Game Theory 2021

Ulle Endriss
Institute for Logic, Language and Computation
University of Amsterdam
Plan for Today

Pure and mixed Nash equilibria are examples for solution concepts: formal models to predict what might be the outcome of a game.

Today we are going to see some more such solution concepts:

- **equilibrium in dominant strategies**: do what’s definitely good
- **elimination of dominated strategies**: don’t do what’s definitely bad
- **correlated equilibrium**: follow some external recommendation

For each of them, we are going to see some intuitive motivation, then a formal definition, and then an example for a relevant technical result.

Most of this (and more) is also covered in Chapter 3 of the Essentials.

Dominant Strategies

Have we maybe missed the most obvious solution concept? . . .

You should play the action $a_i^* \in A_i$ that gives you a better payoff than any other action a_i', whatever the others do (such as playing s_{-i}):

$$u_i(a_i^*, s_{-i}) > u_i(a_i', s_{-i}) \text{ for all } a_i' \in A_i \setminus \{a_i^*\} \text{ and all } s_{-i} \in S_{-i}$$

Action a_i^* is called a \textit{strictly dominant strategy} for player i.

Profile $a^* \in A$ is called an \textit{equilibrium in strictly dominant strategies} if, for every player $i \in N$, action a_i^* is a strictly dominant strategy.

Downside: This does not always exist (in fact, it usually does not!).

Remark: Equilibria don’t change if we define this for mixed strategies. If some best strategy exists, then some pure strategy is (also) best.
Example: Prisoner’s Dilemma Again

Here it is once more:

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-10</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>-25</td>
<td>-20</td>
</tr>
</tbody>
</table>

Exercise: *Is there an equilibrium in strictly dominant strategies?*

Discussion: Conflict between rationality and efficiency now even worse.
Dominant Strategies and Nash Equilibria

Exercise: Show that every equilibrium in strictly dominant strategies is also a pure Nash equilibrium.
Elimination of Dominated Strategies

Action a_i is *strictly dominated* by a strategy s_i^* if, for all $s_{-i} \in S_{-i}$:

$$u_i(s_i^*, s_{-i}) > u_i(a_i, s_{-i})$$

Then, if we assume i is *rational*, action a_i can be *eliminated*.

This induces a solution concept:

all mixed-strategy profiles of the reduced game that survive iterated elimination of strictly dominated strategies (IESDS)

Simple example (where the dominating strategies happen to be pure):

\[
\begin{array}{ccc}
\text{T} & \text{L} & \text{R} \\
\text{B} & \begin{array}{cc}
4 & 6 \\
6 & 1 \\
1 & 2 \\
6 & 2
\end{array} & \begin{array}{c}
4 \\
6 \\
1 \\
2
\end{array} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{T} & \text{R} \\
\text{B} & \begin{array}{c}
1 \\
2
\end{array} & \begin{array}{c}
2
\end{array} \\
\end{array}
\]

\[
\begin{array}{ccc}
\text{B} & \text{R} \\
\text{B} & \begin{array}{c}
2
\end{array} \\
\end{array}
\]
Order Independence of IESDS

Suppose $A_i \cap A_j = \emptyset$. Then we can think of the reduced game G^t after t eliminations simply as the subset of $A_1 \cup \cdots \cup A_n$ that survived.

IESDS says: players will actually play G^∞. Is this well defined? Yes!

Theorem 1 (Gilboa et al., 1990) Any order of eliminating strictly dominated strategies leads to the same reduced game.

Proof: Write $G \rightarrow G'$ if game G can be reduced to G' by eliminating one action. Need to show that trans. closure \rightarrow^* is Church-Rosser. Done if can show that \rightarrow is C-R (induction!).

Enough to show: if $G \xrightarrow{a_i} G'$ and $G \xrightarrow{b_j} G''$, then $G' \xrightarrow{b_j} G'''$ for some G'''.

$G \xrightarrow{b_j} G''$ means there is an s^*_j s.t. $u_j(s^*_j, s_{-j}) > u_j(b_j, s_{-j})$ for all s_{-j}.

This remains true if we restrict attention to s'_{-j} with $a_i \notin \text{support}(s'_j)$:

$u_j(s^*_j, s'_{-j}) > u_j(b_j, s'_{-j})$ for all such s'_{-j}. So b_j can be eliminated in G'. ✓

Let’s Play: Numbers Game (Again!)

Let’s play this game one more time:

Every player submits a (rational) number between 0 and 100. We then compute the average (arithmetic mean) of all the numbers submitted and multiply that number with 2/3. Whoever got closest to this latter number wins the game.

The winner gets ₩100. In case of a tie, the winners share the prize.
Analysis

IESDS results in a reduced game where everyone’s only action is 0. So, we happen to find the only pure Nash equilibrium this way.

