
Modal Logics of Ordered Trees

Ulrich Endriss

Modal Logics of Ordered Trees

Ulrich Endriss

2003

A thesis submitted to the University of London
for the degree of Doctor of Philosophy

King’s College London
Department of Computer Science

Revised Edition (March 2003)

Abstract

This thesis makes a contribution to the area of modal and temporal logics, an impor-
tant family of non-classical logics that have found numerous applications in computer
science and several other disciplines. Temporal logics, in particular, have been applied
very successfully in the area of systems specification and verification. However, these
logics often do not support the notion of refinement in a natural manner. There is no
simple way to extend a given system specification, expressed in a standard temporal logic
such as, for instance, propositional linear temporal logic, by the specification of a new
subsystem. It is therefore important to extend available formalisms in ways that allow
for the representation of complex systems evolving over time in a modular fashion.

To this end, we propose to equip propositional linear temporal logics with a ‘zoom
feature’ in the following manner. If we extend the class of modal frames of this logic by
adding a vertical accessibility relation to connect every time point with a new time line,
we obtain a tree-like structure where the children of each node form a linear order. More
precisely, we obtain a modal logic with frames that are ordered trees. The horizontal
accessibility relation is still given a temporal interpretation, while the vertical allows
us to move between different levels of abstraction, that is, between a system and its
subsystems. Our logic provides modal operators working both along the branches of a
tree and along the order declared over the children of a node.

The body of this work is devoted to the theoretical study of this modal logic of
ordered trees. In particular, we are concerned with an axiomatic characterisation of our
logic complementing its semantics-driven definition and with proving its decidability.

Acknowledgements

Many people have, in one way or another, played their part in the genesis of this thesis.
Individual contributions range from very concrete support with my scientific endeavours
to just being nice and making my years as a PhD student a very enjoyable time. In what
follows, I shall mostly concentrate on the former type of contribution, but hope everyone
else will get the message as well.

First and foremost, I should like to thank Dov Gabbay, my thesis supervisor, for
his encouragement and support throughout my studies, for being a great inspiration
from Day One, for letting me do things my way, and for always sharing his insights
on logic and people. The Group of Logic and Computation at King’s College (now
the Group of Logic, Language and Computation) has provided the perfect environment
for my studies. Everyone in the group, our numerous visitors, and many others in the
Department of Computer Science have contributed to a very pleasant and stimulating
working atmosphere. This includes, in particular, my first generation of office mates in
542: Stefan Schlobach, Odinaldo Rodrigues, and Wilfried Meyer-Viol. I’m also indebted
to Hans Jürgen Ohlbach for his help and support whilst being my second thesis supervisor
at the beginning of my PhD studies, before he moved on to Munich.

Stefan Schlobach, Wilfried Meyer-Viol, and Raquel Fernández have read large parts
of various earlier incarnations of this thesis and their feedback has substantially im-
proved the final product. Thanks are also due to Misha Zakharyaschev, Agi Kurucz,
and Valentin Shehtman for answering a plethora of questions on modal logic; and to the
regulars at our logic reading group: David Gabelaia, Roman Kontchakov, Corinna Elsen-
broich, and George Metcalfe. I have also greatly benefited from discussing my work with
the many people I met along the way, in particular Martina Kullmann, Carsten Lutz,
Enrico Franconi, Alessandro Artale, Anuj Dawar, and Ian Hodkinson. Naza Aguirre
deserves a special mention for showing me that the software engineering people still need
a lot more temporal logic. Finally, I would like to thank Howard Barringer and Robin
Hirsch for having agreed to examine this work.

On a more personal note, this seems like a good place to acknowledge the part my
parents, Micha and Moni Endriß, have had in all of this.

London, January 2003 U.E.

The research reported here has been generously funded by the UK Engineering and Phys-
ical Sciences Research Council (EPSRC) through a number of projects: GR/L91818/01
(grant holders: D. Gabbay and H. J. Ohlbach), GR/R45369/01 (M. Zakharyaschev,
D. Gabbay, and I. Hodkinson), and GR/N23028/01 (D. Gabbay), all at King’s College
London. The writing-up of the thesis was completed while the author was employed
at Imperial College London on a research project funded by the European Union under
grant reference number IST-2001-32530 (grant holders at Imperial: F. Toni and F. Sadri).

Contents

1 Zooming in 1
1.1 Adding a Zoom to Linear Temporal Logic 1
1.2 Thesis Overview . 10

2 Modal and Temporal Logics 13
2.1 Introducing Modalities . 13
2.2 Possible World Semantics . 18
2.3 Axioms and Correspondences . 24
2.4 Temporal Logic . 31
2.5 Bibliographic Notes . 37

3 Semantic Characterisation 39
3.1 Syntax and Semantics . 39
3.2 Some Defined Operators . 48
3.3 Correspondences . 50
3.4 Ontological Considerations . 55
3.5 General Models and P-morphisms . 60
3.6 Loosely Ordered Trees . 67
3.7 Summary . 94

4 Axiomatic Characterisation 97
4.1 Axioms and Rules . 97
4.2 Some Derived Theorems . 108
4.3 Completeness without Descendant Modalities 113
4.4 Alternatives . 141
4.5 Summary . 145

5 Decidability 147
5.1 Monadic Second-order Logic . 147
5.2 Finite Binary Trees . 159
5.3 Discretely Ordered Trees . 163
5.4 General Ordered Trees . 169
5.5 Summary . 182

vii

viii Contents

6 Zooming out 185
6.1 Extensions . 185
6.2 Summary of Main Results . 192
6.3 Open Problems . 193

Appendices 197

A Relations and Orders 199
A.1 Relations . 199
A.2 Linear Orders . 200

B Derivations 203
B.1 Proof of Lemma 4.8 . 203

Bibliography 205

List of Figures 211

List of Tables 213

Index 215

Chapter 1

Zooming in

In this thesis we develop a new modal logic to represent complex systems evolving over
time in a modular fashion. As will be explained in this chapter, this new logic may
be regarded as the result of extending well-known linear temporal logic by a second
dimension that allows us to zoom into states and thereby model events associated with
them in more detail. In this sense, our logic may be described as an extended temporal
logic. From a more abstract point of view, our logic is best characterised as a modal logic
of ordered trees.

