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Plan for Today

We have already seen that voters will sometimes have an incentive not

to truthfully reveal their preferences when they vote.

Today we shall prove an important theorem that shows that this kind

of strategic manipulation is impossible to avoid:

• The Gibbard-Satterthwaite Theorem (1973/1975)

We then discuss several ways of circumventing this problem, notably:

• Domain restrictions regarding voter preferences

• Computational hardness as a barrier against manipulation
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Example

Recall that under the plurality rule the candidate receiving the highest

number of votes wins.

Assume the preferences of the people in, say, Florida are as follows:

49%: Bush ≻ Gore ≻ Nader

20%: Gore ≻ Nader ≻ Bush

20%: Gore ≻ Bush ≻ Nader

11%: Nader ≻ Gore ≻ Bush

So even if nobody is cheating, Bush will win this election. But:

• It would have been in the interest of the Nader supporters to

manipulate, i.e., to misrepresent their preferences.

Is there a better voting rule that avoids this problem?
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Truthfulness, Manipulation, Strategy-Proofness

For now, we will only deal with resolute voting rules F : L(X )N → X .

Unlike for all earlier results discussed, we now have to distinguish:

• the ballot a voter reports

• from her actual preference relation.

Both are elements of L(X ). If they coincide, then the voter is truthful .

F is strategy-proof (or immune to manipulation) if for no individual

i ∈ N there exist a profile R (including the “truthful preference” Ri

of i) and a linear order R′
i (representing the “untruthful” ballot of i)

such that F (R−i, R
′
i) is ranked above F (R) according to Ri.

In other words: under a strategy-proof voting rule no voter will ever

have an incentive to misrepresent her preferences.

Notation: (R−i, R
′
i) is the profile obtained by replacing Ri in R by R′

i.
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The Gibbard-Satterthwaite Theorem

Recall: a resolute SCF/voting rule F is surjective if for any alternative

x ∈ X there exists a profile R such that F (R) = x.

Gibbard (1973) and Satterthwaite (1975) independently proved:

Theorem 1 (Gibbard-Satterthwaite) Any resolute SCF for > 3

alternatives that is surjective and strategy-proof is a dictatorship.

Remarks:

• a surprising result + not applicable in case of two alternatives

• The opposite direction is clear: dictatorial ⇒ strategy-proof

• Random procedures don’t count (but might be “strategy-proof”).

A. Gibbard. Manipulation of Voting Schemes: A General Result. Econometrica,

41(4):587–601, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 10:187–217, 1975.
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Proof

We shall prove the Gibbard-Satterthwaite Theorem to be a corollary of the

Muller-Satterthwaite Theorem (even if, historically, G-S came first).

Recall the Muller-Satterthwaite Theorem:

• Any resolute SCF for > 3 alternatives that is surjective and strongly

monotonic must be a dictatorship.

We shall prove a lemma showing that strategy-proofness implies strong

monotonicity (and we’ll be done). X (Details are in the review paper.)

For short proofs of G-S, see also Barberà (1983) and Benôıt (2000).

S. Barberà. Strategy-Proofness and Pivotal Voters: A Direct Proof the Gibbard-

Satterthwaite Theorem. International Economic Review, 24(2):413–417, 1983.

J.-P. Benôıt. The Gibbard-Satterthwaite Theorem: A Simple Proof. Economic

Letters, 69(3):319–322, 2000.

U. Endriss. Logic and Social Choice Theory. In J. van Benthem and A. Gupta

(eds.), Logic and Philosophy Today, College Publications. In press (2011).
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Strategy-Proofness implies Strong Monotonicity

Lemma 1 Any resolute SCF that is strategy-proof (SP) must also be

strongly monotonic (SM).

• SP: no incentive to vote untruthfully

• SM: F (R) = x ⇒ F (R′) = x if ∀y : NR
x≻y ⊆ NR

′

x≻y

Proof: We’ll prove the contrapositive. So assume F is not SM.

So there exist x, x′ ∈ X with x 6= x′ and profiles R,R′ such that:

• NR
x≻y ⊆ NR

′

x≻y for all alternatives y, including x′ (⋆)

• F (R) = x and F (R′) = x′

Moving from R to R
′, there must be a first voter affecting the winner.

