
Automated Reasoning for SCT AAMAS-2023

Automated Reasoning for Social Choice Theory

Ulle Endriss

Institute for Logic, Language and Computation

University of Amsterdam

[
Tutorial at AAMAS-2023, London, May 2023

http://www.illc.uva.nl/~ulle/teaching/aamas-2023/

]

Ulle Endriss 1

Automated Reasoning for SCT AAMAS-2023

Plan for Today

Exciting trend in computational social choice: use of SAT solvers to

automate some of our tasks as researchers. Very cool. But difficult.

Objective: To enable you to use this approach in your own research.

Main parts of this tutorial:

• Case study: automating the proof of a classical theorem

• Critique and refinement of the basic approach

• Expanding the scope of the approach: focus on explainability

Hands-on: You can reproduce everything you see here directly on your

own machine, using the Jupyter Notebook provided. Try it!

Ulle Endriss 2

Automated Reasoning for SCT AAMAS-2023

Social Choice Theory

SCT is the study of methods for collective decision making , notably

political decision making by economic agents. Such decision making

involves, in particular, the aggregation of individual preferences.

The methodology of SCT ranges from Philosophy to Mathematics.

SCT is traditionally studied in Economics and Political Science and it

is a close cousin of both decision theory and game theory .

K.J. Arrow, A.K. Sen, and K. Suzumura (eds), Handbook of Social Choice and

Welfare, Volume 1. North-Holland, 2002.

F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A.D. Procaccia (eds), Handbook

of Computational Social Choice. Cambridge University Press, 2016.

Ulle Endriss 3

Automated Reasoning for SCT AAMAS-2023

Why SCT at AAMAS?

A whopping 10% of papers at AAMAS are about social choice. Why?

Two explanations:

• Historical (SCT → AI): Aggregating the individual views of agents

in a multiagent system into a collective view is a core task one has

to perform when trying to understand or use that system.

• Modern (AI → SCT): The toolbox of Computer Science and AI

has turned out to be extremely useful when it comes to designing

and analysing methods for collective decision making (for people).

What we shall do today fits the second explanation.

Ulle Endriss 4

Automated Reasoning for SCT AAMAS-2023

Voting Rules

Scenario: n voters each report a strict ranking over m alternatives.

We want to pick a single winning alternative (though ties are possible)

by means of a voting rule. Lots of options. Examples:

• Plurality : elect the alternative(s) ranked first most often

• Plurality with runoff : familiar from French presidential elections

• Borda: award m−k points for for getting ranked in the kth position

• Copeland: score = won pairwise runoffs − lost pairwise runoffs

Exercise: Apply these rules to the profile below! (What are n and m?)

2 Germans: Beer � Wine � Milk

3 French people: Wine � Beer � Milk

4 Dutch people: Milk � Beer � Wine

Which rule is best (or suitable at all) depends on our requirements.

Ulle Endriss 5

Automated Reasoning for SCT AAMAS-2023

The Problem of Strategic Manipulation

One requirement (or axiom) we might want to impose is that we don’t

want voters to have an incentive to misrepresent their true preferences.

Remember what happened in Florida in 2000 (stylised):

49%: Bush � Gore � Nader

20%: Gore � Nader � Bush

20%: Gore � Bush � Nader

11%: Nader � Gore � Bush

Under Plurality , Bush will win. Nader supporters had an incentive to

pretend they prefer Gore. We say: Plurality is not strategyproof.

Exercise: Is there a better voting rule that avoids this problem?

Ulle Endriss 6

Automated Reasoning for SCT AAMAS-2023

The Gibbard-Satterthwaite Theorem

By a famous impossibility theorem, at the core of both voting theory

and mechanism design, the answer to the previous question is: No!

Gibbard-Satterthwaite Theorem: For m > 3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

Meaning of the new concepts mentioned in the theorem:

• resolute = the rule always returns a single winner (no ties)

• surjective = each alternative can win for some way of voting

• dictatorial = the top alternative of some fixed voter always wins

Exercise: Explain why surjectivity and nondictatorship are needed.

Exercise: Show that the theorem does not hold for m = 2.

A. Gibbard. Manipulation of Voting Schemes. Econometrica, 1973.

M.A. Satterthwaite. Strategy-proofness and Arrow’s Conditions. JET, 1975.