In this first chapter we motivate the enterprise of developing such a logic in the first
place and give an informal outline of some of the main results reported in the sequel.
The final section also provides a compact overview of the thesis as a whole, organised by
chapters.

1.1 Adding a Zoom to Linear Temporal Logic

Why? What do we mean by adding a zoom to temporal logic and why would anyone
want to do something like this? We begin our explanation with a story, the story of Mary.
Mary was an aspiring young software engineer who was working for an up-and-coming
information technology company offering state-of-the-art software solutions to its clients
and profitable revenue to its shareholders. One day, not that long ago, the company’s
young and dynamic marketing department managed to secure a major contract with a
new heavy-weight client. It was their biggest software development contract yet and a
lot (if not everything) depended on its successful completion. Mary was appointed Chief
Engineer on the project.

Most people would have been intimidated by that much responsibility. Not Mary
though. She was not only a true professional, but had also benefited from an excellent
educational system which had provided her with a very respectable academic background.
Mary had completed a degree in Computer Science at one of the country’s finest univer-
sities. She was fluent in all the major programming languages, knew her computer inside
out, and commanded an intimate knowledge of all phases of the software development

1

2 Chapter 1. Zooming in

process, be it design, implementation, or evaluation of the final product. She was even
good at maths. But was all of this going to be enough for this new and highly critical
project? The central question seemed to be: How do you make sure the system will
really do what it is supposed to?

Mary was lucky. In her final year at university, besides all the programming lan-
guages, software engineering, databases, and computer architecture, she had also at-
tended a class on non-classical logics, which was at the time taught by a very famous
logic professor. In fact, she probably did not even realise just how lucky she had been,
because most of the time the famous professor was tied up in research, which regularly
involved writing books, proving ground-breaking new results, and even developing whole
new schools of thought. But this particular year he did teach and Mary enjoyed the
course very much. One of the subjects that made a lasting impression on her was the
field of temporal logics. She could remember it very well. Temporal logics were aston-
ishingly simple, yet extremely powerful; full of mathematical depth and beauty, but also
— as she had realised by now — of immediate industrial relevance. Several of the big
companies leading the market were already using this exciting new technology to help
them develop provably correct software systems. Mary knew she had to find out more
about temporal logic, and she had to do so quickly. This she owed to her company’s
shareholders.

Temporal logic. So what is temporal logic? In short, a temporal logic is a formal
system to reason about propositions that change their truth value over time. In the
context of designing reliable software artefacts, examples for propositions would be sen-
tences such as ‘the variable x currently has value 542’ or ‘the file critical.xml is currently
being written on by process 4711’. A proposition may be either true or false at any given
point in time.

Naturally, the notion of time itself will be central to our understanding of temporal
logics. A simple yet useful model of time would be the following:

◦
t0

•
t1

•
t2

•
t3

•
t4

•
t5

// // // // //

That is, we can think of time as a sequence of time points or states. The first one, t0,
denotes the beginning of time and after that we have one state for each and every natural
number. Of course, this is a very simplified if not artificial model of time. It does, for
instance, not take into account special relativity theory or the latest findings in quantum
physics. But for the basis of a logic intended to describe a sequence of events, such as
those taking place while a complex software system is being executed, this seems quite
appropriate.1

1We are painting a somewhat simplified picture of the field of temporal logics here. The particular

logic we are in the process of describing is known as propositional linear temporal logic. In fact, at this

point we restrict our attention to the future-fragment of propositional linear temporal logic over discrete

flows of time and we shall not consider the so-called until -operator either. A fuller account of the area

of (modal and) temporal logics is given in Chapter 2.

1.1 Adding a Zoom to Linear Temporal Logic 3

Let ϕ and ψ be propositions that are either true or false at different states in our
model. We can use operations familiar from propositional logic such as negation or
conjunction to build more complex propositions (like, for instance, ¬ϕ or ϕ ∧ ψ). Such
compound propositions are intended to have the following meaning:

¬ϕ : The formula ϕ is not true at this state (negation).
ϕ ∧ ψ : Both ϕ and ψ are true at this state (conjunction).
ϕ ∨ ψ : Either ϕ or ψ (or both) are true at this state (disjunction).
ϕ→ ψ : If ϕ is true at this state then so is ψ (implication).

So far, we are only doing propositional logic. None of these operators allows us to refer
to states in our model other than the one we have been at in the first place. To this
end, temporal logic provides a number of modal operators. Three of the most important
ones are the so-called diamond-operator 3, the box-operator 2, and the next-operator e.
They have the following meaning:

3ϕ : The formula ϕ will be true sometime in the future.
2ϕ : The formula ϕ will be true always in the future.eϕ : The formula ϕ will be true at the next state.

That is, 3ϕ is defined to be true at, say, state t2 iff ϕ is true at some (at least one) of
the states succeeding t2 (i.e. t3, t4, t5, . . .). The formula 2ϕ is true at t2 iff ϕ holds at
all succeeding states. Finally, eϕ holds at t2 iff ϕ is true at its immediate successor t3.