So w.l.o.g., assume R and R
′ differ only wrt. voter i. Two cases:

• i ∈ NR
′

x≻x′ : if i’s true preferences are as in R
′, she can benefit

from voting instead as in R ⇒  [SP]

• i 6∈ NR
′

x≻x′ ⇒(⋆) i 6∈ NR

x≻x′ ⇒ i ∈ NR

x′≻x: if i’s true preferences

are as in R, she can benefit from voting as in R
′ ⇒  [SP]
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Irresolute Voting Rules

Recall that the Gibbard-Satterthwaite Theorem applies to resolute

voting rules only. This is a limitation; most rules are irresolute.

For further reading: The best known result regarding the impossibility

of designing an acceptable irresolute voting rule that is strategy-proof

is the Duggan-Schwartz Theorem (2000).

Remark: How to extend a voter’s preferences over individual winners

to a preference relation over sets of winners (e.g., in view of her beliefs

regarding the tie-breaking rule) is an interesting question its own right

(to be discussed next week).

J. Duggan and T. Schwartz. Strategic Manipulation w/o Resoluteness or Shared

Beliefs: Gibbard-Satterthwaite Generalized. Soc. Choice Welf., 17(1):85–93, 2000.
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Circumventing Manipulation

The Gibbard-Satterthwaite Theorem tells us that there aren’t any

reasonable voting rules that are strategy-proof. That’s very bad!

We will consider three possible avenues to circumvent this problem:

• Changing the formal framework a little (one slide only)

• Restricting the domain (the classical approach)

• Making strategic manipulation computationally hard

Ulle Endriss 9

Strategic Manipulation COMSOC 2011

Changing the Framework

The Gibbard-Satterthwaite Theorem applies when both preferences and

ballots are linear orders. The problem persists for several variations. But:

• In a framework with money , if preferences and ballots are modelled as

(quasi-linear) utility functions u : X → R, we can design strategy-proof

mechanisms. Example: Vickrey Auction

• In the context of approval voting (ballots ∈ 2X , preferences ∈ L(X )),

under certain conditions we can ensure that no voter has an incentive

to vote insincerely (weak variant of strategy-proofness).

• More generally, for any preference language and ballot language, we

can define a notion of sincerity and study incentives to be sincere.

W. Vickrey. Counterspeculation, Auctions, and Competitive Sealed Tenders. Jour-

nal of Finance 16(1):8–37, 1961.

U. Endriss. Vote Manipulation in the Presence of Multiple Sincere Ballots. Proc.

TARK-2007.

U. Endriss, M.-S. Pini, F. Rossi, and K.B. Venable. Preference Aggregation over

Restricted Ballot Languages: Sincerity and Strategy-Proofness. Proc. IJCAI-2009.
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Domain Restrictions

• Note that we have made an implicit universal domain assumption:

any linear order may come up as a preference or ballot.

• If we restrict the domain (possible ballot profiles + possible

preferences), more procedures will satisfy more axioms . . .
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Single-Peaked Preferences

An electorate N has single-peaked preferences if there exists a

“left-to-right” ordering ≫ on the alternatives such that any voter

prefers x to y if x is between y and her top alternative wrt. ≫.

The same definition can be applied to profiles of ballots.

Remarks:

• Quite natural: classical spectrum of political parties; decisions

involving agreeing on a number (e.g., legal drinking age); . . .

• But certainly not universally applicable.
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Black’s Median Voter Theorem

For simplicity, assume the number of voters is odd .

For a given left-to-right ordering ≫, the median-voter rule asks each

voter for their top alternative and elects the alternative proposed by

the voter corresponding to the median wrt. ≫.

Theorem 2 (Black’s Theorem, 1948) If an odd number of voters

submit single-peaked ballots, then there exists a Condorcet winner and

it will get elected by the median-voter rule.

D. Black. On the Rationale of Group Decision-Making. The Journal of Political

Economy, 56(1):23–34, 1948.
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Proof Sketch

The candidate elected by the median-voter rule is a Condorcet winner:

Proof: Let x be the winner and compare x to some y to, say,

the left of x. As x is the median, for more than half of the

voters x is between y and their favourite, so they prefer x. X

Note that this also implies that a Condorcet winner exists.