Ulle Endriss 7

Automated Reasoning for SCT AAMAS-2023

Proving the Theorem

G-S is a deep result that long seemed elusive:

• People tried and failed to design strategyproof rules for centuries.

• After Arrow’s seminal impossibility theorem (for different axioms)

a result à la G-S seemed to be “in the air”.

• It still took two decades to find the right formulation and prove it.

• The original proofs are hard to digest (the original proof of Arrow’s

impossibility even was wrong—though the theorem itself was fine).

Today the proof of G-S is well understood (see expository paper below).

But new results of this kind are still hard to discover and then prove.

K.J. Arrow. Social Choice and Individual Values. John Wiley and Sons, 2nd

edition, 1963. First edition published in 1951.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds), Logic and Philosophy Today. College Publications, 2011.

Ulle Endriss 8

Automated Reasoning for SCT AAMAS-2023

Automated Reasoning

Thus: need much better methodology to reason about social choice!

Here’s again the theorem:

Gibbard-Satterthwaite Theorem: For m > 3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

Let’s try to get a computer to prove it for us! But proving it for all

n > 1 (voters) and m > 3 (alternatives) is too ambitious for now . . .

Exercise: For which values of n and m is the theorem most surprising?

Ulle Endriss 9

Automated Reasoning for SCT AAMAS-2023

Base Case

So let’s prove G-S for n = 2 voters and m = 3 alternatives!

Credo: Even if (formally) the full theorem might not follow easily from

this ‘base case’, (intuitively) it will then be entirely unsurprising.

Ulle Endriss 10

Automated Reasoning for SCT AAMAS-2023

Proof Idea

Go through all voting rules for n = 2 and m = 3 and check one by one

whether they satisfy our requirements. Confirm theorem if none do.

Exercise: How many (resolute) voting rules do we need to check?

Ulle Endriss 11

Automated Reasoning for SCT AAMAS-2023

Better Idea: Logic Encoding

Bad news: there are a total of m(m!n) = 336 = 150094635296999121

resolute voting rules for us to check. So this won’t work.

Instead, let’s try to describe what we need in a compact way . . .

Define a logical language with propositional variables pr,x to say that

in profile r the outcome should include alternative x.

Exercise: Count the variables for n = 2 voters and m = 3 alternatives!

Every assignments of truth values to such variables corresponds to a

function from profiles to sets of alternatives, i.e., a voting rule.

Exercise: This is almost true, but not quite. Do you see the problem?

Ulle Endriss 12

Automated Reasoning for SCT AAMAS-2023

Modelling Voting Rules and Axioms

A voting rule must return at least one alternative x for every profile r:

ϕat-least-one =
∧
r

(∨
x

pr,x

)
We obtain a perfect correspondence between voting rules and models

(= satisfying truth assignments) of this formula. Nice!

Can use similar formulas to encode axioms of interest. Then:

models satisfying formulas =̂ voting rules satisfying axioms

unsatisfiability =̂ impossibility theorem

Ulle Endriss 13

Automated Reasoning for SCT AAMAS-2023

SAT Solving

Can use a SAT solver to check formulas (in CNF) for unsatisfiability.

DIMACS format: use list of lists of positive and negative integers to

represent set of clauses of positive and negative literals. Example:

[[1,-2,3],[4,-1]] represents (p1 ∨ ¬p2 ∨ p3) ∧ (p4 ∨ ¬p1)

Need: script to generate such formulas!

A. Biere, M. Heule, H. van Maaren, and T. Walsh (eds), Handbook of Satisfiability.

IOS Press, 2009.

A. Ignatiev, A. Morgado, and J. Marques-Silva. PySAT: A Python Toolkit for

Prototyping with SAT Oracles. SAT-2018.

Ulle Endriss 14

Automated Reasoning for SCT AAMAS-2023

Preferences and Profiles

Fix an enumeration of voters, alternatives, preferences, profiles. Then

represent everything as integers: voters from 0 to n-1, alternatives

from 0 to m-1, preferences from 0 to m!-1, profiles from 0 to m!n−1.

Now providing these methods becomes a routine programming task:

• allVoters(), allAlternatives(), allProfiles()

• voters(c), alternatives(c), profiles(c) for condition c

• iVariants(i,r1,r2) — are profiles r1 and r2 i-variants?

• prefers(i,x,y,r) — does voter i prefer x to y in profile r?

• top(i,x,r) — does voter i top-rank x in profile r?