Examples. This rather simple language already allows us to express a number of inter-
esting properties of a system evolving over time. Let us look at two examples. Suppose
we want to specify a set of rules governing a system’s access to a particular file. Let
OpenFile be a basic proposition that is true whenever the system is currently opening
the file in question for writing access and let CloseFile be a proposition that is true
whenever the system is closing that file again. Then the following formula expresses a
very simple property of the system:

2(OpenFile → 3CloseFile)

This formula is true at the first state of the model corresponding to the system iff,
whenever the file is being opened at some state t (after the first state), then there must
be a state t′ lying in the future of t at which the file is being closed again.

By its very (young, dynamic, and innovative) nature, Mary’s company offers its
clients advanced e-commerce solutions as an optional extra. Such a system may, for
instance, be capable of automatically negotiating prices for goods it intends to purchase
on-line. The process of agreeing on a price may be modelled as a sequence of proposals
and counter proposals sent back and forth between two trading partners. Suppose now,
our system receives such a proposal and suppose we want to specify the set of admissible
reactions by means of a temporal logic formula. A particular negotiation protocol may
allow for three possible follow-ups. Firstly, the system may simply accept the proposal

4 Chapter 1. Zooming in

it received; secondly, it may reply with a suitable counter proposal; and thirdly, it may
choose to terminate the negotiation thread (for instance, if it seems impossible to come
to an agreement). Here is the corresponding formula:

2(ReceiveProposal → e(AcceptProposal ∨ SendCounterProposal ∨ EndNegotiation))

To emphasise that these are the system’s options for its next move (rather than some
future move) we now use the next-operator e in place of the diamond-operator 3 from
the (otherwise very similar) previous example.

Of course, this is a very abstract specification of what needs to be done when the
system receives a particular proposal. For instance, the process of computing a suitable
counter proposal (where applicable) will usually be rather complex a task. In fact, the
subtask of computing such a counter proposal should probably itself be covered by a
suitable temporal logic specification.

The problem of modularity. At this point, Mary noticed a problem. The sample
formula for our e-commerce application above suggests that we should choose a model of
time where each time unit corresponds to one turn in the negotiation dialogue between the
system and its trading partner. This is fine as far as specifying the negotiation protocol in
operation is concerned. However, to specify the system’s internal calculations, pertaining
to, for instance, the evaluation of an incoming proposal, a finer time granularity is
required. But how do you put the two together in a single model? In other words, how
do you combine the specifications of different modules to form the overall specification
of a complex system?

John, one of the programmers working in the basement, was quick to suggest a
solution: “We could simply refine the temporal model of our system by adding the
required number of states in between the state representing the point in time where the
system receives an incoming proposal and the state where it reacts to that proposal.”
Mary immediately realised that this was certainly not a workable solution: “But then
any formula starting with a next-operator that was previously true at the state where
we receive a proposal will not necessarily remain to hold, because the state satisfying its
witness formula will not be the immediate successor anymore.” John replied that this
may well be an indication that one should not use the next-operator in the first place.
Maybe the concept of a ‘next’ point in time is not that appropriate after all and one
should use the diamond-operator instead? Mary strongly disagreed with this view. She
insisted on using the next-operator: “The next-operator very accurately refers to the
next turn in the dialogue between the two communicating systems. We should definitely
keep it.” But John liked his pragmatic idea of inserting additional states into a model
and did not want to give up that quickly: “We could add a few next-operators at the
beginning of each problematic formula, one for every additional state . . . ” Mary could
not help interrupting: “Sorry, John, but if we start using dirty tricks like that, then we
might as well not even bother using formal methods in the first place.” — “Oh, forget
it then!” — “Hacker!” — “B∗∗ch!”

1.1 Adding a Zoom to Linear Temporal Logic 5

•
root

•
3ϕ

•
e eϕ

•
3+ψ

•
ϕ

• •
3ψ

•

•
χ

•
χ

•
2χ

• • •

• •e3ϕ • •
ψ

• •
ψ

• •
3 eϕtime

le
ve

l
of

ab
st

ra
ct

io
n

zz
�� ��

$$

�� ��		

 �� ��

�� ���� ��

�� �� �� ��

// // // // // ////

// // // // //

// // //

// // ////

OO

Figure 1.1: Adding a zoom to linear temporal logic

This is where we leave Mary and her problem. I do not know whether, eventually,
she found the kind of simple, elegant, and workable solution she was looking for. In what
follows, I propose my own ideas.

Zooming in. Apart from the mere technical difficulties associated with the näıve
method of refining a given temporal logic model by simply inserting a few extra states
(particularly where next-operators are involved), such an approach also suffers from a
rather more conceptual deficiency. Presumably, the process of refinement will often fol-
low some modular structure of the system to be specified. We may start out with a very
abstract description of the system as a whole and then, step by step, refine its modules
and submodules. It would be nice to see this modular structure of a system also reflected
in the final model used for the verification of a specification.

This is where our central idea comes into the picture: we propose to add a zoom
to linear temporal logic. Instead of inserting additional states into the single time line
of a linear temporal logic model, we propose to explicitly relate the state to be refined
to another time line which represents the course of events taking place ‘during’ that
‘state’ (or rather the time interval associated with that state) at the next lower level of
abstraction. This relation may be interpreted as the process of ‘zooming’ into an abstract

6 Chapter 1. Zooming in

state of the main time line. The new states may themselves be refined, that is, we may
also zoom into the states on the second level of abstraction, and so forth. This idea is
illustrated by the model shown in Figure 1.1.

In the model of time underlying this new logic, ‘states’ may be regarded as represent-
ing time periods (rather than points). Our ‘zoom relation’ connects subsequent levels
of abstraction and indicates how these periods are to be decomposed into smaller units
at the next level. In general, we make no specific assumptions on the nature of either
the main time line or any of the time lines associated with a lower levels of abstraction.
They may be discrete (as was the case for the basic linear temporal logic) and possibly
even finite (if we only want to decompose a time period into a fixed number of smaller
ones), but they may also be infinite and dense.

