
Advanced Topics in COMSOC 2021 Lecture 2

Advanced Topics in Computational Social Choice

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Advanced Topics in COMSOC 2021 Lecture 2

Plan for Today

Recall how we reduced the base case of the Gibbard-Satterthwaite

Theorem to a query to a SAT solver, which confirmed unsatisfiability.

Today we will (try to) address two remaining shortcomings:

• generalisation beyond n,m = 2, 3 via an inductive argument

• understanding the proof of the base case by inspecting an MUS

Ulle Endriss 2

Advanced Topics in COMSOC 2021 Lecture 2

Completing the Proof of the G-S Theorem

We now have a proof of the Gibbard-Satterthwaite Theorem for the

special case of n = 2 voters and m = 3 alternatives. Next we show:

• impossible for n>2 and m=3 ⇒ impossible for n+1 and m=3

• impossible for n>2 and m=3 ⇒ impossible for n and any m>3

Observe how this entails an impossibility result for all n > 2 and m > 3.

Next: Proofs of (the contrapositives of) the above two lemmas.

Remark: Recall that we had seen during the regular COMSOC course

that any resolute voting rule that is surjective and strategyproof must

also be Paretian. We will use this fact for the proofs of both lemmas.

Ulle Endriss 3

Advanced Topics in COMSOC 2021 Lecture 2

First Lemma
Lemma 1 If there exists a resolute voting rule for n+ 1 > 2 voters and

three alternatives that is surjective, strategyproof, and nondictatorial, then

there also exists such a rule for n voters and three alternatives.

Proof: Let A = {a, b, c} and N = {1, . . . , n}. Now take any resolute rule

F : L(A)n+1 → A that is surjective, SP, and nondictatorial.

For every i ∈ N , define Fi : L(A)n → A via Fi(R) = F (R, Ri). And check:

• All Fi are surjective: Immediate from F being Paretian. X

• All Fi are SP: First, no j 6= i can manipulate, given that F is SP.

Now suppose voter i can manipulate in R using R′i. Thus, i prefers

F (R−i, R
′
i, R
′
i) to F (R−i, Ri, Ri). But then i also must prefer

F (R−i, R
′
i, R
′
i) to F (R−i, R

′
i, Ri) or F (R−i, R

′
i, Ri) to F (R−i, Ri, Ri).

So F is manipulable in both cases (contradiction!) X

• At least one Fi is nondictatorial : Assume all Fi are dictatorial. If all Fi

have same dictator, F is dictatorial (contradiction!). Otherwise, must

have dict(Fi) = i, meaning F elects top(Rn+1) whenever someone else

submits the same ballot. But then F is manipulable (contradiction!). X

Ulle Endriss 4

Advanced Topics in COMSOC 2021 Lecture 2

Second Lemma

Lemma 2 If there exists a resolute voting rule for n voters and m > 3

alternatives that is surjective, strategyproof, and nondictatorial, then there

also exists such a rule for n voters and three alternatives.

Proof: Let m > 3 and let A = {a, b, c, a4, . . . , am}. Take any resolute rule

F : L(A)n → A that is surjective, SP, and nondictatorial.

For any R ∈ L({a,b,c}), let R+ = R(1)�R(2)�R(3)�a4�· · ·�am.

Now define a rule F a,b,c : L({a,b,c})n → {a,b,c} for three alternatives:

F a,b,c(R1, . . . , Rn) = F (R+
1 , . . . , R

+
n)

F a,b,c is well-defined (really maps to {a,b,c}) and surjective, because F is

Paretian. F a,b,c also is immediately seen to be SP (given that F is).

Done if F a,b,c is nondictatorial. If not, consider all F x,y,z for x, y, z ∈ A.

Done if one of them is nondictatorial. If all are dictatorial, get contradiction:

As SP implies independence, if F a,b,c has dictator i, i is “local dictator” for

{a, b, c} under F . So F has some local dictator for every triple. But these

local dictators cannot be distinct voters, so F in fact must be dictatorial. X

Ulle Endriss 5

Advanced Topics in COMSOC 2021 Lecture 2

Critique of the Approach

Proving such lemmas can be quite difficult, almost as difficult as

proving the theorem itself. This is a valid concern. But:

• A successful proof for a special case with small n and m provides

strong evidence for (though no formal proof of) a general result.