• strProf(r) — return a string representation for profile r

Consult the Jupyter Notebook to see one way of doing this.

Ulle Endriss 15

Automated Reasoning for SCT AAMAS-2023

Try it!

(better try this on the Jupyter Notebook instead)

>>> list(allProfiles())

[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,

20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35]

>>> strProf(35)

’(210,210)’

>>> prefers(0,2,1,35)

True

>>> alternatives(lambda x : x!=1)

[0,2]

Ulle Endriss 16

Automated Reasoning for SCT AAMAS-2023

Literals

Want propositional variable pr,x to say that in profile r the outcome

should include alternative x. Enumerate them from 1 to m!n * m:

def posLiteral(r, x):

return r * m + x + 1

def negLiteral(r, x):

return (-1) * posLiteral(r, x)

Easy to reverse-engineer this to get method to pretty-print literals:

>>> strLiteral(1)

’(012,012)->0’

>>> strLiteral(-108)

’not (210,210)->2’

Ulle Endriss 17

Automated Reasoning for SCT AAMAS-2023

Encoding the Requirements on Voting Rules

Now we can encode our requirements. Recall our basic formula:

ϕat-least-one =
∧
r

(∨
x

pr,x

)

Translating this into code is immediate:

def cnfAtLeastOne():

cnf = []

for r in allProfiles():

cnf.append([posLiteral(r,x) for x in allAlternatives()])

return cnf

Try it on the Jupyter Notebook:

>>> cnfAtLeastOne()

[[1,2,3], [4,5,6], [7,8,9], [10,11,12], ..., [106,107,108]]

Ulle Endriss 18

Automated Reasoning for SCT AAMAS-2023

Resoluteness

Resoluteness says that for any profile r and any distinct alternatives x

and y, not both alternatives are in the outcome for that profile.

Note: Can restrict last quantification to x < y (taken as numbers).

ϕres =
∧
r

∧
x

 ∧
y | x<y

¬pr,x ∨ ¬pr,y

Again, coding this is immediate:

def cnfResolute():

cnf = []

for r in allProfiles():

for x in allAlternatives():

for y in alternatives(lambda y : x < y):

cnf.append([negLiteral(r,x), negLiteral(r,y)])

return cnf

Remark: For the following axioms, we now can presuppose resoluteness.

Ulle Endriss 19

Automated Reasoning for SCT AAMAS-2023

Strategyproofness

SP says: for any voter i, any (truthful) profile r, any of its i-variants r′,

any alternative x, any alternative y dispreferred to x by i in r, either

y (bad) loses in r (truthful) or x (good) loses in r′ (manipulated).

ϕsp =
∧
i

∧
r

 ∧
r′ ∈ i-var(r)

∧
x

 ∧
y | x�r

i y

¬pr,y ∨ ¬pr′,x

def cnfStrategyProof():

cnf = []

for i in allVoters():

for r1 in allProfiles():

for r2 in profiles(lambda r2 : iVariants(i,r1,r2)):

for x in allAlternatives():

for y in alternatives(lambda y : prefers(i,x,y,r1)):

cnf.append([negLiteral(r1,y), negLiteral(r2,x)])

return cnf

Ulle Endriss 20

Automated Reasoning for SCT AAMAS-2023

Surjectivity

Surjectivity really is a conjunction of disjunctions of conjunctions: for

all alternatives x, there is a profile r where x wins and all others lose.

Could translate to CNF. But given resoluteness, this is easier:

ϕsur =
∧
x

(∨
r

pr,x

)

def cnfSurjective():

cnf = []

for x in allAlternatives():

cnf.append([posLiteral(r,x) for r in allProfiles()])

return cnf

Ulle Endriss 21

Automated Reasoning for SCT AAMAS-2023

Nondictatorship

A resolute rule is nondictatorial if for every voter i there is a profile r

where top(i) loses (so: some alternative x equal to top(i) loses).

ϕnd =
∧
i

∨
r

 ∨
x | x=top(i)

¬pr,x

def cnfNonDictatorial():

cnf = []

for i in allVoters():

clause = []

for r in allProfiles():

for x in alternatives(lambda x : top(i,x,r)):

clause.append(negLiteral(r,x))

cnf.append(clause)

return cnf

Ulle Endriss 22

Automated Reasoning for SCT AAMAS-2023

Running the SAT Solver

We need to determine whether the master formula is satisfiable:

ϕgs = ϕat-least-one ∧ ϕres ∧ ϕsp ∧ ϕsur ∧ ϕnd

Btw: this is a conjunction of 1,445 clauses (using 108 variables).