Modal operators. Figure 1.1 also shows examples for some of the modal operators
we propose to include into our new temporal language. The first set of operators is taken
from the basic temporal logic we have seen earlier. It includes an existential diamond-
operator and a universal box-operator to refer to states in the future at the same level
of abstraction, as well as a next-operator to refer to the state immediately following the
current one (in case there is such a state), also without changing to another level of
abstraction. Here is an informal definition of the semantics of these operators:

3ϕ : ϕ is true at some future state (at the same level of abstraction).
2ϕ : ϕ is true at all future states (at the same level of abstraction).eϕ : ϕ is true at the next state (at the same level of abstraction).

The next set of operators serves a similar purpose; this time to refer to states lying in
the past of the current one:

3ϕ : ϕ is true at some past state (at the same level of abstraction).
2ϕ : ϕ is true at all past states (at the same level of abstraction).eϕ : ϕ is true at the previous state (at the same level of abstraction).

We now turn to the new vertical operators. There are two operators to refer to the states
on the next lower level of abstraction, i.e. to the states representing the decomposition
of the current state. Observe that it would not make sense to include a next-operator
into this group of connectives, because there will (usually) not be a unique immediate
successor with respect to the zoom relation underlying these operators. The diamond-
and the box-operator to change to the next lower level of abstraction are defined as
follows:

3ϕ : ϕ is true at some state of the next lower level of abstraction.
2ϕ : ϕ is true at all states of the next lower level of abstraction.

If we do not just want to refer to states on the next lower level, but to states on any of the
levels below the current one, i.e. to any of the states that can be reached by following the
(transitive closure of the) zoom relation from the current state, we may use the following
two modal operators:

1.1 Adding a Zoom to Linear Temporal Logic 7

3+ϕ : ϕ is true at some state of some lower level of abstraction.
2+ϕ : ϕ is true at all states of all lower levels of abstraction.

Finally, to be able to move back up again within the hierarchy of states, we define the
following set of operators:

3ϕ : ϕ is true at some higher level of abstraction.
2ϕ : ϕ is true at all higher levels of abstraction.eϕ : ϕ is true at the next higher level of abstraction.

When moving up, the concept of a next-operator does make sense again, because for any
state there is a unique state that it represents an immediate refinement of (unless we are
already at the highest level of abstraction).

A formal definition of the semantics of these operators will be given in Chapter 3.

Modal logics of ordered trees. Linear temporal logics are based on linear orders.
What is the structure underlying our extended temporal logic? If we add a ‘first level of
abstraction’ consisting of only a single state (which may be thought of as representing
the specified system as a whole) to the kind of model we have described so far, we end
up with a tree-like structure. The single state at the top would then be the root of
that tree (as indicated also in Figure 1.1). The children of any node in such a tree are
ordered, that is, the structure underlying our logic is in fact an ordered tree. Hence, from
an abstract point of view, our extended temporal logic may be characterised as a modal
logic of ordered trees.

Our logic provides modal operators working both along the branches of a tree, that
is, with respect to the level-of-abstraction dimension, and along the order declared over
the children of a node, that is, with respect to the temporal dimension. Given the
terminology of ordered trees, we can now give a more succinct characterisation of these
operators. The horizontal operators 2 and 3 refer to the righthand siblings of a node,
while e points to the immediate righthand neighbour (if any). Similarly, 2 and 3 may
be used to describe nodes that are lefthand siblings and e refers to a node’s lefthand
neighbour in the particular order declared over a node and its siblings. The parent
modality e points to the node immediately above a given node, while 2 and 3 range
over all its ancestors. The children of a node may be addressed using either 2 or 3,
while 2+ and 3+ also reach descendants that are not necessarily immediate vertical
successors of the reference node. On the whole, we end up with a new modal logic with
a simple and intuitive semantics based on ordered trees that may also be interpreted as
an extended temporal logic with a significant potential for important applications.

This thesis is devoted to the theoretical study of this new logic. The three main
chapters are concerned with (1) a precise semantic characterisation of the logic, (2) a
complementary axiomatic characterisation, and (3) a proof of its decidability. A more
detailed overview is given in the next section.

8 Chapter 1. Zooming in

Related modal and temporal logics. To a certain degree, our logic has the flavour of
a temporal interval logic, because it allows us to represent the decomposition of primitive
‘units of time’ (by adding children to a given node in an ordered tree). Therefore, logics
such as the modal interval logic of Halpern and Shoham [37] or Moszkowski’s ITL [58]
(Interval Temporal Logic) may be considered related formalisms. However, technically
we are still working with (single) points. The time periods are just a useful interpretation.
For the definition of the semantics of ‘genuine’ interval logics, on the contrary, we require
reference to two points (namely the endpoints of an interval). Under this perspective, our
logic may be classified as being simpler than the logics of either Halpern and Shoham or
Moszkowski, which (provided it is still expressive enough for a particular application) is
of course an advantage. As we shall see in Chapter 5, our logic is decidable, which is not
the case for (the full versions) of the aforementioned interval logics. On the downside, a
feature of temporal intervals that our logic cannot express is the concept of overlapping
intervals. For further discussion on this and related points, we refer to Chapter 6, where
we describe an embedding of a restricted interval logic similar to that of Halpern and
Shoham into the modal logic of ordered trees.

Another logic that allows for the decomposition of time periods is the metric and
layered temporal logic for reasoning about time granularities proposed by Montanari [56].
This logic is particularly suited for domains where reasoning about fixed time units and
their relation to each other is required. A particular model may, for instance, include
temporal domains representing days, hours, and minutes, respectively. The language of
this temporal logic provides so-called contextualised modalities to refer to any one of
these time granularities.

