Analysis of One-to-One Matching Mechanisms via SAT Solving: Impossibilities for Universal Axioms

Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam

Talk Outline

I will try to demonstrate how the AI technique of *SAT solving* can be used for the *axiomatic analysis* of *matching mechanisms*.

- Model: one-to-one matching
- Preservation Theorem for axioms expressed in a formal language
- Approach to proving impossibility theorems via SAT solving
- Application: two impossibility theorems for matching

This talk is based on the following paper:

U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Impossibilities for Universal Axioms. AAAI-2020.

The Model: One-to-One Matching

Two groups of *agents*: $L_n = \{\ell_1, \ldots, \ell_n\}$ and $R_n = \{r_1, \ldots, r_n\}$. Each agent *ranks* all the agents on the opposite side of the market. Need *mechanism* to return one-to-one *matching* given such a *profile*. <u>Examples</u>: job markets, marriage markets, ...

Would like a mechanism with good normative properties (axioms):

- Stability: no ℓ_i and r_j prefer one another over assigned partners
- *Strategyproofness:* best strategy is to truthfully report preferences
- Fairness: (for example) no advantage for one side of the market

Gale-Shapley (1962): stable (\checkmark); strategyproof for left side (\checkmark) but not right side (\checkmark) of the market; unfair advantage for left side (\checkmark).

D. Gale and L.S. Shapley. College Admissions and the Stability of Marriage. *American Mathematical Monthly*, 69:9–15, 1962.

Formal Language for Axioms

Would like to have formal language with clear semantics (i.e., a logic) to express axioms, to be able to get results for entire families of axioms. First-order logic with *sorts*, one for *profiles* and one for agent *indices*, with these basic ingredients:

- $p \triangleright (i, j)$ in profile p, agents ℓ_i and r_j will get matched
- $j \succ_{p,i}^{L} j'$ in profile p, agent ℓ_i prefers r_j to $r_{j'}$ (also for R)
- $top_{p,i}^{L} = j$ in profile p, agent ℓ_i most prefers r_j (also for R)
- $p \sim_i^{L} p'$ profiles p and p' are ℓ_i -variants (also for R)
- $p \rightleftharpoons p'$ swapping sides in profile p yields profile p'
- $\forall_{\rm P}\,/\,\exists_{\rm P}$ and $\forall_{\rm N}\,/\,\exists_{\rm N}\,$ quantifiers for variables of two sorts

Recall that axioms describe properties of mechanisms. So *truth* of a sentence φ in our logic is defined relative to a mechanism μ .

Example

 $\forall_{\mathbf{P}} p. \forall_{\mathbf{P}} p'. \forall_{\mathbf{N}} i. \forall_{\mathbf{N}} j. \forall_{\mathbf{N}} j' . \left[(j \succ_{p,i}^{\mathbf{L}} j' \land p \sim_{i}^{\mathbf{L}} p') \rightarrow \neg (p \triangleright (i,j') \land p' \triangleright (i,j)) \right]$

Another Example

 $\forall_{\mathbf{P}} p. \forall_{\mathbf{N}} i. \forall_{\mathbf{N}} j. \left[\left(top_{p,i}^{\mathbf{L}} = j \land top_{p,j}^{\mathbf{R}} = i \right) \rightarrow \left(p \triangleright (i,j) \right) \right]$

The Preservation Theorem

Call a mechanism *top-stable* if it always matches all mutual favourites. Call an axiom *universal* if it can be written in the form $\forall \vec{x}. \varphi(\vec{x})$.

Similar to (one direction of) the Łoś-Tarski Theorem in model theory (about preservation of first-order \forall_1 -formulas in substructures):

Theorem 1 Let μ^+ be a top-stable mechanism of dimension n that satisfies a given set Φ of universal axioms. If n > 1, then there also exists a top-stable mechanism μ of dimension n - 1 that satisfies Φ .

<u>Proof idea:</u> Construct larger profile in which extra agents most prefer each other and are least liked by everybody else.

<u>Corollary</u>: Enough to prove impossibility theorems for smallest n!

Proof Detail

Given an (n-1)-dimensional profile, construct an *n*-dimensional one, in which top-stability forces the extra agents ℓ_n and r_n to be matched:

Counterexample

Preservation Theorem might look trivial. *Doesn't this always hold?* <u>No:</u> some axioms we can satisfy for large but not for small domains. Suppose we want to design a mechanism under which at least one

agent in each group gets assigned to their most preferred partner:

$$\forall_{\mathbf{P}} p. \exists_{\mathbf{N}} i. \forall_{\mathbf{N}} j. [(top_{p,i}^{\mathbf{L}} = j) \rightarrow (p \triangleright (i,j))] \land$$

$$\forall_{\mathbf{P}} p. \exists_{\mathbf{N}} j. \forall_{\mathbf{N}} i. [(top_{p,j}^{\mathbf{R}} = i) \rightarrow (p \triangleright (i,j))]$$

This is *not* universal! Mechanism exists for n = 3 but not for n = 2.