The method solve() provides access to a SAT solver.

Let’s see what happens:

>>> cnf = (cnfAtLeastOne() + cnfResolute() + cnfStrategyProof()

... + cnfSurjective() + cnfNonDictatorial())

>>>> len(cnf)

1445

>>> solve(cnf)

’UNSATISFIABLE’

So ϕgs really is unsatisfiable! Thus: G-S for n=2 and m=3 is true! X

Discussion: Does this count? Do we believe in computer proofs?

Ulle Endriss 23

Automated Reasoning for SCT AAMAS-2023

Computer Proofs

We can proof-read our Python script just like we would proof-read a

mathematical proof. And we can use multiple SAT solvers and check

they agree. So we can have some confidence in the result.

Missing Pieces

But some pieces are still missing:

• Does the theorem generalise to arbitrary n > 2 and m > 3?

Intuitively almost obvious, though technically not that easy.

Basic idea: induction over both n and m

• Why does the theorem hold? This proof does not tell us.

But SAT technology can help here as well: MUS extraction

Ulle Endriss 24

Automated Reasoning for SCT AAMAS-2023

Inductive Proof

Recall the theorem we want to prove:

Gibbard-Satterthwaite Theorem: For m > 3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

Instead we proved:

Base Case Lemma: For n=2 voters and m=3 alternatives, no

resolute voting rule is strategyproof, surjective, and nondictatorial.

To complete the proof of G-S we require two further lemmas:

• impossible for n>2 and m=3 ⇒ impossible for n+1 and m=3

• impossible for n>2 and m=3 ⇒ impossible for n and any m>3

Proving the lemmas is tricky but doable. We won’t do it here though.

Proofs can be found in the PhD thesis of Pingzhong Tang (2010).

P. Tang. Computer-aided Theorem Discovery: A New Adventure and its Applica-

tion to Economic Theory. PhD thesis. HKUST, 2010.

Ulle Endriss 25

Automated Reasoning for SCT AAMAS-2023

MUS Extraction

A minimally unsatisfiable subset of an unsatisfiable set ϕ of clauses is

an unsatisfiable subset of ϕ all proper subsets of which are satisfiable.

An MUS can serve as an explanation for the unsatisfiablity observed.

Use getMUS() to compute an MUS of our 1,445-clause CNF:

>>> mus = getMUS(cnf)

>>> len(mus)

199

That’s much better . . . but not good enough. :(

Remark: This MUS includes all (three) surjectivity-clauses, all (two)

nondictatorship-clauses, and 158 (out of 1,296) SP-clauses.

Ulle Endriss 26

Automated Reasoning for SCT AAMAS-2023

Weakening the Theorem

Geist and Peters suggest a weakening of G-S that works better:

Theorem (Geist and Peters, 2017) For n > 3 and m > 3, no

resolute voting rule is both strategyproof and majoritarian.

Here being majoritarian means that x is elected whenever a strict

majority ranks it at the top. Check Jupyter Notebook for the code.

Exercise: Explain why this is weaker than G-S (at least for n > 3).

Exercise: Explain why the theorem is false for the case of n = 2.

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In

U. Endriss (ed), Trends in Computational Social Choice. AI Access, 2017.

Ulle Endriss 27

Automated Reasoning for SCT AAMAS-2023

Proving the Theorem

Try this also for yourself (with n = 3):

>>> cnf = (cnfAtLeastOne() + cnfResolute()

... + cnfStrategyProof() + cnfMajoritarian())

>>> len(cnf)

12696

>>> solve(cnf)

’UNSATISFIABLE’

>>> mus = getMUS(cnf)

>>> len(mus)

21

So need to inspect just 21 of the 12,696 clauses to obtain a proof.

Seems feasible. But can we do even better?

Ulle Endriss 28

Automated Reasoning for SCT AAMAS-2023

Shuffle!

Note that an MUS need not be minimal in terms of its cardinality .

Trying a different solver—or just shuffling the CNF can help!

