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The Model

A, a finite set of m alternatives.

N = {1, . . . , n}, a finite set of agents.

The preference relation reported by agent i is a complete and
transitive relation on A, and is denoted ≿i .

The set of all possible preference relations is denoted R(A).

A preference profile is a tuple, R = (≿1, . . . ,≿n), that specifies a
preference relation for each agent i ∈ N.

The set of all preference profiles is then R(A)n
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Social Decision Schemes

A social decision scheme (SDS) maps preference profiles to lotteries.

Why? Fairness, e.g., in light of the GS-theorem.

The model continued:

A lottery over A is simply a probability distribution on A, i.e.,
p : A → [0, 1], where

∑
a∈A p(a) = 1.

The collection of all lotteries over A is denoted
∆(A) = {p ∈ RA

≥0 |
∑

a∈A p(a) = 1}.

An SDS is defined as a function

F : R(A)n → ∆(A)
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Axioms: Anonymity and Neutrality

The same as before (kind of):

F is anonymous if F (≿1, . . . ,≿n) = F (≿σ(1), . . . ,≿σ(n)) for any
profile (≿1, . . . ,≿n) and permutation σ : N → N.

F is neutral if F (R)(a) = F (π(R))(π(a)) for any profile R, alternative
a ∈ A and permutation π : A → A.

But what about efficiency and strategyproofness?
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Utility Representations

We need a way to reason about the preferences that agents have over
lotteries.

For each preference profile R and agent i , we have a utility function
uRi : A → R.

A utility function for an agent and profile must be consistent with the
ordinal preferences of that agent: for a, b ∈ A,

uRi (a) ≥ uRi (b) iff a ≿i b

.

A utility representation associates with each profile R a tuple
(uR1 , . . . , u

R
n )

The expected utility for agent i with utility function ui of a lottery p
is then ui (p) =

∑
a∈A p(a)ui (a), and

agent i prefers p to q if ui (p) ≥ ui (q).
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Axioms: Efficiency and Strategyproofness

Efficiency

Given a utility representation u and a profile R, a lottery p
u-dominates a lottery q if

(i) uRi (p) ≥ uRi (p) for all i ∈ N, and
(ii) uRi (p) > uRi (p) for some i ∈ N.

Attempt 1: an SDS F is u-efficient if it never returns u-dominated
lotteries.

Strategyproofness

Given a utility representation u, an SDS F can be u-manipulated at R
by agent i reporting ≿′

i if u
R
i (F (≿

′
i ,R−i ))>uRi (F (R)).

Attempt 1: an SDS F is strategyproof if there is no profile R, agent i
and preference relation ≿′

i , such that it can be u-manipulated at R by
agent i reporting ≿′

i .
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Axioms: Efficiency and Strategyproofness continued

Problem! How do we decide on a specific utility function for each agent?
We can’t!

Solution: quantify over all consistent utility function =⇒ weaker notions.

Definition (Efficiency)

An SDS is efficient if it never returns a lottery that is u-dominated for all
utility representations u.

Definition (Strategyproofness)

An SDS is manipulable if there is a profile R, agent i and a preference
relation ≿′

i such that it is u-manipulable at R by agent i reporting ≿′
i for

all utility representations u.

An SDS is strategyproof if it is not manipulable.

Why are these notions weaker?
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The Result

Theorem (3.1)

If m ≥ 4 and n ≥ 4, then there is no anonymous and neutral SDS that
satisfies efficiency and strategyproofness.

A new result!

Generalises other outcomes that concern:

Restricted class of SDSs.

Stronger notions of efficiency and strategyproofness (i.e., weaker
statement).

Some related results for assignments are implied.
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Proving It

Lemma (“Base Case”)

If m = 4 and n = 4, then there is no anonymous and neutral SDS that
satisfies efficiency and strategyproofness.

Computer aided proof using an SMT solver.

Lemma (Reduction/Preservation)

If there is an anonymous and neutral SDS F satisfying efficiency and
neutrality for m alternatives and n agents, then for all m′ ≤ m and n′ ≤ n,
there is an SDS F ′ defined for m′ alternatives and n′ agents that satisfies
these four properties.
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Satisfaction Modulo Theories

Satisfaction modulo theories is the problem of determining whether a
mathematical formula is satisfiable given a theory in which it is interpreted.

The language is (usually quantifier-free) first order logic, augmented with
a number of predicates (=, ≥) and functions (+, −), where variables need
not be binary. So SMT generalizes SAT.

As the outcomes of SDSs are lotteries, we are concerned with the theory
of (quantifier-free) linear real arithmetic.
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Encoding the problem in SMT

Four kinds of SMT constraints:

lottery definitions,

the orbit condition (deals with a part of neutrality)

strategyproofness

efficiency

Other constraints, e.g., anonymity, are encoded in the representation of
preference profiles.
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Variables and the Lottery Constraints

Given a number of agents n and a set of alternatives A, we encode an SDS
F : R(A)n → ∆(A) with real-valued variables pR,a, where pR,a represents
the probability with which a is selected in profile R (F (R)(a) = pR,a).