Indeed: The G-S Theorem is surprising. Our lemmas are not at all!

Can use this as a heuristic to decide what to investigate further.

• Sometimes you can prove a general reduction lemma: if the

axioms meet certain conditions, every impossibility generalises

from small to large scenarios (see examples cited below).

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social

Choice Theory: Ranking Sets of Objects. Journal of Artif. Intell. Research, 2011.

U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Im-

possibilities for Universal Axioms. AAAI-2020.

Ulle Endriss 6

Advanced Topics in COMSOC 2021 Lecture 2

Human-Readable Proofs

As discussed, if we carefully proof-read the code used to generate the

CNF and if we reproduce our result on several SAT solvers, then we

should have high confidence in the correctness of our result.

But: We still won’t know why it holds! Need a human-readable proof.

So how can we extract such a proof from the work done by the solver?

Ulle Endriss 7

Advanced Topics in COMSOC 2021 Lecture 2

Tools

We will continue to write code in Python and to access the SAT solver

Lingeling via PyLGL (see first slide set for details).

In addition we will also use the PicoMUS tool, shipped with PicoSAT

(fmv.jku.at/picosat/), which should be compiled with trace support.

On these slides, we shall assume that picosat and picomus have

been installed in a directory called ~/solvers/.

All the code from this and the first slide set is available in lect2.py.

Ulle Endriss 8

Advanced Topics in COMSOC 2021 Lecture 2

External Analysis of the CNF

So far we have called the SAT solver directly from within Python.

While this is very convenient, there also are downsides:

• smaller range of tools we can use (from PyLGL: only Lingeling)

• reduction in performance (not an issue so far, but could be)

Instead we could store the CNF generated in a text file.

This example illustrates the DIMACS format for such files:

p cnf 3 4

-1 -2 3 0

-1 3 0

1 0

-3 -1 0

There is one clause per line (the 0 indicates the end of a clause).

The first two numbers indicate the numbers of variables and clauses.

Exercise: What is the CNF encoded by the above sample file?

Ulle Endriss 9

Advanced Topics in COMSOC 2021 Lecture 2

Storing the CNF

You can use this function to save a given CNF to a text file:

def saveCNF(cnf, filename):

nvars = max([abs(lit) for clause in cnf for lit in clause])

nclauses = len(cnf)

file = open(filename, ’w’)

file.write(’p cnf ’ + str(nvars) + ’ ’ + str(nclauses) + ’\n’)

for clause in cnf:

file.write(’ ’.join([str(lit) for lit in clause]) + ’ 0\n’)

file.close()

Let’s try! The following sequence of commands will generate a text

file called test.dimacs with the contents shown on the previous slide:

>>> mycnf = [[-1,-2,3], [-1,3], [1], [-3,-1]]

>>> saveCNF(mycnf, ’test.dimacs’)

Ulle Endriss 10

Advanced Topics in COMSOC 2021 Lecture 2

Let’s Try!

We now can check the satisfiability of our CNF either directly from

Python (as we used to) or by saving it and then running PicoSAT.

$ python3 -i lect2.py

>>> mycnf = [[-1,-2,3], [-1,3], [1], [-3,-1]]

>>> solve(mycnf)

’UNSAT’

$ python3 -i lect2.py

>>> mycnf = [[-1,-2,3], [-1,3], [1], [-3,-1]]

>>> saveCNF(mycnf, ’test.dimacs’)

>>> exit()

$ ~/solvers/picosat test.dimacs

s UNSATISFIABLE

Ulle Endriss 11

Advanced Topics in COMSOC 2021 Lecture 2

Minimally Unsatisfiable Subsets

Think of a formula in CNF as a (possibly very large!) set of clauses.

To understand why a given set Φ of clauses is unsatisfiable, it can be

helpful to inspect a minimally unsatisfiable subset (MUS) of Φ.

For a given unsatisfiable set Φ, any set Φ? is called an MUS of Φ if:

• Φ? ⊆ Φ,

• Φ? is unsatisfiable, but

• every proper subset of Φ? is satisfiable.

We can use PicoMUS to search for an MUS for an unsatisfiable CNF.

Ulle Endriss 12

Advanced Topics in COMSOC 2021 Lecture 2

Let’s Try!