Re-run this code a few times and you should get an MUS of size 7:

>>> shuffle(cnf)

>>> mus = getMUS(cnf)

>>> len(mus)

7

Ulle Endriss 29

Automated Reasoning for SCT AAMAS-2023

Interpreting the MUS

Here’s the small MUS we just found:

>>> print(mus)

[[205,206,207],[-205,-152],[-206,-639],[-207,-199],[199],[152],[639]]

Easy to write code to help us interpret this:

>>> explainCNF(mus)

AtLeastOne: (102,210,021)->0 or (102,210,021)->1 or (102,210,021)->2

StrategyProof: not (102,210,021)->0 or not (102,102,021)->1

StrategyProof: not (102,210,021)->1 or not (102,210,210)->2

StrategyProof: not (102,210,021)->2 or not (012,210,021)->0

Majoritarian: (012,210,021)->0

Majoritarian: (102,102,021)->1

Majoritarian: (102,210,210)->2

The impossibility now is obvious! Done. X

Exercise: The MUS does not include any resoluteness-clauses. Why?

Ulle Endriss 30

Automated Reasoning for SCT AAMAS-2023

SAT Solving in the Research Process

What if the MUS is too big? What if the inductive proof doesn’t work?

Fear not! In research, knowing what to prove before proving it is rare.

Rather: the main challenge is often to identify good hypotheses.

SAT solving can be a great tool for this:

• use the SAT oracle to quickly check base cases for dozens

(or hundreds) of axiom variations and combinations

• investigate further only the most interesting of those for which you

get an UNSAT result (possibly using entirely traditional methods)

Ulle Endriss 31

Automated Reasoning for SCT AAMAS-2023

Advanced Exercise

To gain some proficiency with the SAT approach to SCT, try solving

this challenging but manageable exercise:

Find out about the famous Duggan-Schwartz Theorem and

prove its base case using the SAT approach.

For hints on how to get started, consult Homework #5 for the 2020

edition of my Amsterdam course on COMSOC. The theorem itself is

covered in the lecture on Strategic Manipulation in Voting.

J. Duggan and T. Schwartz. Strategic Manipulation w/o Resoluteness or Shared

Beliefs: Gibbard-Satterthwaite Generalized. Social Choice and Welfare, 2000.

U. Endriss. Course on Computational Social Choice. ILLC, University of Amster-

dam, 2020. Teaching materials available at bit.ly/comsoc20ams.

Ulle Endriss 32

Automated Reasoning for SCT AAMAS-2023

Literature Review

Geist and Peters (2017) also review parts of the literature up to 2017.

Chatterjee and Sen (2014) comment on early contributions regarding

the SAT approach to SCT from the perspective of Economics.

C. Geist and D. Peters. Computer-Aided Methods for Social Choice Theory. In

U. Endriss (ed), Trends in Computational Social Choice. AI Access, 2017.

S. Chatterjee and A. Sen. Automated Reasoning in Social Choice Theory: Some

Remarks. Mathematics in Computer Science, 2014.

Ulle Endriss 33

Automated Reasoning for SCT AAMAS-2023

The Original Paper

Tang and Lin (2009) were the first to use the approach and applied it

to construct a new proof of Arrow’s Impossibility Theorem.

Their focus was on the inductive proof, while their main impact later

turned out to be the idea of automating the proof of the base case.

P. Tang and F. Lin. Computer-Aided Proofs of Arrow’s and other Impossibility

Theorems. Artificial Intelligence, 2009.

Ulle Endriss 34

Automated Reasoning for SCT AAMAS-2023

Ranking Sets of Objects

In the field of ‘ranking sets of objects’ people formulate axioms for

how to extend an agent’s preferences from objects to sets of objects.

In my paper with Christian Geist (2011), we applied the approach to

proving impossibility theorems in this new domain. Novel ideas:

• general reduction lemma: base case implies full theorem for any

combination of axioms meeting certain syntactic constraints

• automatic theorem discovery : systematic search over 20 axioms

Found 84 impossibility theorems (some classical; some new—ranging

from trivial to interesting; one contradicting wrong result in literature).

C. Geist and U. Endriss. Automated Search for Impossibility Theorems in Social

Choice Theory: Ranking Sets of Objects. JAIR, 2011.

Ulle Endriss 35

Automated Reasoning for SCT AAMAS-2023

Tournament Solutions

Brandt and Geist (2016) provide in-depth analysis of strategyproofness

for irresolute voting rules (and specifically tournament solutions).