The logic that seems to come closest to our logic (that we are aware of) is probably
the logic of finite binary trees of Blackburn and Meyer-Viol [9] (later generalised to a
logic of finite trees [10]). Like ours, these logics are modal logics over frames that are
trees and they provide a similar set of modal operators. Important differences include
that the horizontal dimension in our logic need not be discrete and that branches may
be of infinite length. As we shall see in later chapters, these differences are significant,
both with respect to completeness and decidability results. Apart from such technical
differences, our interpretation of this kind of logic as an extended temporal logic (with
time running orthogonally to the tree structure, i.e. from left to right) is also new.

Related work on temporal logic specification. The application of temporal logics
to the specification of (reactive) systems started with the publication of Pnueli’s influen-
tial paper in 1977 [60].2 Since then a vast amount of literature has been published on this
subject and, more generally, in the area of applied temporal logics in software engineer-
ing. We shall make no attempt of providing a comprehensive review here, and are only

2Reactive systems (as opposed to transformational systems that compute an output for a given set

of inputs) are typically non-terminating and characterised by a high degree of interaction with their

environment. Examples include operating systems or communication protocols.

1.1 Adding a Zoom to Linear Temporal Logic 9

going to briefly mention a selection of works that are directly relevant to the particular
problem we have addressed here, namely the refinement of temporal logic specifications.

In our example in the first section, the problem of not being able to refine a given
specification was triggered by the use of the next-operator (rather than the less prob-
lematic diamond). Lamport [47] argues against the inclusion of a next-operator into
the temporal language altogether, on the grounds that it would add unnecessary and
unwanted expressive power. He argues that, while the next-operator refers to the next
point in time with respect to some (irrelevant) global clock, the truly interesting ‘next’
state would be the first state in the future where a change in the truth values of the
(relevant) atomic propositions can be observed. As we have seen earlier, some of the
technical problems of refining a given specification by means of adding additional states
can be avoided if we do not allow for any next-operators in our formulas. Barringer,
Kuiper, and Pnueli [6] go one step further by proposing a temporal logic based on the
reals rather than the natural numbers. This seems the more appropriate model of time
for a language without next-operators. However, other authors, such as Fiadeiro and
Maibaum [23] for instance, argue that the next-operator is a very intuitive construct
for describing the transition from one state to the next, which can greatly simplify the
development of a specification. It seems therefore desirable not to completely abandon
the next-operator.

In a different paper, Barringer et al. [5] have put forward a proposal for a temporal
logic that does include a next-operator and where some of the difficulties of combining
specifications are overcome in a different manner. This logic, which is based on a discrete
model of time, not only includes propositions that may or may not be true at any given
state in a model, but it also evaluates propositions over the set of edges between succes-
sive states. These so-called edge propositions allow for an explicit distinction between
transitions performed by that module and transitions performed by the environment. It
is then possible to specify conditions under which two given modules can be combined
(because they do not interfere with each other).

While the frameworks proposed both by Lamport and by Barringer et al. allow for the
combination of program modules, the resulting model does not reflect anymore how it has
been put together, i.e. it does not have a modular structure. Fiadeiro and Maibaum [23]
have addressed this problem by connecting different temporal logic models, each of which
corresponds to a particular module and is assumed to have a time granularity appropriate
for that model. This idea is not dissimilar to our zoom feature. However, Fiadeiro
and Maibaum do not introduce a new logic, but instead concentrate on methods for
transferring properties proved for one level of granularity onto the next level.

The works cited here all promote specific (temporal logic based) formalisms for the
specification of reactive systems. At this point, we should emphasise that this is not
at the centre of our own agenda. We have discussed problems with the refinement of
specifications in this chapter, because they provide a good illustration for the kind of
systems that can be modelled using our new modal logic. However, the main body of this

10 Chapter 1. Zooming in

thesis will be concerned with the theoretical study of our logic rather than its application
to the specification of reactive systems.

1.2 Thesis Overview

The remainder of this thesis is structured as follows.

Chapter 2. This chapter provides a general introduction to the area of modal and
temporal logics. It may be skipped by readers who are familiar with the basic concepts
of the field.

Chapter 3. This chapter is mostly concerned with the semantic characterisation of
our modal logic of ordered trees. The first section provides a formal definition of the
class of ordered trees as well as a definition of the syntax and semantics of our logic,
which we have only introduced informally so far.

The subsequent sections are aimed at demonstrating the expressive power of the logic.
We first show how a number of powerful operators, such as the difference operator, may
be defined within the logic. Another section discusses a number of correspondence results.
For instance, it is possible to give axioms that characterise the class of all ordered trees
for which the children of each node form a discrete order, or the class of all ordered trees
with branches of finite length. In yet another sequence of examples we show how we can
incorporate certain ontological concepts, such as the homogeneity of a proposition, into
our system when it is interpreted as an extended temporal logic.

In the second half of Chapter 3 we first introduce p-morphisms as a means of studying
the relation between models based on ordered trees and more general models. This leads
us to the definition of a class of modal frames we call loosely ordered trees, which provide
a sharper semantic characterisation of our logic than ordered trees. This result is also
relevant to our completeness proof in Chapter 4.

Chapter 4. This chapter is concerned with an axiomatic characterisation of the modal
logic of ordered trees. In the first section we put forward a set of axioms and inference
rules for the logic and in the second section we prove the validity of a number of useful
theorems that can be derived in this system.

Most of the chapter is devoted to proving completeness of the proposed axiomatic
system with respect to the model-theoretic semantics given in Chapter 3. Our complete-
ness result is restricted to the fragment of our logic excluding the transitive descendant
operators. Towards the end of the chapter we briefly discuss various options how one
may be able to extend this result to the full language.