Proving Impossibility Theorems

Suppose we want to prove an impossibility theorem of this form:

"for $n \ge k$, no matching mechanism satisfies all the axioms in Φ "

Our Preservation Theorem permits us to proceed as follows:

- Check all axioms in Φ indeed are universal axioms.
- Check Φ includes (or implies) top-stability.
- Express all axioms for special case of n = k in *propositional CNF*.
- Using a *SAT solver*, confirm that this CNF is unsatisfiable.
- Using an *MUS extractor*, find a short proof of unsatisfiability.

For example, *stability* for n = 3 can be expressed in CNF like this:

$$\bigwedge_{p \in R_3!^3 \times L_3!^3} \bigwedge_{i \in \{1,2,3\}} \bigwedge_{j \in \{1,2,3\}} \bigwedge_{\substack{i' \text{ s.t. } p \text{ has } \\ \ell_i \succ_{r_j} \ell_{i'}}} \bigwedge_{\substack{j' \text{ s.t. } p \text{ has } \\ r_j \succ_{\ell_i} r_{j'} \neq_{\ell_i} r_{j'}}} (\neg x_{p \triangleright (i,j')} \lor \neg x_{p \triangleright (i',j)})$$

<u>Remark:</u> This is a conjunction of 419,904 clauses (big, yet manageable).

Application: A Variant of Roth's Theorem

Recall this classic result:

Theorem 2 (Roth, 1982) For $n \ge 2$, no matching mechanism for incomplete preferences is both stable and two-way strategyproof.

<u>Remark</u>: In our model (with complete preferences) true only for $n \ge 3$. We can use our approach to prove this stronger variant:

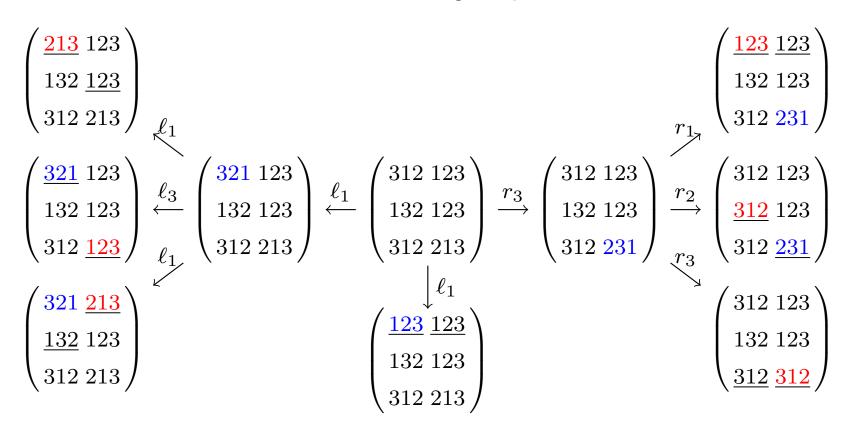
Theorem 3 For $n \ge 3$, no matching mechanism is both top-stable and two-way strategyproof (even in our model).

By the Preservation Theorem, we are done if the claim holds for n = 3. SAT solver says it does, and MUS provides human-readable proof (\hookrightarrow).

A.E. Roth. The Economics of Matching: Stability and Incentives. *Mathematics of Operations Research*, 7:617–628, 1982.

Proof of Base Case

Found MUS of 23 clauses, referencing 10 profiles. Proof visualisation:



Top-stability forces underlined matches. Colours indicate manipulation opportunities to be ruled out by SP. No matching left for centre profile.

Application: Stability vs. Gender-Indifference

Call a mechanism *gender-indifferent* if swapping the two sides of the market ("genders") yields the corresponding swap in the outcome:

$$\forall_{\mathsf{P}} p. \forall_{\mathsf{P}} p'. \forall_{\mathsf{N}} i. \forall_{\mathsf{N}} j. [(p \rightleftharpoons p') \rightarrow (p \triangleright (i, j) \rightarrow p' \triangleright (j, i))]$$

Bad news:

Theorem 4 For $n \ge 3$, there exists no matching mechanism that is both stable and gender-indifferent.

Here the MUS extractor finds a particularly simple proof: it identifies a "swap-symmetric" profile for which there exists no admissible outcome (two matchings are ruled out by G-I and the other four by stability).

F. Masarani and S.S. Gokturk. On the Existence of Fair Matching Algorithms. *Theory and Decision*, 26(3):305–322, 1989.

Last Slide

By the *Preservation Theorem*, for top-stable mechanisms and universal axioms, proving impossibilities can be automated. Specific results:

- Impossible to get *top-stability* and *two-way strategyproofness*.
- Impossible to get *stability* and *gender-indifference*.

[tinyurl.com/satmatching]