As the Condorcet winner is (always) unique, it follows that, also, every

Condorcet winner is a median-voter rule election winner. X
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Strategy-Proofness

The following result is a corollary of Black’s Theorem:

Theorem 3 (Strategy-proofness) If an odd number of voters have

preferences that are single-peaked wrt. a fixed left-to-right ordering ≫,

then the median-voter rule (wrt. ≫) is strategy-proof.

Direct proof: W.l.o.g., suppose our manipulator’s top alternative is to

the right of the median (the winner). She has two options:

• Nominate some other alternative to the right of the current winner

(or the winner itself). Then the median/winner does not change.

• Nominate an alternative to the left of the current winner. Then

the new winner will be to the left of the old winner, which—by the

single-peakedness assumption—is worse for our manipulator.

Thus, misrepresenting preferences has either no effect or results in a

worse outcome. X
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More on Domain Restrictions

This is a big topic in SCT. We have only scratched the surface here.

• It suffices to enforce single-peakedness for triples of alternatives.

• Moulin (1980) gives a characterisation of the class of voting rules

that are strategy-proof for single-peaked domains: median-voter

rule + addition of “phantom peaks”

• Sen’s triplewise value restriction is more powerful and also

guarantees Condorcet winners and strategy-proofness: for any

triple of alternatives (x, y, z), there exist a x⋆ ∈ {x, y, z} and a

value in v⋆ ∈ {“best”,“middle”,“worst”} such that x⋆ never has

value v⋆ wrt. (x, y, z) for any voter.

H. Moulin. On Strategy-Proofness and Single Peakedness. Public Choice,

35(4):437–455, 1980.

A.K. Sen. A Possibility Theorem on Majority Decisions. Econometrica, 34(2):491–

499, 1966.
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Complexity as a Barrier against Manipulation

The Gibbard-Satterthwaite Theorem shows that (in the standard

model) strategic manipulation can never be rule out.

Idea: So it’s always possible to manipulate; but maybe it’s also

difficult? Tools from complexity theory can make this idea precise.

• If manipulation is computationally intractable for F , then F might

be considered resistant (albeit still not immune) to manipulation.

• Even if standard procedures turn out to be easy to manipulate, it

might still be possible to design new ones that are resistant.

• This approach is most interesting for voting rules for which the

problem of computing election winners is tractable. At least, we

want to see a complexity gap between manipulation (undesired

behaviour) and winner determination (desired functionality).
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Recap: Complexity Theory

• Given a class of problems parametrised by their “size”, how hard it

is to solve a problem of size n?

• Distinguish: time/space worst-case/average-case complexity

• Problems solvable in polynomial time (P) are considered tractable,

those requiring exponential time (EXPTIME) not.

• Take a problem that requires searching through a tree. If you are

lucky and go down the right branch at every node, you may need

only polynomial time, otherwise exponential time.

A nondeterministic algorithm is a (hypothetical) algorithm with an

“oracle” that tells us which branch to explore next.

• NP is the class of decision problems that can be solved by such

nondeterministic algorithms in polynomial time.
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Recap: Complexity Theory (continued)

• Equivalent definition: NP is the class of problems for which a

candidate solution can be verified in polynomial time.

• A decision problem is NP-hard iff it is at least as hard as any of

the problems in NP.

• A decision problem is NP-complete iff it is NP-hard and in NP.

• We do not know whether P=NP, but strongly suspect P 6=NP.

• NP-complete problems are generally considered intractable. Unless

P=NP, there can be no general algorithm solving NP-complete

problems efficiently.

• As a rule of thumb, NP-completeness means that a näıve

approach won’t work, but a sophisticated algorithm may well give

good results in practice.

Ulle Endriss 19

Strategic Manipulation COMSOC 2011

Classical Results

The seminal paper by Bartholdi, Tovey and Trick (1989) starts by

showing that manipulation is in fact easy for a range of commonly

used voting rules, and then presents one system (a variant of the

Copeland rule) for which manipulation is NP-complete. Next:

• We first present a couple of these easiness results, namely for

plurality and for the Borda rule.

• We then present a result from a follow-up paper by Bartholdi and

Orlin (1991): the manipulation of STV is NP-complete.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty of

Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare, 8(4):341–354, 1991.
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Manipulability as a Decision Problem

We can cast the problem of manipulability, for a particular voting

rule F , as a decision problem:

Manipulability(F )

Instance: Set of ballots for all but one voter; alternative x.

Question: Is there a ballot for the final voter such that x wins?

