Tutorial \#7

Exercise 1

Consider the following hedonic game with three players:

$$
\begin{array}{ll}
\text { Player 1: } & \{1,3\} \succ_{1}\{1,2,3\} \succ_{1}\{1\} \succ_{1}\{1,2\} \\
\text { Player 2: } & \{1,2,3\} \succ_{2}\{1,2\} \succ_{2}\{2,3\} \succ_{2}\{2\} \\
\text { Player 3: } & \{1,3\} \succ_{3}\{3\} \succ_{3}\{1,2,3\} \succ_{3}\{2,3\}
\end{array}
$$

For each of the following notions of stability, either find a coalition structure that satisfies it or explain why no such coalition structure exists:
(a) Nash stability
(b) Individual stability
(c) Contractual stability

Exercise 2

Show that every hedonic game has a coalition structure that is contractually stable.
Hint: There is a very simple proof that starts out from the same basic idea as the (more involved) proof we saw for the fact that every hedonic game with a symmetric profile of additively separable preferences has a coalition structure that is Nash stable.

Exercise 3

Ali, Amy, and Ann are looking for jobs. Bea, Ben, and Bob own small companies with one job opening each. Everyone's preferences are as follows:

Ali:	Bea \succ Ben \succ Bob	Bea:	Amy \succ Ann \succ Ali
Amy:	Ben \succ Bea \succ Bob	Ben:	Ali \succ Ann \succ Amy
Ann:	Bea \succ Bob \succ Ben	Bob:	Ann \succ Ali \succ Amy

Use the deferred-acceptance algorithm to determine a stable matching for this scenario.

