

can be solved by an algorithm with memory requirements

within O(f(n)).

For instance, TSP ∈ SPACE(n), because our brute-force

algorithm only needs to store the route currently being tested

and the route that is the best so far (together that’s roughly

twice the size of the input).

These are also called deterministic complexity classes (because the

algorithms used are required to be deterministic).

Ulle Endriss 13

Algorithms and Complexity ILCS 2006

Remarks

• The definitions on the previous slide are somewhat informal.

• To be absolutely precise, we should first fix a machine model

with respect to which our algorithms are being executed.

Usually, Turing machines are used for this.

• But once the definitions are clear, the next step is usually to

understand that the precise machine model does in fact not

affect the deeper ideas very much at all; so in this short

introduction we can certainly do without Turing machines . . .

• Another sense in which we are (and going to continue to be)

somewhat informal is that functions f : N → N need to be

restricted to proper complexity functions when used to define

complexity classes. Broadly speaking, these are non-decreasing

functions that are themselves computable within the time and

space bounds they specify (see Papadimitriou for details).

Ulle Endriss 14

Algorithms and Complexity ILCS 2006

Non-deterministic Complexity Classes

Remember that we said that checking whether a proposed solution

is correct is different from finding one (it’s easier).

We can think of a decision problem as being of the form “is there

an X with property P?”. This may already be the chosen form (e.g.

“is there a route that is short enough?”); or we can reformulate

(e.g. “is ϕ satisfiable?” ; “is there a model M s.t. M |= ϕ?”).

• NTIME(f(n)) is the set of classes of decision problems for

which a candidate solution can be checked in time O(f(n)).

For instance, TSP ∈ NTIME(n), because checking whether a

given route is short enough is possible in linear time (just add

up the distances and compare to K).

• Accordingly for NSPACE(f(n)).

So why are they called non-deterministic complexity classes?

Ulle Endriss 15

Algorithms and Complexity ILCS 2006

Ways of Interpreting Non-determinism

• Think of an algorithm as being implemented on a machine that

moves from one state to the next (a state is characterised by

the machine’s current memory configuration).

For a non-deterministic algorithm the state transition function

would be underspecified, and there could be more than one

possible follow-up state.

• A machine is said to solve a problem using a non-deterministic

algorithm iff there exists a run answering “yes”.

For comparison, with a deterministic machine model, there is

just on possible run for each input (answering “yes” or “no”).

• A common interpretation of non-determinism is that whenever

there is a choicepoint in an algorithm, an oracle tells us which

is the best computation path to pursue (think of a search tree

with the oracle telling us which branch to follow).

Ulle Endriss 16



Algorithms and Complexity ILCS 2006

Ways of Interpreting Non-determinism (cont.)

• The “oracle interpretation” is equivalent to our earlier

interpretation based on the ability to check a candidate

solution using the given time/space resources:

All the “little oracles” along a computation path can be packed

together into one “big initial oracle” to guess a solution; then

all that remains to be done is to check its correctness.

• The “checking interpretation” is probably the best way of

understanding non-deterministic complexity classes.

• The story about the oracle is important to understand where

the N in the names is coming from.

Ulle Endriss 17

Algorithms and Complexity ILCS 2006

P and NP

The two most important complexity classes:

P =
⋃

k>1

TIME(nk)

NP =
⋃

k>1

NTIME(nk)

From our discussion so far, you know that this means that:

• P is the class of problems that can be solved in polynomial

time by a deterministic algorithm; and

• NP is the class of problems for which a proposed solution can

be verified in polynomial time (or that could be solved by a

non-deterministic algorithm in polynomial time . . . if such a

thing actually existed outside of mathematics).

Ulle Endriss 18

Algorithms and Complexity ILCS 2006

Further Common Complexity Classes

We are also going to discuss the following complexity classes:

PSPACE =
⋃

k>1

SPACE(nk)

NPSPACE =
⋃

k>1

NSPACE(nk)

EXPTIME =
⋃

k>1

TIME(2(nk))

Ulle Endriss 19

Algorithms and Complexity ILCS 2006

Relationships between Complexity Classes

Now that we have defined a whole range of complexity classes, we

would like to understand how they relate to each other . . .

The following result is obvious, given that a deterministic

algorithm is just a special case of a non-deterministic one:

Proposition 1 Let C be any deterministic complexity class and let

NC be the corresponding non-deterministic class. Then C ⊆ NC.

For instance, we have P ⊆ NP.

Ulle Endriss 20



Algorithms and Complexity ILCS 2006

Relating Time and Space

The next result is also obvious, given that even a non-deterministic

algorithm can fill up at most as many “space units” as it has “time

units” at its disposal:

Proposition 2 We have NTIME(f(n)) ⊆ SPACE(f(n)) for any

function f : N → N.

As a consequence, we have NP ⊆ PSPACE.

Proposition 3 We have PSPACE ⊆ EXPTIME.

Proof sketch: Take any deterministic algorithm requiring a

polynomially bound number of memory cells. WLOG assume each

cell stores either a 0 or a 1 at any one time. During a run of the

algorithm, each “memory configuration” can come up at most once

(otherwise we’d enter an infinite loop). That is, if f(n) cells are

used, the algorithm must terminate after at most 2f(n) steps (= the

number of possible memory configurations). X

Ulle Endriss 21

Algorithms and Complexity ILCS 2006

References

More details on the material covered today can be found in

Papadimitriou’s textbook.

• Read Chapter 1 for an introduction to algorithms, a definition

of the Big-O Notation, and a discussion of the appropriateness

of the general approach (why worst-case complexity?; and why

equate polynomial complexity with tractability?).

• Chapter 2 gives a through definition of complexity classes such

as SPACE(f(n)) and NTIME(f(n)). Note that we have

taken some shortcuts here; in particular we have kept the bit

on Turing machines informal.

• The rest of today’s material is covered in Chapter 7.

C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

Ulle Endriss 22

Algorithms and Complexity ILCS 2006

Summary

Topics covered today:

• Basic concepts discussed: decision problems, problem classes,

algorithms, worst-case vs. average-case complexity, time vs. space

complexity, (in)tractability and (super-)polynomial complexity, . . .

• Big-O Notation: O(f(n)), as well as Ω(f(n)) and Θ(f(n))

• Complexity classes: grouping of problems of comparable hardness

• Relationships between different complexity classes

Topics to be covered next:

• More on relationships between complexity classes

• Complements of complexity classes (e.g. coNP)

• Completeness wrt. a complexity class: what are the “most difficult”

problems within a given class? (e.g. NP-completeness)

• Reductions between problems to obtain complexity results

Ulle Endriss 23