Lottery constraints ∑
a∈A

pR,a = 1 for all R ∈ R(A)n

pR,a ≥ 0 for all R ∈ R(A)n and a ∈ A
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Neutrality and Anonymity: Canonical Representations

We consider only the canonical representation Rc ∈ R(A)n for every
R ∈ R(A)n.

Central idea: Rc and R ′
c are equal iff one can be obtained from the other

by renaming the agents and alternatives. I.e., iff F (Rc) and F (R ′
c) are

equal (modulo renaming alternatives) for any neutral and anonymous SDS
F .

Advantages: simple encoding (no permutations) and computationally lean!
But how?

Anonymity: identify each R with a function r : R(A) → N that tells us
how often each preference relation is submitted in R.

r(≿) = |{i ∈ N |≿i=≿}|
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Canonical Representations continued

Neutrality:

(1) Given r , compute all (!) ‘anonymous’ preference profiles π(r) that
can be achieved via a permutation π : A → A.

(2) Choose the lexicographically minimal profile πlexmin(r) (using some
ordering on R(A).

(3) Choose the smallest profile R ′ (in the ordering on R(A)) that agrees
with πlexmin(r).

This is sufficient for the result, but does not fully capture neutrality. We
need the orbit condition.
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The Orbit Condition

Two alternatives a, b ∈ A are said to be equivalent if π(a) = b for some
permutation π : A → A that maps the anonymous preference relation
associated with R to itself.

The orbit of profile R is then class of all equivalent alternatives.

The orbit condition requires that any anonymous and neutral SDS has to
assign equal probabilities to all equivalent alternatives:

Orbit constraint

For each canonical profile Rc , orbit O of Rc , and two alternatives a, b ∈ O:

pR,a = pR,b.

Philemon Huising 15 / 23
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Stochastic Dominance

Informally, lottery p stochastically dominates lottery q for agent i (denoted
p≿SD

i q) if for any alternative a ∈ A, p is at least as likely as q to yield an
alternative at least as good as a.

Formally:

p ≿SD
i q ⇐⇒

∑
b≿ia

p(b) ≥
∑
b≿ia

q(b) for all a ∈ A.

Lemma (4.3)

Let ≿i∈ R(A). A lottery p SD-dominates another lottery q for agent i iff
ui (p) ≥ ui (q) for every utility function ui compatible with ≿i .

Stochastic dominance allows us to avoid quantifying over utility functions!
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Stochastic Dominance, Efficiency, and Strategyproofness

Corollary (4.3.1 - Efficiency)

An SDS F is efficient iff, for all R ∈ R(A)n, there is no lottery p such
that:

(i) p ≿SD
i F (R) for all i ∈ N, and

(ii) p ≻SD
i F (R) for some i ∈ N.

Corollary (4.3.2 - Strategyproofness)

An SDS F is manipulable iff there exist a profile R, agent i , and a
preference relation ≿′

i such that F (≿′
i ,R−i ) ≻SD

i F (R).
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Corollary (4.3.2 - Strategyproofness)

An SDS F is manipulable iff there exist a profile R, agent i , and a
preference relation ≿′

i such that F (≿′
i ,R−i ) ≻SD

i F (R).
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Encoding Strategyproofness

For each (canonical) profile R, agent i and preference relation ≿′
i , we

encode that the manipulated outcome F (≿′
i ,R−i ) is not SD-preferred by

the the truthful outcome F (R):
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Encoding Efficiency

Problem: we also have to quantify over the set of all lotteries ∆(A).

Solution: two lemmas from Aziz et al. (2015).

Lemma (4.4)

Let R ∈ R(A)n. A lottery p ∈ ∆(A) is efficient iff every lottery p′ ∈ ∆(A)
with supp(p′) ⊆ supp(p) is efficient.

Lemma (4.5)

Whether a lottery p ∈ ∆(A) is efficient for a given profile R can be
computed in polynomial time by solving a linear program.
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Encoding Efficiency continued

Lemma 4.4 tells us that the efficiency of a lottery depends only on its
support, thus we can speak of efficient and inefficient support.

Via lemma 4.3, an SDS is efficient iff it never returns a lottery with
insufficient support.

Consequently, an SDS is efficient iff for any (canonical) profile R and any
inefficient support IR ⊆ A for R, the lottery assigned to R must assign a
probability of 0 to at least one alternative in the inefficient support.

Efficiency Constraint

For each (canonical) profile R ∈ R(A)n and each inefficient support
IR ⊆ A: ∨

a∈IR

pR,a = 0.
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Verification of Correctness

Drawbacks of the SMT-based proof:

(i) one must trust the SMT solver,

(ii) one must trust the correctness of the program that performs the
encoding, and

(iii) the proof is virtually impossible to be checked by humans.

Solutions:

(i) Generate a MUS and use other solvers to verify that it is indeed
unsatisfiable.

(ii) Run solvers on different variants of the encoding to reproduce known
results.

(iii) Translate MUS into an independent proof in HOL using a generic
interactive theorem prover (not automated!).
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Concluding Remarks and...

Questions?
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