Chapter 5. In this chapter we show that the modal logic of ordered trees is decidable.
This result is achieved via an embedding of our logic into the decidable monadic second-
order theory of two successor functions.

1.2 Thesis Overview 11

The first section of the chapter serves as an introduction to monadic second-order
logic. In subsequent sections we give different embeddings to show decidability of our
logic, first for two special cases and then for the logic in general. The two special cases
are interesting logics in their own right. The first one is the modal logic of finite binary
trees and the second one is the modal logic of discretely ordered trees.

Chapter 6. In the concluding chapter we propose an extension to the logic of ordered
trees by adding a number of until -style operators to the language. The subsequent
discussion includes the outline of an embedding of a (restricted) interval logic into this
extended modal logic of ordered trees.

Finally, we give a brief summary of the main results obtained and make suggestions
for future work in the area of modal logics of ordered trees.

Appendices. Chapter 6 is followed by two appendices, a bibliography of the literature
referred to in the text, and a detailed subject index. Appendix A discusses some of the
basic definitions on relations and linear orders, which play a central role in this work. A
number of sample derivations in the axiomatic proof system developed in Chapter 4 are
given in Appendix B.

Chapter 2

Modal and Temporal Logics

In this chapter we give a brief introduction to the area of (propositional) modal and
temporal logics. We start by introducing the basic modal language and explain how
it may be given different interpretations to allow for reasoning about such different
domains as knowledge, necessity, or time. We then discuss some of the fundamental
concepts surrounding the study of basic modal logics, including possible world semantics,
axiomatisations, correspondence theory, and the standard translation into first-order
logic. Most of this material would typically be covered by an introductory textbook
on modal logic. It is included here for the sake of completeness of our presentation.
Following this general exposition, we briefly discuss propositional linear temporal logic
and its application to the specification of reactive systems.

We assume familiarity with classical propositional logic, but not much else. In some
isolated places, we also refer to classical first-order logic, but a deeper understanding of
first-order logic is certainly not required to follow the main ideas of the text.

2.1 Introducing Modalities

Choosing the right logic. There is not just one logic; there are many. When choosing
one to, say, help solve a problem in a computing application, it is crucial to pick the
right one. The most widely known exponents of the (very broad) landscape of logics are
classical propositional and first-order predicate logic. First-order logic, in particular, is
very popular with computer scientists. Everybody knows it, everybody loves it, and you
can say pretty much everything you like in the usual first-order language. But expressive
power is not the only quality we should look for in a logic. Favourable computational
behaviour, for instance, would be another one. And here, first-order logic fails us. As
shown by Church in 1936 [16] (and independently by Turing [68]), the validity problem
for formulas of first-order logic is undecidable; that is, there can be no algorithm that
will tell us whether a given first-order formula is true under all possible interpretations
of the symbols appearing in that formula. This is bad news, certainly if our interest in
logic goes beyond using it merely as a representation language, but if we actually want to

13

14 Chapter 2. Modal and Temporal Logics

reason about the meaning of formulas. This is not to say that using first-order logic is a
bad thing in general. On the contrary, there are many examples where it turns out to be
precisely the right tool for the job. In other cases, however, full first-order logic is simply
too powerful and we can benefit from choosing a less expressive but more manageable
language.

The second most prominent exponent in the aforementioned landscape of logics is
classical propositional logic, the logic of truth tables. This logic is decidable and has
also a number of other advantages. Its semantics, for instance, is very simple. On the
other hand, for many applications the language of ‘not’, ‘and’, and ‘or’ is simply not
expressive enough.

Much of the work in non-classical logics is concerned with the study of systems that
(in some sense) lie between the two ‘extremes’ given by classical propositional and first-
order logic.1 The goal is to strike the right balance between computational complexity
(the lower the better) on the one hand and expressiveness (just about high enough
to be able to model the application domain in question) on the other. In Einstein’s
famous words: “Everything should be made as simple as possible, but not simpler.” As
for complexity, we take the view that decidability is a particularly desirable minimal
requirement. Another desideratum for a ‘good’ logic would be that it enjoys a simple
and intuitive semantics. That is, it should be easily understood what it means for
a formula to be ‘true’. Propositional modal logics are widely regarded as performing
particularly well with respect to these criteria. They extend classical propositional logic
with operators that permit us not only to distinguish between propositions that are either
true or false, but to speak about different modes of truth. To see what we mean by this,
let us first take a look at propositional logic and some of its limitations.

Propositional logic. In the language of classical propositional logic we can represent
simple statements such as the following:

If it rains, then the grass gets wet.

This is a complex proposition, which is made up of two simpler ones and a logical
connective. The first of these simpler propositions is ‘it rains’, the second is ‘the grass
gets (or simply: is) wet’. The above statement connects these two basic propositions by
expressing that the former (‘it rains’) implies the latter (‘the grass is wet’).

For practical reasons, when working with a formal logical system, we do not usually
manipulate statements in natural language directly, but rather use symbolic representa-
tions of them. For example, let the propositional letter P stand for ‘it rains’ and let
Q stand for ‘the grass is wet’. Then our statement is represented by the implication
P → Q. Other connectives of propositional logic include negation (¬), conjunction (∧),

1We should point out, that this is just one aspect of research into alternatives to classical logic. Other

directions of research include the study of languages that are even more expressive than first order logic,

others aim at devising less expressive systems that have particularly good computational properties.

Others, again, are just different.

2.1 Introducing Modalities 15

and disjunction (∨). The formula ¬P ∧Q, for instance, stands for the sentence ‘it does
not rain and the grass is wet’. The semantics of propositional logic is very simple. For-
mulas may either be true or false and the truth table for the principal connective of a
given formula determines the truth value of that formula given the truth values of its
subformulas. The propositional letter P being true, for instance, implies that P ∨Q must
be true as well (whatever the value of Q).