IESDS works on the assumption of common knowledge of rationality. In the Numbers Game, we have seen:

- Playing 0 usually is not a good strategy in practice, so assuming common knowledge of rationality must be unjustified.
- When we played the second time, the winning number got closer to 0. So by discussing the game, both your own rationality and your confidence in the rationality of others seem to have increased.
Idea: Recommend Good Strategies

Consider the following variant of the game of the *Battle of the Sexes* (previously, we had discussed a variant with different payoffs):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Nash equilibria:
- pure AA: utility = 2 & 1
- pure BB: utility = 1 & 2
- mixed \([(\frac{2}{3}, \frac{1}{3}), (\frac{1}{3}, \frac{2}{3})]\): EU = \(\frac{2}{3}\) & \(\frac{2}{3}\)

⇒ either unfair or low payoffs

Ask Rowena and Colin to toss a fair coin and to pick A in case of heads and B otherwise. They don’t have to, but if they do:

\[
\text{expected utility} = \frac{1}{2} \cdot 2 + \frac{1}{2} \cdot 1 = \frac{3}{2} \quad \text{for Rowena}
\]
\[
\frac{1}{2} \cdot 1 + \frac{1}{2} \cdot 2 = \frac{3}{2} \quad \text{for Colin}
\]
Correlated Equilibria

A \textit{random public event} occurs. Each player i receives \textit{private signal} x_i. Modelled as random variables $\mathbf{x} = (x_1, \ldots, x_n)$ on $D_1 \times \cdots \times D_n = D$ with \textit{joint} probability distribution π (so the x_i can be correlated).

Player i uses function $\sigma_i : D_i \rightarrow A_i$ to translate signals to actions.

A \textit{correlated equilibrium} is a tuple $\langle \mathbf{x}, \pi, \sigma \rangle$, with $\sigma = (\sigma_1, \ldots, \sigma_n)$, such that, for all $i \in N$ and all alternative choices $\sigma_i' : D_i \rightarrow A_i$, we get:

$$\sum_{d \in D} \pi(d) \cdot u_i(\sigma_1(d_1), \ldots, \sigma_n(d_n)) \geq \sum_{d \in D} \pi(d) \cdot u_i(\sigma_1(d_1), \ldots, \sigma_{i-1}(d_{i-1}), \sigma_i'(d_i), \sigma_i+1(d_{i+1}), \ldots, \sigma_n(d_n))$$

Interpretation: Player i \textit{controls} whether to play σ_i or σ_i', but has to choose \textit{before} nature draws $d \in D$ from π. She knows σ_{-i} and π.
Example: Approaching an Intersection

Rowena and Colin both approach an intersection in their cars and each of them has to decide whether to *drive on* or *stop*.

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>-10</td>
<td>3</td>
</tr>
<tr>
<td>S</td>
<td>3</td>
<td>-2</td>
</tr>
</tbody>
</table>

Nash equilibria:
- pure **DS**: utility = 3 & 0
- pure **SD**: utility = 0 & 3
- mixed \((\frac{1}{3}, \frac{2}{3}), (\frac{1}{3}, \frac{2}{3})\): EU = \(-\frac{4}{3}\) & \(-\frac{4}{3}\)

⇒ the only fair NE is pretty bad!

Could instead use this “randomised device” to get CE:
- \(D_i = \{\text{red, green}\}\) for both players \(i\)
- \(\pi(\text{red, green}) = \pi(\text{green, red}) = \frac{1}{2}\)
- recommend to each player to use \(\sigma_i : d_i \mapsto \begin{cases}
\text{drive if } d_i = \text{green} \\
\text{stop if } d_i = \text{red}
\end{cases} \)

Expected utility: \(\frac{3}{2}\) & \(\frac{3}{2}\)
Correlated Equilibria and Nash Equilibria

Theorem 2 (Aumann, 1974) For every Nash equilibrium there exists a correlated equilibrium inducing the same distribution over outcomes.

Proof: Let \(s = (s_1, \ldots, s_n) \) be an arbitrary Nash equilibrium.

Define a a tuple \(\langle x, \pi, \sigma \rangle \) as follows:

- let domain of each \(x_i \) be \(D_i := A_i \)
- fix \(\pi \) so that \(\pi(a) = \prod_{i \in N} s_i(a_i) \) [the \(x_i \) are independent]
- let each \(\sigma_i : A_i \rightarrow A_i \) be the identity function \([i \text{ accepts recomm.}]\)

Then \(\langle x, \pi, \sigma \rangle \) is the kind of correlated equilibrium we want. \(\checkmark \)

Corollary 3 Every normal-form game has a correlated equilibrium.

Proof: Follows from Nash’s Theorem. \(\checkmark \)

Even More Solution Concepts

There are several other solution concepts in the literature. **Examples:**

- **Iterated elimination of weakly dominated strategies:** eliminate \(a_i \) in case there is a strategy \(s_i^* \) such that \(u_i(s_i^*, s_{-i}) \geq u_i(a_i, s_{-i}) \) for all \(s_{-i} \in S_{-i} \) and this inequality is strict in at least one case.

- **Trembling-hand perfect equilibrium:** strategy profile that is the limit of an infinite sequence of fully-mixed-strategy profiles in which each player best-responds to the previous profile.

 So: even if they make small mistakes, I’m responding rationally.

- **\(\epsilon \)-Nash equilibrium:** no player can gain more than \(\epsilon \) in utility by unilaterally deviating from her assigned strategy.

 Exercise: How does the standard definition of NE relate to this?

Summary

We have reviewed several solution concepts for normal-form games.

- **equilibrium in dominant strategies**: great *if* it exists
- **IESDS**: iterated elimination of strictly dominated strategies
- **correlated equilibrium**: accept external advice

These solution concepts give rise to the following hierarchy:

\[
\text{Dom} \subseteq \text{PureNash} \subseteq \text{Nash} \subseteq \text{CorrEq} \subseteq \text{IESDS}
\]

might be empty always nonempty

What next? Focus on the special case of zero-sum games.