
Advanced Topics in COMSOC 2021 Lecture 1

Advanced Topics in Computational Social Choice

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

Ulle Endriss 1

Advanced Topics in COMSOC 2021 Lecture 1

Course Outline

Obtaining axiomatic results in SCT is hard: eliminating various minor

errors from the original proof of Arrow’s Theorem took several years;

the Gibbard-Satterthwaite Theorem was conjectured at least a decade

before it was proved correct; getting new results is really challenging.

Maybe automated reasoning , as studied in AI, can help? Yes!

In particular, SAT solvers (for checking whether a, possibly very large,

propositional formula in CNF is satisfiable) have been used successfully

to prove a range of impossibility theorems in SCT (and related areas):

• automated verification of classical results

• automated proofs of new theorems

• automated discovery of new theorems

We are going to learn how to use this approach, study successful

examples from the literature, and try to obtain new results ourselves.

Ulle Endriss 2

Advanced Topics in COMSOC 2021 Lecture 1

Plan for Today

Today we will introduce the SAT-based approach to SCT by means of

a case study: the Gibbard-Satterthwaite Theorem. This involves:

• encoding a social choice scenario into propositional logic

• writing a Python program to generate that (large) formula

• proving the formula to be unsatisfiable using a SAT solver

Consult Geist and Peters (2017) for an introduction to this approach.

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In

U. Endriss (ed.), Trends in Computational Social Choice. AI Access, 2017.

Ulle Endriss 3

Advanced Topics in COMSOC 2021 Lecture 1

Reminder: The Model

Fix a finite set A = {a, b, c, . . .} of alternatives, with |A| = m > 2.

Let L(A) denote the set of all strict linear orders R on A. We use

elements of L(A) to model (true) preferences and (declared) ballots.

Each member i of a finite set N = {1, . . . , n} of voters supplies us

with a ballot Ri, giving rise to a profile R = (R1, . . . , Rn) ∈ L(A)n.

We write NR
x�y for the set of voters ranking x above y in profile R.

A (resolute) voting rule (or social choice function) for N and A selects

one winner for every profile of preferences:

F : L(A)n → A

Remark: Most natural voting rules in fact are irresolute and have to be

paired with a tie-breaking rule to always get a unique election winner.

Ulle Endriss 4

Advanced Topics in COMSOC 2021 Lecture 1

Reminder: Two Axioms

• F is strategyproof if for no voter i ∈ N there exist a profile R

(including the “truthful preference” Ri of i) and a linear order R′i
(representing the “untruthful” ballot of i) such that:

F (R′i,R−i) is ranked above F (R) according to Ri

• F is surjective if for every alternative x ∈ A there is a profile R

such that F (R) = x. So no x is excluded from winning a priori.

Ulle Endriss 5

Advanced Topics in COMSOC 2021 Lecture 1

The Gibbard-Satterthwaite Theorem

F is a dictatorship if there exists an i ∈ N such that F (R) = top(Ri)

for every profile R. Recall this central result of SCT:

Theorem 1 (Gibbard-Satterthwaite) There exists no resolute SCF

for > 3 alternatives that is surjective, strategyproof, and nondictatorial.

Remarks:

• The theorem does not hold for m = 2 alternatives. (Why?)

• The theorem is trivially true for n = 1 voter. (Why?)

We will use a SAT solver to automatically prove that the theorem

holds for the smallest nontrivial case (with n = 2 and m = 3).

A. Gibbard. Manipulation of Voting Schemes. Econometrica, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. Journal of Eco-

nomic Theory, 1975.

Ulle Endriss 6

Advanced Topics in COMSOC 2021 Lecture 1

Approach

Technology: We use the solver Lingeling (fmv.jku.at/lingeling/).

Lingeling can check whether a given formula in CNF is satisfiable.

The formula must be represented as a list of lists of integers,

corresponding to a conjunction of disjunctions of literals.

Positive (negative) numbers represent positive (negative) literals.

Example: [[1,-2,3], [-1,4]] represents (p ∨ ¬q ∨ r) ∧ (¬p ∨ s).

Idea: We use a Python script (Python3) to generate a propositional

formula ϕGS that is satisfiable iff there exists a resolute SCF for n = 2

voters and m = 3 alternatives that is surjective, SP, and nondictatorial.

Using Lingeling, we will show that ϕGS is not satisfiable.

Practicalities: To access Lingeling from Python we use the library

pylgl, providing a function solve (pypi.org/project/pylgl/).