Recall that test.dimacs contains an unsatisfiable CNF with 4 clauses.

Let’s run PicoMUS on this file and save the result in mymus.dimacs:

$ ~/solvers/picomus test.dimacs mymus.dimacs

s UNSATISFIABLE

c [picomus] computed MUS of size 3 out of 4 (75%)

...

Files test.dimacs (left) and mymus.dimacs (right):

p cnf 3 4

-1 -2 3 0 p cnf 3 3

-1 3 0 -1 3 0

1 0 1 0

-3 -1 0 -3 -1 0

So the first clause was redundant.

Ulle Endriss 13

Advanced Topics in COMSOC 2021 Lecture 2

Back to the Gibbard-Satterthwaite Theorem

Recall that our encoding of the G-S Theorem for n = 2 and m = 3

consists of an unsatisfiable conjunction of 1445 clauses.

Let’s try to compute an MUS:

>>> cnf = (cnfAtLeastOne() + cnfResolute() + cnfSurjective()

... + cnfStrategyProof() + cnfNondictatorial())

>>> saveCNF(cnf, ’gs.dimacs’)

$ ~/solvers/picomus gs.dimacs mymus.dimacs

s UNSATISFIABLE

c [picomus] computed MUS of size 200 out of 1445 (14%)

So we get an MUS of 200 clauses. Much better! (But still very big.)

It might be just about feasible to understand why the smaller set is

unsatisfiable and get a proof that way (but I did not try).

Note: A different tool might find a different (smaller/bigger) MUS.

Ulle Endriss 14

Advanced Topics in COMSOC 2021 Lecture 2

A More Modest Goal

So for the G-S Thm, our approach unfortunately doesn’t work perfectly.

Let’s weaken the theorem a bit to see whether that helps . . .

First try: Add unanimity (elect x if it’s everyone’s top alternative).

def cnfUnanimous():

cnf = []

for x in allAlternatives():

for r in profiles(lambda r : all(top(i,x,r) for i in allVoters())):

cnf.append([posLiteral(r,x)])

return cnf

It is not overly difficult to see that surjectivity and strategyproofness

actually imply unanimity. So adding this axiom does not really weaken

the theorem. But the extra formulas might help the solver!

Ulle Endriss 15

Advanced Topics in COMSOC 2021 Lecture 2

Let’s Try!

So now we are trying to prove the following claim:

For n = 2 voters and m = 3 alternatives, no resolute voting rule is

surjective, unanimous, strategyproof, and nondictatorial.

Let’s see . . .

>>> cnf = (cnfAtLeastOne() + cnfResolute() + cnfSurjective()

... + cnfUnanimous() + cnfStrategyProof() + cnfNondictatorial())

>>> saveCNF(cnf, ’gs+una.dimacs’)

>>> len(cnf)

>>> 1457

So that’s an extra 12 clauses (clear why?) . . .

$ ~/solvers/picomus gs+una.dimacs mymus.dimacs

s UNSATISFIABLE

c [picomus] computed MUS of size 96 out of 1457 (7%)

So we got it down from 200 to 96 clauses. Nice (but still too big).

Note: Omitting surjectivity (implied by unanimity) does not help.

Ulle Endriss 16

Advanced Topics in COMSOC 2021 Lecture 2

Weakening the Theorem

Geist and Peters (2017) came up with the following variant of the G-S

Theorem that is logically weaker but still of some conceptual interest:

Theorem 3 (Geist and Peters, 2017) No resolute voting rule for

> 3 alternatives is majoritarian, strategyproof, and nondictatorial.

Here a rule is called majoritarian if it elects an alternative whenever a

strict majority ranks that alternative at the top.

Exercise: Explain how this relates to the Condorcet Principle.

Exercise: Explain why this theorem is implied by the G-S Theorem.

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In

U. Endriss (ed.), Trends in Computational Social Choice. AI Access, 2017.

Ulle Endriss 17

Advanced Topics in COMSOC 2021 Lecture 2

Encoding Majoritarianism

def most(bools):

return sum(bools) > len(list(bools)) / 2

def cnfMajoritarian():

cnf = []

for x in allAlternatives():

for r in profiles(lambda r : most(list(top(i,x,r) for i in allVoters()))):

cnf.append([posLiteral(r,x)])

return cnf

Ulle Endriss 18

Advanced Topics in COMSOC 2021 Lecture 2

Let’s Try!