Necessity. A formula like ¬P ∨P must be true under any interpretation of the symbol
P , that is, it is a logical tautology. In other words, the formula ¬P ∨P is necessarily true.
We may also wish to express that our original formula P → Q is necessarily true. It is
certainly not for purely logical reasons (unlike ¬P ∨P), but provided P and Q are being
interpreted as ‘it rains’ and ‘the grass is wet’, respectively, then (at least in the context
of the weather forecast for planet Earth domain) it makes sense to postulate necessary
truth of P → Q. (Maybe, just maybe, in a world very different from ours the grass does
not get wet when it rains, but it seems reasonable not to include such a possibility into
our formal model.)

Can we express this idea of necessary truth in propositional logic? What if we simply
pick truth values for P and Q in such a way that P → Q evaluates to true? Inspection
of the truth table for the implication operator → reveals that this would amount to
considering a model where it is not the case that P has the truth value true and Q has
the truth value false. That is, we would describe a world where it happens not to be
the case that it rains and the grass stays dry at the same time. But this is conceptually
different from what we wanted to express, namely that it is necessarily the case that
rain implies wet grass. The latter means that there is no possible scenario where it rains
without the grass getting wet in the process. The difference becomes even clearer when
we compare this situation with the case of the simpler formula P . A model in which P

has the truth value true describes a world in which it rains. This does not entail that it
rains necessarily, that is, in every possible world.

So while we can distinguish actual truth from necessary truth, classical propositional
logic is not rich enough a language to model this distinction.

Modes of truth. Actual truth and necessary truth are just two examples for the
different modes of truth a proposition may take. To exemplify a few of them, let us move
away from the world of rain and wet grass and consider a somewhat brighter subject:
the Easter bunny. It seems safe to assume that, in our world, there is no such thing:

The Easter bunny does not exist.

This is a (negative) statement on the actual truth value of the basic proposition ‘the
Easter bunny exists’. Let P stand for ‘the Easter bunny exists’. Then the above statement
may be written (in propositional logic) as ¬P . However, ¬P is not necessarily true, in
the sense that we may well imagine a world where there is an Easter bunny:

16 Chapter 2. Modal and Temporal Logics

It is possible that the Easter bunny exists.

Mixing symbolic notation and English for the moment, this statement may be abbre-
viated as ‘possibly P ’. We can observe some kind of duality between the notions of
necessity and possibility. What is possibly (or conceivably) true (like the existence of the
Easter bunny) is not something that is necessarily false. Or the other way round: what
is necessarily true cannot possibly be false. So we can distinguish two alethic modes of
truth that are interrelated: necessary truth and possible truth.

Now, while not everyone would agree with the previous statement regarding the
possibility of the existence of the Easter bunny, some people (most of them small children)
undoubtedly do believe in it. So does John, for instance:

John believes that the Easter bunny exists.

In our semi-formal notation this may be represented as ‘john-believes P ’. This does not
contradict the fact that in our actual world the Easter bunny does not exist. Beliefs do
not always match reality. The above statement is an example for the doxastic mode of
truth a proposition may take.

There is an important difference between beliefs and knowledge. Something that is
known (in the true sense of the word) needs to be actually the case. So to claim that
John, Mary, or whoever, knows that the Easter bunny exists would be a lie. Still, Mary,
for instance, may neither know about the existence nor the non-existence of the Easter
bunny. That is, the following would be an admissible sentence regarding Mary’s state of
knowledge:

Mary considers it possible that the Easter bunny exists.

That is, assuming that the Easter bunny exists is not at odds with Mary’s knowledge.
So again, in analogy to the case of necessity and possibility, we can observe a duality
between what Mary knows (what is necessarily true according to Mary) and what she
considers plausible (what is possibly true according to Mary). These are epistemic modes
of truth.

So far we have seen that the Easter bunny does not exist, that this is not necessarily
so, that John believes otherwise, and that Mary’s state of knowledge does not allow her
to rule out the possibility of its existence. And if gene technology is worth even a fraction
of the amounts of money invested into it every year, then surely:

At some point in the future, the Easter bunny will exist.

This is an example for a sentence where we are interested in the temporal mode of truth
of our basic proposition P . We may denote this as ‘sometime P ’. Dual to this, we may
also make statements regarding propositions that are true always in the future.

The various modes of truth we have seen examples for are summarised in Table 2.1.
We can distinguish four pairs of modalities, each of which gives rise to a different modal
logic. First of all, there is alethic modal logic, the logic of necessity and possibility. Then

2.1 Introducing Modalities 17

Logic Universal Modality Existential Modality

Alethic (necessity) necessarily possibly
Doxastic (belief) John believes John considers it possible that
Epistemic (knowledge) Mary knows Mary considers it possible that
Temporal (time) always in the future at some point in the future

Table 2.1: Modes of truth

there are doxastic logic and epistemic logic which allow us to reason about the beliefs and
the knowledge, respectively, of a particular person (or agent). Finally, there is temporal
logic to speak about propositions that change their truth values over time.2

Modalities have either universal or existential character. In the case of the two alethic
modalities, ‘possibly’ is an existential operator, because it postulates the existence of
some scenario (or world) where the proposition in question holds. Necessary truth, on
the other hand, is a notion with universal character, because it requires the respective
proposition to be true in every possible scenario under consideration. The situation for
epistemic and doxastic operators is similar. Something, say P , is possible according to,
say, Mary iff there exists a state of affairs that she considers possible where P is satisfied.
Mary knows P iff the proposition P is true in every situation she considers possible.3

Finally, in temporal logic the universal modality ‘always’ refers to all time points in the
future, whereas ‘sometime’ postulates the existence of at least one time point where a
particular proposition holds.