Example: solve([[1], [-1,2], [-2]]) will result in ’UNSAT’. X

Ulle Endriss 7

Advanced Topics in COMSOC 2021 Lecture 1

Representing Basic Features of the Model

We choose to represent all basic features of the model as numbers:

• voters are represented as integers from 0 to n− 1

• alternatives are represented as integers from 0 to m− 1

• preferences are represented as integers from 0 to m!− 1

• profiles are represented as integers from 0 to (m!)n − 1

In our Python program, we first fix n and m:

n = 2

m = 3

Basic functions to retrieve lists of all voters and so forth:

def allVoters():

return range(n)

def allAlternatives():

return range(m)

from math import factorial

def allProfiles():

return range(factorial(m) ** n)

Ulle Endriss 8

Advanced Topics in COMSOC 2021 Lecture 1

Let’s Try!

All the code from this slide set is available as the Python script gs.py.

Compile it and try out the basic functions just defined:

$ python3 -i gs.py

>>> allAlternatives()

range(0, 3)

>>> list(allAlternatives())

[0, 1, 2]

>>> allProfiles()

range(0, 36)

>>> list(allProfiles())

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31, 32, 33, 34, 35]

>>> exit()

Ulle Endriss 9

Advanced Topics in COMSOC 2021 Lecture 1

Extracting Preferences from Profiles

Think of profiles as numbers with n digits in the number system with

base m!. So voter i’s preference in R is the ith digit (from the back):

def preference(i, r):

base = factorial(m)

return (r % (base ** (i+1))) // (base ** i)

For comparison, this is how, given a number in the decimal system, you

would extract the 3rd digit (counting backwards from the “0th digit”):

(975474 mod 103+1) / 103 = 5.474

Ulle Endriss 10

Advanced Topics in COMSOC 2021 Lecture 1

Interpreting Preferences

It can be useful to have an alternative representation of voter i’s

preference in a given profile R in the form of a list of alternatives:

from itertools import permutations

def preflist(i, r):

preflists = list(permutations(allAlternatives()))

return preflists[preference(i,r)]

We now can provide functions to check whether voter i prefers x to y

in a given profile R and whether x is her top alternative:

def prefers(i, x, y, r):

mylist = preflist(i, r)

return mylist.index(x) < mylist.index(y)

def top(i, x, r):

mylist = preflist(i, r)

return mylist.index(x) == 0

Ulle Endriss 11

Advanced Topics in COMSOC 2021 Lecture 1

Let’s Try!

Look up the preference list of the first voter in the first profile:

>>> preflist(0,0)

(0, 1, 2)

And the one of the last voter in the last profile:

>>> preflist(1,35)

(2, 1, 0)

Let’s inspect profile 17:

>>> preflist(0,17), preflist(1,17)

((2, 1, 0), (1, 0, 2))

Does voter 1 prefer alternative 1 to alternative 2 in that profile?

>>> prefers(1,1,2,17)

True

>>> prefers(1,2,1,17)

False

Ulle Endriss 12

Advanced Topics in COMSOC 2021 Lecture 1

Restricting the Range of Quantification

When formulating axioms, we sometimes need to quantify over all

alternatives that satisfy a certain (boolean) condition:

def alternatives(condition):

return [x for x in allAlternatives() if condition(x)]

Let’s try! You can now generate the list of all alternatives that meet

the condition of being different from 1 (condition = λx.(x 6= 1)).

>>> alternatives(lambda x : x!=1)

[0, 2]

And the corresponding functions for voters and profiles:

def voters(condition):

return [i for i in allVoters() if condition(i)]

def profiles(condition):

return [r for r in allProfiles() if condition(r)]

Ulle Endriss 13

Advanced Topics in COMSOC 2021 Lecture 1

Literals

We can specify any (possibly irresolute) SCF F : L(A)n → 2A \ {∅} by

saying whether or not x ∈ F (R) for every profile R and alternative x.

So create a propositional variable pR,x for every profile R ∈ L(A)n

and every alternative x ∈ A, with the intended meaning that:

pR,x is true iff x ∈ F (R)

Exercise: How many variables for n = 2 voters and m = 3 alternatives?

Need to decide which number to use to represent pR,x. Good option:

def posLiteral(r, x):

return r * m + x + 1

Recall: r ∈ {0, . . . , (m!)n−1}
and x ∈ {0, . . . ,m−1}

And negative literals are represented by negative numbers:

def negLiteral(r, x):

return (-1) * posLiteral(r, x)

Ulle Endriss 14

Advanced Topics in COMSOC 2021 Lecture 1

Let’s Try!

The very first literal (1) tells us whether the first alternative (0) is

winning in the first profile (0), while the last literal (108) tells us

whether the last alternative (2) is winning in the last profile (35).