In practice, a manipulator would have to solve Manipulability(F )

for all alternatives, in order of her preference.

If the Manipulability(F ) is computationally intractable, then

manipulability may be considered less of a worry for procedure F .

Remark: We assume that the manipulator knows all the other ballots.

This unrealistic assumption is intentional: if manipulation is

intractable even under such favourable conditions, then all the better.
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Manipulating the Plurality Rule

Recall plurality: the alternative(s) ranked first most often win(s)

The plurality rule is easy to manipulate (trivial):

• Simply vote for x, the alternative to be made winner by means of

manipulation. If manipulation is possible at all, this will work.

Otherwise not.

That is, we have Manipulability(plurality) ∈ P.

General: Manipulability(F ) ∈ P for any rule F with polynomial

winner determination problem and polynomial number of ballots.
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Manipulating the Borda Rule

Recall Borda: submit a ranking (super-polynomially many choices!)

and give m−1 points to 1st ranked, m−2 points to 2nd ranked, etc.

The Borda rule is also easy to manipulate. Use a greedy algorithm:

• Place x (the alternative to be made winner through manipulation)

at the top of your ballot.

• Then inductively proceed as follows: Check if any of the remaining

alternatives can be put next on the ballot without preventing x

from winning. If yes, do so. (If no, manipulation is impossible.)

After convincing ourselves that this algorithm is indeed correct, we

also get Manipulability(Borda) ∈ P.

J.J. Bartholdi III, C.A. Tovey, and M.A. Trick. The Computational Difficulty of

Manipulating an Election. Soc. Choice and Welfare, 6(3):227–241, 1989.
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Intractability of Manipulating STV

Single Transferable Vote (STV): eliminate plurality losers until an

alternative is ranked first by > 50% of the voters

Theorem 4 (Bartholdi and Orlin, 1991) Manipulability(STV )

is NP-complete.

Proof: Omitted.

J.J. Bartholdi III and J.B. Orlin. Single Transferable Vote Resists Strategic Voting.

Social Choice and Welfare, 8(4):341–354, 1991.
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Coalitional Manipulation

It will rarely be the case that a single voter can make a difference. So

we should look into manipulation by a coalition of voters.

Variants of the problem:

• Ballots may be weighted or unweighted .

Examples: countries in the EU; shareholders of a company

• Manipulation may be constructive (making alternative x a unique

or tied winner) or destructive (ensuring x does not win).
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Decision Problems

On the following slides, we will consider two decision problems, for a

given voting rule F :

Constructive Manipulation(F )

Instance: Set of weighted ballots; set of weighted manipulators; x ∈ X .

Question: Are there ballots for the manipulators such that x wins?

Destructive Manipulation(F )

Instance: Set of weighted ballots; set of weighted manipulators; x ∈ X .

Question: Are there ballots for the manipulators such that x loses?
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Constructive Manipulation under Borda

In the context of coalitional manipulation with weighted voters, we can

get hardness results for elections with small numbers of alternatives:

Theorem 5 (Conitzer et al., 2007) Under the Borda rule, the

constructive coalitional manipulation problem with weighted voters is

NP-complete for > 3 alternatives.

Proof: We have to prove NP-membership and NP-hardness:

• NP-membership: easy (if you guess ballots for the manipulators,

we can check that it works in polynomial time)

• NP-hardness: for three alternatives by reduction from Partition

(next slide); hardness for more alternatives follows

V. Conitzer, T. Sandholm, and J. Lang. When are Elections with Few Candidates

Hard to Manipulate? Journal of the ACM, 54(3), Article 14, 2007.
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Proof of NP-hardness

We will use a reduction from the NP-complete Partition problem:

Partition

Instance: (w1, . . . , wn) ∈ N
n

Question: Is there a set I ⊆ {1, . . . , n} s.t.
∑

i∈I
wi =

1

2

∑
n

i=1
wi?

Let K :=
∑

n

i=1
wi. Given an instance of Partition, we construct an

election with n+ 2 weighted voters and three alternatives:

• two voters with weight 1

2
K − 1

4
, voting (x ≻ y ≻ z) and (y ≻ x ≻ z)

• a coalition of n voters with weights w1, . . . , wn who want z to win

Clearly, each manipulator should vote either (z ≻ x ≻ y) or (z ≻ y ≻ x).