Important paper pioneering advanced encoding techniques you might

use when a näıve encoding (which was sufficient for G-S) won’t work.

F. Brandt and C. Geist. Finding Strategyproof Social Choice Functions via SAT

Solving. JAIR, 2016.

Ulle Endriss 36

Automated Reasoning for SCT AAMAS-2023

The No-Show Paradox

Moulin (1988) showed that every Condorcet-consistent voting rule

suffers from the no-show paradox: sometimes it’s best to abstain!

Brandt et al. (2017) used the SAT approach to find a minimal profile

exhibiting the no-show paradox. So here the theorem was known, but

SAT helped find a simpler and more interesting base case. Novel ideas:

• incremental proof discovery : start with weaker claims and use

results to guide proof search over restricted range of profiles

• proof by graphical representation extracted from MUS

H. Moulin. Condorcet’s Principle Implies the No Show Paradox. JET, 1988.

F. Brandt, C, Geist, and D. Peters. Optimal Bounds for the No-Show Paradox via

SAT Solving. Mathematical Social Sciences, 2017.

Ulle Endriss 37

Automated Reasoning for SCT AAMAS-2023

Multiwinner Voting

Peters (2018) proved an important result for multiwinner voting

regarding the incompatibility of proportionality and strategyproofness

(at least for resolute rules and under mild efficiency requirements).

Particularly worth reading for these reasons:

• insightful discussion of how to look for an impossibility result in a

new domain, with axioms of varying strengths being considered

• complex inductive proof over three variables (n, m, k)

Kluiving et al. (2020) discuss the generalisation to irresolute rules.

D. Peters. Proportionality and Strategyproofness in Multiwinner Elections.

AAMAS-2018. Important erratum at bit.ly/prop-sp-18.

B. Kluiving, A. de Vries, P. Vrijbergen, A. Boixel, and U. Endriss. Analysing Irres-

olute Multiwinner Voting Rules with Approval Ballots via SAT Solving. ECAI-2020.

Ulle Endriss 38

Automated Reasoning for SCT AAMAS-2023

Probabilistic Social Choice

Brandl et al. (2018) used SMT solving (Satisfiability Modulo Theories)

to obtain results in the domain of probabilistic social choice.

Shows that the approach can work also in domains that might at first

seem ill-suited to logic-based approach (due to involving numbers).

F. Brandl, F. Brandt, M. Eberl, and C. Geist. Proving the Incompatibility of

Efficiency and Strategyproofness via SMT Solving. Journal of the ACM, 2018.

Ulle Endriss 39

Automated Reasoning for SCT AAMAS-2023

Matching Markets

My 2020 paper applies the SAT approach to matching mechanisms.

Includes a particularly simple case of a general reduction lemma.

U. Endriss. Analysis of One-to-One Matching Mechanisms via SAT Solving: Im-

possibilities for Universal Axioms. AAAI-2020.

Ulle Endriss 40

Automated Reasoning for SCT AAMAS-2023

Fair Division

Brandl et al. (2021) used the SAT approach to settle a 15-year-old

conjecture on the impossibility of designing efficient and stratgeyproof

rules for distributing money between projects approved by voters.

Aside: Shows that sometimes proofs of claims about models involving

numbers might not actually need to refer to those numbers.

F. Brandl, F. Brandt, D. Peters, and C. Stricker. Distribution Rules Under Di-

chotomous Preferences: Two Out of Three Ain’t Bad. EC-2021.

Ulle Endriss 41

Automated Reasoning for SCT AAMAS-2023

Logic and Social Choice

The SAT approach requires us to model social choice scenarios in

logic. The fact that this works so well for the simplest of all logics

(propositional logic) actually is somewhat surprising.

Exercise: What’s the main reason why propositional logic was enough?

Let’s briefly discuss related work on logical modelling for SCT.

U. Endriss. Logic and Social Choice Theory. In A. Gupta and J. van Benthem

(eds), Logic and Philosophy Today. College Publications, 2011.

Ulle Endriss 42

Automated Reasoning for SCT AAMAS-2023

Logical Minimalism

Why model social choice problems in logic? Besides offering a deeper

understanding of SCT and besides sometimes being of direct practical

use, there also are philosophical arguments for doing so.

Pauly (2008) argues for formal minimalism:

When considering an axiom in SCT, besides its normative appeal

and its logical strength, we should also take into account the

expressivity of the language needed to define it. Less is better.