>>> posLiteral(0,0)

1

>>> posLiteral(35,2)

108

Ulle Endriss 15

Advanced Topics in COMSOC 2021 Lecture 1

Modelling Social Choice Functions

Every assignment of truth values to our 108 variables pR,x corresponds

to a function F : L(A)n → 2A (in case n = 2 and m = 3).

But: a (possibly irresolute) SCF is a function F : L(A)n → 2A \ {∅}.

Fix this by restricting attention to models of this formula:

ϕat-least-one =
∧

R∈L(A)n

(∨
x∈A

pR,x

)

The following function will generate this formula:

def cnfAtLeastOne():

cnf = []

for r in allProfiles():

cnf.append([posLiteral(r,x) for x in allAlternatives()])

return cnf

Ulle Endriss 16

Advanced Topics in COMSOC 2021 Lecture 1

Let’s Try!

Let’s have a look at this formula (in the so-called DIMACS format):

>>> cnfAtLeastOne()

[[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12], [13, 14, 15],

[16, 17, 18], [19, 20, 21], [22, 23, 24], [25, 26, 27], [28,

29, 30], [31, 32, 33], [34, 35, 36], [37, 38, 39], [40, 41,

42], [43, 44, 45], [46, 47, 48], [49, 50, 51], [52, 53, 54],

[55, 56, 57], [58, 59, 60], [61, 62, 63], [64, 65, 66], [67,

68, 69], [70, 71, 72], [73, 74, 75], [76, 77, 78], [79, 80,

81], [82, 83, 84], [85, 86, 87], [88, 89, 90], [91, 92, 93],

[94, 95, 96], [97, 98, 99], [100, 101, 102], [103, 104, 105],

[106, 107, 108]]

Nice: We really get (3!)2 = 36 clauses of 3 positive literals each.

Ulle Endriss 17

Advanced Topics in COMSOC 2021 Lecture 1

Resoluteness

We now write a similar function for each one of our axioms.

F is resolute if for all profiles R and all alternatives x 6= y it is the

case that x 6∈ F (R) or y 6∈ F (R). So: at most one winner per profile.

Note: Can restrict quantification to x < y (when taken as numbers).

ϕresolute =
∧

R∈L(A)n

∧
x∈A

 ∧
y∈A

s.t. x<y

¬pR,x ∨ ¬pR,y

def cnfResolute():

cnf = []

for r in allProfiles():

for x in allAlternatives():

for y in alternatives(lambda y : x < y):

cnf.append([negLiteral(r,x), negLiteral(r,y)])

return cnf

Ulle Endriss 18

Advanced Topics in COMSOC 2021 Lecture 1

Surjectivity

Surjectivity is most naturally expressed as a conjunction of disjunctions

of conjunctions. (How?) Could translate to CNF, but this is easier:

If F is already known to be resolute, then F is surjective if:

for all alternatives x there exists a profile R such that x ∈ F (R).

ϕsurjective =
∧
x∈A

 ∨
R∈L(A)n

pR,x

def cnfSurjective():

cnf = []

for x in allAlternatives():

cnf.append([posLiteral(r,x) for r in allProfiles()])

return cnf

Ulle Endriss 19

Advanced Topics in COMSOC 2021 Lecture 1

Preparation for Modelling Strategyproofness

To model strategyproofness we need to be able to model two profiles

being so-called i-variants (for some voter i ∈ N):

R =−i R
′ iff Rj = R′j for all voters j ∈ N \ {i}

Recall: preference(j,r) returns the preference of voter j in profile r

Now our implementation is straightforward:

def iVariants(i, r1, r2):

return all(preference(j,r1) == preference(j,r2)

for j in voters(lambda j : j!=i))

Note: Here the Python function all() tests whether all the boolean

expressions in the list it is applied to evaluate to true.

Ulle Endriss 20

Advanced Topics in COMSOC 2021 Lecture 1

Strategyproofness

Resolute F is strategyproof if for all voters i, all (truthful) profiles

R1, all of its i-variants R2, all alternatives x, and all alternatives y

dispreferred to x by i in R1 we have: F (R1) = y implies F (R2) 6= x.

