Distribution Rules Under Dichotomous Preferences By Brandl, Brandt, Peters, Stricker

October 18, 2021 Marie Christin Schmidtlein

Advanced Topics in Computational Social Choice

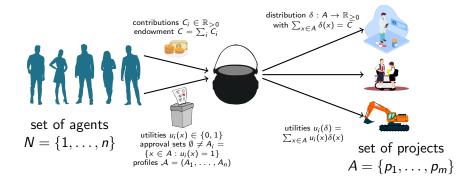
Marie Christin Schmidtlein

Distribution Rules, Brandl et. al.

Abstract

- Framework for distribution of divisible resource
- Axiomatic analysis of 4 distribution rules, one is newly introduced
- Impossibility result: No strategyproof, efficient rule can guarantee that at least one approved project per agent receives positive amount of resource

The framework



A distribution rule f assigns to every profile A a distribution f(A).

The impossibility result

No distribution rule satisfies efficiency, strategyproofness, and positive share when $m \ge 4$ and $n \ge 6$.

Efficiency: A distribution dominates another one if one agent has a strictly higher utility and no agent has a strictly lower utility w.r.t. that distribution. Distribution rule f is efficient if none of its outputs f(A) is dominated by some distribution.

Strategyproofness: No agent can receive a strictly higher utility by lying, i. e. $\forall i, A, A'_i : u_i(f(A)) \ge u_i(f(A_{-i}, A'_i))$.

Positive share: No agent is ignored by the rule, i. e. at least one project that they approve of receives funds, $\forall i : u_i(\delta) > 0$.

How to encode the problem?

```
Linear Programming? 🗴
```

Instead, use *SAT solving* by introducing binary variables $p_{\mathcal{A},M}$ which evaluate to true iff $M \in \mathcal{P}(\mathcal{A}) \setminus \{\emptyset\}$ is the support of the distribution $f(\mathcal{A})$

Can we express the axioms in terms of the support? Positive share \checkmark Efficiency \checkmark (needs a bit of work) Strategyproofness X

Pessimistic strategyproofness \checkmark : An agent does not have an incentive to lie in order to obtain optimal utility *C*, i.e.

$$\forall i, \mathcal{A}, \mathcal{A}'_i : u_i(f(\mathcal{A}_{-i}, \mathcal{A}'_i)) = C \rightarrow u_i(f(\mathcal{A})) = C$$

How to reduce the size?

Is this feasible? **X** For m = 4, n = 6, there are $15^6 \approx 11$ Million profiles and 15 different supports, yielding approximately 170 Million variables $p_{A,M}$

Using anonymity and neutrality, we can reduce this down to only 33.000 variables. Easy!

Idea: Drop neutrality and anonymity one by one, i.e.

- SAT-solve CNF expressing anonymity + efficiency (E) + pessimistic strategyproofness (PSP) + positive share (PS) (\approx 77.000 variables)
- Extract MUS (only referencing 81 profiles)
- SAT-solve CNF expressing E + PSP + PS only using variables corresponding to the 81 profiles and the ones obtained from them by permuting the n = 6 agents (=870.000 variables)
- Extract MUS

The main takeaways

- Linear Programming can be an alternative to SAT-solving when working with non-discrete values
- Discretization might require to weaken axioms, but we obtain an even stronger result
- Reduction of problem by first obtaining impossibility when assuming some property which reduces number of distinct profiles, and then extending the impossibility when dropping the additional axiom