This perspective allows us, for instance, to investigate whether a given

rule can be axiomatised at all, given constraints on language.

M. Pauly. On the Role of Language in Social Choice Theory. Synthese, 2008.

Ulle Endriss 43

Automated Reasoning for SCT AAMAS-2023

Modal Logic

One research direction has been to design tailor-made (usually modal)

logics for talking about social choice scenarios.

The paper by Troquard et al. (2011) is a good example (covering G-S).

My paper with Giovanni Ciná (2016) shows how to write out a full

Hilbert-style derivation of Arrow’s Theorem in such a modal logic.

It shows that this is possible in principle, but more work is needed to

turn this into a tool for automated proof verification or discovery.

N. Troquard, W. van der Hoek, and M. Wooldridge. Reasoning about Social

Choice Functions. Journal of Philosophical Logic, 2011.

G. Ciná and U. Endriss. Proving Classical Theorems of Social Choice Theory in

Modal Logic. Journal of Autonomous Agents and Multiagent Systems, 2016.

Ulle Endriss 44

Automated Reasoning for SCT AAMAS-2023

First-Order Logic

Modelling the G-S conditions in propositional logic worked only due to

the restriction to n = 2 voters and m = 3 alternatives.

In my paper with Umberto Grandi (2013) we explored how close we

can get to fully modelling a similar result (Arrow’s Theorem) in FOL.

We also document our—largely unsuccessful—attempts to employ

first-order theorem provers to get a proof. But others might do better!

U. Grandi and U. Endriss. First-Order Logic Formalisation of Impossibility Theo-

rems in Preference Aggregation. Journal of Philosophical Logic, 2013.

Ulle Endriss 45

Automated Reasoning for SCT AAMAS-2023

Higher-Order Logic Proof Assistants

There also has been work on verifying the correctness of known proofs

of results in SCT using HOL proof assistants such as Isabelle or Coq.

Nipkow’s 2009 paper on Arrow’s Theorem and G-S is an example.

T. Nipkow. Social Choice Theory in HOL. Journal of Automated Reasoning, 2009.

Ulle Endriss 46

Automated Reasoning for SCT AAMAS-2023

Formal Verification

A further logic-based application is the use of model checking to verify

the correctness of implementations (e.g., in Java) of voting rules.

Beckert et al. (2017) give an introduction to this topic.

B. Beckert, T. Bormer, R. Goré, M. Kirsten, and C. Schürmann. An Introduction

to Voting Rule Verification. In Trends in COMSOC. AI Access, 2017.

Ulle Endriss 47

Automated Reasoning for SCT AAMAS-2023

Beyond Impossibilities

Back to SAT. What are opportunities beyond proving impossibilities?

• proving axioms involved in an impossibility to be independent,

by showing that every proper subset is satisfiable

• finding an aggregation rule that satisfies a given set of axioms

• proving that axioms in Φ imply axiom ϕ: unsat(Φ ∪ {¬ϕ})
• justifying and explaining collective decisions (↪→ more soon)

However, there are certain challenges associated with some of this:

• might require new ideas to generalise beyond fixed n/m

• interpreting findings saying that CNF is satisfiable might be hard

Remark: A very different application of SAT solvers would be to use

them to implement computationally intractable aggregation rules.

Ulle Endriss 48

Automated Reasoning for SCT AAMAS-2023

Example

For n = 2 and m = 3, how many resolute rules are strategyproof?

This is a question we can answer with the help of our program.

First, construct the corresponding CNF:

>>> cnf = cnfAtLeastOne() + cnfResolute() + cnfStrategyProof()

We can use solve() to find one rule satisfying our requirements:

>>> solve(cnf)

[1, -2, -3, 4, -5, -6, 7, -8, -9, ..., 106, -107, -108]

Exercise: Write a method to make rule specs such as this readable.

Using enumModels(), we can get all such rules (and count them):

>>> rules = enumModels(cnf)

>>> len(list(rules))

17

Exercise: What are those 17 rules? Provide a suitable classification.

Ulle Endriss 49

Automated Reasoning for SCT AAMAS-2023

Explainability in Social Choice

How do you explain why a given collective decision is the right one?

The axiomatic method seems relevant, given that axioms can motivate

voting rules, which in turn produce decisions when applied to profiles.

axioms rules decisions

?