ϕSP =
∧
i∈N

 ∧
R1∈L(A)n

 ∧
R2∈L(A)n

s.t. R1=−iR2

∧
x∈A

 ∧
y∈A

s.t. i∈NR1
x�y

¬pR1,y ∨ ¬pR2,x

def cnfStrategyProof():

cnf = []

for i in allVoters():

for r1 in allProfiles():

for r2 in profiles(lambda r2 : iVariants(i,r1,r2)):

for x in allAlternatives():

for y in alternatives(lambda y : prefers(i,x,y,r1)):

cnf.append([negLiteral(r1,y), negLiteral(r2,x)])

return cnf

Ulle Endriss 21

Advanced Topics in COMSOC 2021 Lecture 1

Nondictatorship

Resolute F is nondictatorial if for all voters i there exists a profile R

such that F (R) 6= x for alternative x = topi(R).

ϕnondictatorial =
∧
i∈N

 ∨
R∈L(A)n

 ∨
x∈A

s.t. x=topi(R)

¬pR,x

 this works as

x = topi(R)
for just one x

def cnfNondictatorial():

cnf = []

for i in allVoters():

clause = []

for r in allProfiles():

for x in alternatives(lambda x : top(i,x,r)):

clause.append(negLiteral(r,x))

cnf.append(clause)

return cnf

Ulle Endriss 22

Advanced Topics in COMSOC 2021 Lecture 1

Proving the (Special Case of the) Theorem

Putting it all together:

>>> cnf = (cnfAtLeastOne() + cnfResolute() + cnfSurjective()

... + cnfStrategyProof() + cnfNondictatorial())

This is a conjunction of 1445 clauses (using 108 variables, as we saw):

>>> len(cnf)

1445

We make Lingeling available like this:

from pylgl import solve

And now the moment of truth has come:

>>> solve(cnf)

’UNSAT’

Done! So the G-S Theorem really holds for n = 2 and m = 3. Nice. X

Exercise: Reproduce this result on your own machine!

Ulle Endriss 23

Advanced Topics in COMSOC 2021 Lecture 1

Discussion: Confidence in Computer Proofs?

Some will object to this approach. Can we trust this kind of proof?

Your computer-generated proof using a SAT solver is valid only if:

• your encoding of your question into propositional logic is correct

• the implementation of the SAT solver is correct

• the environment the solver is running in works to specification

Arguments in favour of the approach:

• If your encoding of the problem is short, clean, and systematic,

then it can be proof-read in the same way as a regular proof.

• Due to standardised input/output format for SAT solvers, you can

verify the correctness of your proof using third-party tools.

Still: This proof does not provide insight into why finding a suitable

SCF is impossible. (We will return to this issue next time.)

Ulle Endriss 24

Advanced Topics in COMSOC 2021 Lecture 1

Proving the Full Theorem

We now know that the Gibbard-Satterthwaite Theorem is true for the

special case of n = 2 and m = 3. What about larger values?

• Intuitively, it seems that things will only get “more impossible”

when we increase n or m. So we should be fine.

• But formally proving this intuition to be correct actually is not

straightforward. (To be discussed next time.)

Ulle Endriss 25

Advanced Topics in COMSOC 2021 Lecture 1

Other Uses of the Program

For n = 2 and m = 3, how many resolute rules are strategyproof?

This is a question we can answer with the help of our program.

First, construct the corresponding CNF:

>>> cnf = cnfAtLeastOne() + cnfResolute() + cnfStrategyProof()

We can use solve() to find one rule satisfying our requirements:

>>> solve(cnf)

[-1, 2, -3, -4, -5, 6, -7, 8, -9, -10, 11, -12, ..., 108]

Exercise: Write a program to make rule specs such as this readable.

Using itersolve(), we can get all such rules (and count them):

>>> from pylgl import itersolve

>>> rules = itersolve(cnf)

>>> len(list(rules))

17

Exercise: What are those 17 rules? Provide a suitable classification.

Ulle Endriss 26

Advanced Topics in COMSOC 2021 Lecture 1

Exercise: Duggan-Schwartz Theorem

To help you get some practice, I want you to try and encode the

simplest nointrivial instance of the Duggan-Schwartz Theorem.

So what’s the D-S Theorem? Generalising G-S to irresolute rules . . .

Ulle Endriss 27

Advanced Topics in COMSOC 2021 Lecture 1

Manipulability w.r.t. Psychological Assumptions

To analyse manipulability when we might get a set of winners, we need

to make assumptions on how voters rank sets of alternatives, e.g.:

• A voter is an optimist if she prefers X over Y whenever she

prefers her favourite x ∈ X over her favourite y ∈ Y .

• A voter is a pessimist if she prefers X over Y whenever she

prefers her least preferred x ∈ X over her least preferred y ∈ Y .

Now we can speak about manipulability by certain types of voters:

• F is called immune to manipulation by optimistic voters if

no optimistic voter can ever benefit from voting untruthfully.

• F is called immune to manipulation by pessimistic voters if

no pessimistic voter can ever benefit from voting untruthfully.