Suppose there does exist a partition. Then they can vote like this:

• manipulators corresponding to elements in I vote (z ≻ x ≻ y)

• manipulators corresponding to elements outside I vote (z ≻ y ≻ x)

Scores: 2K for z; 1

2
K + ( 1

2
K − 1

4
) · (2 + 1) = 2K − 3

4
for both x and y

If there is no partition, then either x or y will get at least 1 point more.

Hence, manipulation is feasible iff there exists a partition. X
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Destructive Manipulation under Borda

Theorem 6 (Conitzer et al., 2007) Under the Borda rule, the

destructive coalitional manip. problem with weighted voters is in P.

Proof sketch: Let x be the alternative the manipulators want to lose.

The following algorithm will find a manipulation, if one exists:

For each alternative y 6= x, try letting all manipulators rank y

first, x last, and the other alternatives in any fixed order.

If x loses in one of these m−1 elections, then manipulation is

possible; otherwise it is not.

Correctness of the algorithm follows from the fact that (a) the best we

can do about x is not to give x any points and, (b) if any other

alternative y has a chance of beating x, she will do so if we give y a

maximal number of points. X

V. Conitzer, T. Sandholm, and J. Lang. When are Elections with Few Candidates

Hard to Manipulate? Journal of the ACM, 54(3), Article 14, 2007.
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Worst-Case vs. Average-Case Complexity

NP-hardness is only a worst-case notion. Do NP-hardness barriers

provide sufficient protection against manipulation?

What about the average complexity of strategic manipulation?

Some recent work suggests that it might be impossible to find a voting

procedure that is usually hard to manipulation, for a suitable definition

of “usual”. See Faliszewski and Procaccia (2010) for a discussion.

P. Faliszewski and A.D. Procaccia. AI’s War on Manipulation: Are We Winning?

AI Magazine, 31(4):53–64, 2010.

Ulle Endriss 30

Strategic Manipulation COMSOC 2011

Controlling Elections

Strategic manipulation is not the only undesirable form of behaviour in

voting we may want to contain by means of complexity barriers . . .

People have studied the computational complexity of a range of

different types of control in elections:

• Adding or removing candidates.

• Adding or removing voters.

• Redefining districts (if your party is likely to win district A with an

80% majority and lose district B by a small margin, you might win

both districts if you carefully redraw the district borders . . . ).

See Faliszewski et al. (2009) for an introduction to this area.

P. Faliszewski, E. Hemaspaandra, L.A. Hemaspaandra, and J. Rothe. A Richer

Understanding of the Complexity of Election Systems. In Fundamental Problems

in Computing, Springer-Verlag, 2009.
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Bribery in Elections

Bribery is the problem of finding 6 K voters such that a suitable

change of their ballots will make a given candidate x win.

• Connection to manipulation: in the (coalitional) manipulation

problem the names of the voters changing ballot are part of the

input, while for the bribery problem we need to choose them.

• Several variants of the bribery problem have been studied: when

each voter has a possibly different “price”; when bribes depend on

the extent of the change in the bribed voter’s ballot; etc.

People have studied the complexity of several variants of the bribery

problem for various voting rules (e.g., Faliszewski et al., 2009).

P. Faliszewski, E. Hemaspaandra, and L.A. Hemaspaandra. How Hard is Bribery

in Elections? Journal of Artificial Intelligence Research, 35:485–532, 2009.
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Summary

We have seen that strategic manipulation is a major problem in voting:

• Gibbard-Satterthwaite: only dictatorships are strategy-proof

amongst the resolute and surjective voting rules

But we have also seen that there are several approaches that may help

us to circumvent this problem:

• Domain restrictions: if we can find a natural and large class of

preference profiles (+ ballot restrictions) that make strategic

manipulation impossible, then that will sometimes suffice.

• Complexity barriers: maybe strategic manipulation will turn out to

be sufficiently hard computationally to provide protection.

A related question, which we have not addressed, deals with the

frequency of manipulability , using either empirical methods or devising

formal models regarding the distribution of voter preferences.
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What next?

We have briefly mentioned today that it is not clear how a voter would

manipulate in the context of an irresolute voting rule, because we have

not said what it means to prefer one set of alternatives over another.

Next week we will address this question in its own right:

• Given someone’s preferences over X , what can we say about her

preferences over 2X \{∅}?
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