Ulle Endriss 50

Automated Reasoning for SCT AAMAS-2023

Example

� �

� �

� �

Exercise: Can you think of a voting rule that makes win?

Ulle Endriss 51

Automated Reasoning for SCT AAMAS-2023

Example

� �

� �

� �

Exercise: Can you think of a voting rule that makes win?

Ulle Endriss 51

Automated Reasoning for SCT AAMAS-2023

Example

� �

� �

� �

What’s a good outcome?

Why?

Ulle Endriss 51

Automated Reasoning for SCT AAMAS-2023

Example

� �

� �

� �

{ }
Clear winner!

(faithfulness)

Ulle Endriss 51

Automated Reasoning for SCT AAMAS-2023

Example

� �

� �

� �

{ }
Clear winner!

(faithfulness)

{ , , }
Note the symmetry!

(cancellation)

Ulle Endriss 51

Automated Reasoning for SCT AAMAS-2023

Example

� �

� �

� �

{ }
Clear winner!

(faithfulness)

{ , , }
Note the symmetry!

(cancellation)

{ }
First voter breaks tie!
(reinforcement)

Ulle Endriss 51

Automated Reasoning for SCT AAMAS-2023

Justification = Normative Basis + Explanation

How do you justify selecting outcome X? for a given preference profile?

Find axiom set Anb (normative basis) and set of axiom instances Aex

(explanation) regarding specific scenarios meeting these conditions:

• Adequacy: axioms in Anb are acceptable to the user

• Relevance: Aex only includes instances of axioms in Anb

• Explanatoriness: every voting rule satisfying Aex returns X? (and

Aex is tight: none of its proper subsets have the same property)

• Nontriviality : at least one voting rule satisfies Anb

We can operationalise all of this using SAT-solving technology!

Main idea is to compute MUS of all instances of all acceptable axioms,

together with formula saying that X? is not selected in given profile.

A. Boixel and U. Endriss. Automated Justification of Collective Decisions via

Constraint Solving. AAMAS-2020.

Ulle Endriss 52

Automated Reasoning for SCT AAMAS-2023

Scenario 1: Confidence in Election Results

Ulle Endriss 53

Automated Reasoning for SCT AAMAS-2023

Scenario 2: Deliberation Support

Ulle Endriss 54

Automated Reasoning for SCT AAMAS-2023

Scenario 3: Justification Generation as Voting

M.C. Schmidtlein and U. Endriss. Voting by Axioms. AAMAS-2023.

Ulle Endriss 55

Automated Reasoning for SCT AAMAS-2023

Demo

Use this tool to compute an axiomatic justification and a step-by-step

explanation for a preference profile and target outcome of your choice:

bit.ly/xsoc-demo

A. Boixel, U. Endriss, and O. Nardi. Displaying Justifications for Collective Deci-

sions. IJCAI-2022 Demo Track.

Ulle Endriss 56

Automated Reasoning for SCT AAMAS-2023

Broader Perspective

Consult my paper with Olivier Cailloux (2016), the position paper by

Procaccia (2019), and the survey by Suryanarayana et al. (2022) for a

broader discussion of explainability in multiagent decision making.

O. Cailloux and U. Endriss. Arguing about Voting Rules. AAMAS-2016.

A.D. Procaccia. Axioms Should Explain Solutions. In J.-F. Laslier et al. (eds),

The Future of Economic Design. Springer, 2019.

S.A. Suryanarayana, D. Sarne, and S. Kraus. Explainability in Mechanism Design:

Recent Advances and the Road Ahead. EUMAS-2022.

Ulle Endriss 57

Automated Reasoning for SCT AAMAS-2023

Beyond SAT

Beyond SAT, there are also a number of other (often logic-based) tools

one might try using in similar ways as we used SAT solvers:

• (Mixed) Integer Programming

• Constraint Programming

• SAT Modulo Theories (SMT)

• Answer Set Programming

• First-Order Theorem Proving

Ulle Endriss 58

Automated Reasoning for SCT AAMAS-2023

Last Slide

This has been an introduction to the use of automated reasoning, and

specifically SAT solving, in social choice theory.

• Impossibilities: base case via SAT, human-readable proof via MUS,

full proof via induction (or just use the approach as a heuristc!)

• Beyond impossibilities: explainability (+ much more)

Lots of opportunities still to be explored!

Ulle Endriss 59