Ulle Endriss 28

Advanced Topics in COMSOC 2021 Lecture 1

Axiom: Nonimposition

Let F be an irresolute voting rule F : L(A)n → 2A \ {∅}.

I F is nonimposed if for every alternative x there exists a profile R

under which x is the unique winner: F (R) = {x}.

For comparison, surjectivity means that for every element in the

co-domain of F there is an input producing that element. Thus:

resolute ⇒ (nonimposed = surjective)

Ulle Endriss 29

Advanced Topics in COMSOC 2021 Lecture 1

Dictatorships for Irresolute Rules

Let F be an irresolute voting rule F : L(A)n → 2A \ {∅}.

There are two natural notions of dictatorship for such rules:

• Voter i ∈ N is called a (strong) dictator if F (R) = {top(Ri)} for

every profile R ∈ L(A)n.

• Voter i ∈ N is called a weak dictator if top(Ri) ∈ F (R) for every

profile R ∈ L(A)n. (Such a voter is also called a nominator .)

F is called weakly dictatorial if it has a weak dictator.

Otherwise F is called strongly nondictatorial .

Ulle Endriss 30

Advanced Topics in COMSOC 2021 Lecture 1

The Duggan-Schwartz Theorem

There are several extensions of the G-S Theorem for irresolute rules.

The D-S Theorem is regarded as the most important such result.

Our statement of the theorem follows Taylor (2002):

Theorem 2 (Duggan and Schwartz, 2000) Any voting rule for > 3

alternatives that is nonimposed and immune to manipulation by both

optimistic and pessimistic voters is weakly dictatorial.

Observe that the G-S Theorem is a direct corollary. (Why?)

J. Duggan and T. Schwartz. Strategic Manipulation w/o Resoluteness or Shared

Beliefs: Gibbard-Satterthwaite Generalized. Social Choice and Welfare, 2000.

A.D. Taylor. The Manipulability of Voting Systems. The American Mathematical

Monthly, 2002.

Ulle Endriss 31

Advanced Topics in COMSOC 2021 Lecture 1

Summary

This has been an introduction to the use of SAT solvers to obtain

axiomatic results in social choice theory.

We focused on a hands-on example: using the approach to prove the

“base case” of the Gibbard-Satterthwaite Theorem.

Tentative plan for the next (couple of) meeting(s):

• discussing your solutions to the Duggan-Schwartz exercise

• proving the full Gibbard-Satterthwaite Theorem by induction

• trying to obtain human-readable proofs using SAT technology

• applications beyond impossibility theorems

• broader discussion of using logic and automated reasoning for SCT

Ulle Endriss 32

Advanced Topics in COMSOC 2021 Lecture 1

Duggan-Schwartz Exercise: Full Details (1)

Prove the Duggan-Schwartz Theorem for the special case of n = 2 voters

and m = 3 alternatives using the SAT solving technique.

Reuse as much of our code as you like (but make it a habit to always indicate

what you have copied and what you have changed exactly, if anything).

This is a difficult exercise, although modelling the requirement of the voting

rule being strongly nondictatorial is relatively straightforward. So start with

that. Modelling the two strategyproofness axioms requires some careful

thinking, but you should end up with a fairly simple implementation as well.

The main challenge is modelling nonimposition, which most immediately

corresponds to a conjunction of disjunctions of conjunctions of literals.

Translating this into CNF is impractical: the resulting formula would be

huge (a conjunction of almost half a quintillion clauses of length 36).

But you can use this trick: Introduce auxiliary variables qR,x with the

intended meaning that in profile R alternative x is the only winner.

Ulle Endriss 33

Advanced Topics in COMSOC 2021 Lecture 1

Duggan-Schwartz Exercise: Full Details (2)

Then express the axiom of nonimposition with the help of these auxiliary

variables, and fix their meaning by adding clauses that together enforce the

following constraint for all profiles R and (distinct) alternatives x, y, and z:

qR,x ↔ pR,x ∧ ¬pR,y ∧ ¬pR,z

To make it easier for us to compare solutions, for each of your axioms,

please use len() to count the number of clauses involved.

Besides proving the theorem, also demonstrate that for each of the four

axioms featuring in the theorem it is possible to design a voting rule that

satisfies the other three axioms (again, for the case of n = 2 and m = 3).

Try to find out how many such voting rules there are for each of those four

cases. Keep in mind that this corresponds to very demanding queries for the

SAT solver, so you may not be able to obtain an answer in a reasonable

amount of time (just treat anything above 15 minutes as a timeout).

Ulle Endriss 34