Encode the base case of the new theorem:

>>> cnf = (cnfAtLeastOne() + cnfResolute() + cnfMajoritarian()

... + cnfStrategyProof() + cnfNondictatorial())

>>> saveCNF(cnf, ’gp.dimacs’)

Extract an MUS:

$ ~/solvers/picomus gp.dimacs mymus.dimacs

s UNSATISFIABLE

c [picomus] computed MUS of size 96 out of 1454 (7%)

Argh . . . so this didn’t help at all!

Exercise: Explain why this attempt was bound to fail from the start.

Ulle Endriss 19

Advanced Topics in COMSOC 2021 Lecture 2

Finally: Success!

But for n = 3 (instead of n = 2) and m = 3 it works beautifully!

So change the code:

n = 3

And then re-run everything:

>>> cnf = (cnfAtLeastOne() + cnfResolute() + cnfMajoritarian()

... + cnfStrategyProof() + cnfNondictatorial())

>>> len(cnf)

12699

>>> saveCNF(cnf, ’gp33.dimacs’)

$ ~/solvers/picomus gp33.dimacs mymus.dimacs

s UNSATISFIABLE

c [picomus] computed MUS of size 7 out of 12699 (0%)

Ulle Endriss 20

Advanced Topics in COMSOC 2021 Lecture 2

Interpreting the MUS

The file mymus.dimacs obtained looks like this:

p cnf 648 7

67 68 69 0

55 0

284 0

87 0

-68 -55 0

-67 -87 0

-69 -284 0

Some ad-hoc code to interpret literals:

def interpret(variable):

r = (variable - 1) // m

x = (variable - 1) % m

print(str([preflist(i,r) for i in allVoters()]) + ’ --> ’ + str(x))

Let’s try! Now we can make sense of the literals in the MUS:

>>> interpret(67)

[(2, 0, 1), (1, 2, 0), (0, 1, 2)] --> 0

Ulle Endriss 21

Advanced Topics in COMSOC 2021 Lecture 2

Understanding the Proof

The 7-clause MUS we found corresponds to this simple proof:

• in profile R3 = (201, 120, 012) at least one of 0, 1, 2 must win

• invoke majoritarianism on these three neighbouring profiles:

– in R0 = (012, 120, 012) alternative 0 must win

– in R1 = (201, 120, 102) alternative 1 must win

– in R2 = (201, 201, 012) alternative 2 must win

• then invoke strategyproofness to derive these constraints:

– 1 wins in R3 ⇒ 0 loses in R0 (first voter manipulating in R3)

– 0 wins in R3 ⇒ 2 loses in R2 (second voter manipulating in R3)

– 2 wins in R3 ⇒ 1 loses in R1 (third voter manipulating in R3)

• contradiction!

Caveat: Would still have to adapt the inductive proof (seems hard!).

Note: The MUS (and thus the proof) found by Geist and Peters is

slightly different (it’s a bit longer).

Ulle Endriss 22

Advanced Topics in COMSOC 2021 Lecture 2

Exercise

You might recall that there is no resolute voting rule for n,m = 2, 2

that is both anonymous and neutral .

Find a proof for this fact using the SAT approach:

• encode anonymity and neutrality in CNF

• verify that the CNF is unsatisfiable and extract an MUS

• interpret the MUS to obtain a human-readable proof

Then check what happens for the following three cases:

• n,m = 2, 3

• n,m = 3, 2

• n,m = 3, 3

How many rules do you find (if any)? Is this what you expected?

Ulle Endriss 23

Advanced Topics in COMSOC 2021 Lecture 2

Summary

We now saw the full pipeline involved in using the basic SAT approach

for proving impossibility theorems:

• encode axioms in CNF and generate them in the DIMACS format

• verify unsatisfiablity for the base case using a SAT solver

• extract an MUS and interpret it to obtain a human-readable proof

• prove the full theorem by induction

We also saw that it doesn’t always work perfectly:

• the MUS found might be too big to interpret in practice

• the inductive proof might be quite difficult to obtain

Ulle Endriss 24