Syntax of the basic modal language. We have now seen a number of examples
demonstrating the diversity of domains modal logics are being applied to. We have also
seen that these very different domains have more in common than one would probably
have expected at first. In each of the four domains we considered, we observed the need
to introduce ‘operators’ of both universal and existential character. And indeed, a single
(basic) formal language is sufficient to work in all four of these domains (and many
more). We are now going to define this language, which is an extension of the language
of classical propositional logic, before we are going to move on to discuss its semantics
in the next section. In short, we obtain the basic modal language by adding two new
operators to propositional logic: 2 (pronounced box) and 3 (pronounced diamond). As
we shall see later on, box-operators are used to represent universal modalities, while

2This is not an exhaustive list. There are many other modal logics, for different application domains,

and there are also several different variants of those that we have mentioned here.
3At this point it is interesting to note that the English language does not really allow for a simple and

clear distinction between the existential modalities referring to knowledge on the one hand and belief on

the other. In both cases the best transliteration seems to be ‘the agent considers it possible that’. Under

the doxastic reading, the existential modality is intended to refer to the lack of a contradiction with the

agent’s beliefs, while in the context of epistemic logic, considering something to be possible amounts to

that something not contradicting one’s knowledge.

18 Chapter 2. Modal and Temporal Logics

diamond-operators stand for existential modalities.
Now for the formal definition. Given a fixed set of propositional letters, the set of

well-formed formulas of the basic modal language can be defined inductively as follows:

(1) Propositional letters and the special symbols > and ⊥ are formulas.

(2) If ϕ and ψ are formulas, so are (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ), (3ϕ),
and (2ϕ).

(3) There are no other formulas in this language.

The formulas from item (1) are the atomic propositions of our language. Recall that
> (verum) stands for a proposition that is true under any interpretation, while ⊥ (fal-
sum) represents a proposition that can never be true. The second part of the definition
specifies how we can build compound formulas from simpler ones using the propositional
connectives and the two modal operators 3 and 2. The third condition simply states
that this is the only way of constructing well-formed formulas. Here are some examples
for formulas belonging to the basic modal language:4

2(P → Q), 2P ↔ ¬3¬P, 2P → 22P, ¬P ∨ P

For the alethic reading, the first of these stands for ‘it is necessarily the case that P
implies Q’. The second one says that P is necessarily true iff it is not the case that it is
possibly false. This is the duality principle which we have already touched upon before.
It also applies in the case of temporal logic: P will always be true iff it is not the case
that at some point in the future P will be false. And so on. To make this discussion of
the meaning of modal formulas precise we have to define a formal semantics first. This
is our objective for the next section.

2.2 Possible World Semantics

Possible worlds. In the previous section we have already sneaked in, through the
backdoor as it were, the idea that something is necessarily true iff it is true in all
possible worlds. This idea goes back to Leibniz, who — besides introducing this very
useful metaphor — famously argued that, not only, our actual world is the best of
all possible worlds, but that this is in fact an expression of the benevolence of some
omnipotent deity. We will be concerned with rather more worldly business here.

The possible worlds metaphor is also applicable to the other domains we have dis-
cussed in the previous section. For instance, John believes ϕ iff ϕ is true in all worlds
that are possible according to John’s beliefs. And if we think of time as a ‘fourth dimen-
sion’, that is, if we model time as a sequence of worlds (snapshots of our world taken at
consecutive points in time) then we could say that something will always be true iff it will
be true in all ‘future worlds’. A difference between the case of alethic logic and the other

4We are going to drop unnecessary brackets whenever possible.

2.2 Possible World Semantics 19

domains is that in the former we really mean all possible worlds, while in most other
cases we mean all those possible worlds that meet certain requirements, such as lying in
the future (rather than the past) or being possible according to John (but maybe not
according to Mary). Which worlds we intend to refer to in any given situation depends
on the state of the actual world we are in at that moment. Which worlds are relevant
from the standpoint of a particular world (the actual world in a given situation) can be
modelled by means of a binary relation over possible worlds. Those other worlds that are
accessible from the current world via this relation are those that we intend our modal
operator to refer to.

Combining Leibniz’ idea of possible worlds with this notion of an accessibility relation
may stretch the imagination a little, or as Hughes and Cresswell put it in the first edition
of their Introduction to Modal Logic [41]:

“This notion of one possible world being accessible to another has at first sight
a certain air of fantasy or science fiction about it.”

Still, these kinds of relational structures are probably what is most characteristic about
(the semantics of) modal logics and modern accounts of modal logic tend to emphasise
this aspect rather than the philosophical roots of the field. This view is epitomised by
the “first slogan” in the preface of the recent textbook on modal logic by Blackburn,
de Rijke, and Venema [8]:

“Modal languages are simple yet expressive languages for talking about rela-
tional structures.”

We have seen what these languages (or rather its most basic representative) look like at
the end of the previous section. Now we turn to the formal definition of the relational
structures themselves.

Frames and models. A frame is a pair F = (W,R), where W is a non-empty set and
R is a binary relation over W . The elements of W are called worlds and R is called the
accessibility relation of F . Depending on the application domain, R may be required to
have certain properties, such as being transitive or reflexive. For the time being, however,
we do not make any assumptions of this kind.

Frames are the relational structures mentioned before. We now have to define how
formulas of our basic modal language relate to these structures. To this end we introduce
the notion of a model.5 Models specify, in the first instance, which propositional letters
are true at which worlds. Formally, a model is a pair M = (F , V), where F = (W,R)
is a frame and V is a function from propositional letters to sets of worlds, that is, to
subsets of W . The function V is called the valuation function of M. Intuitively, we
think of V (P) as the set of worlds at which the atomic proposition P is true. We are
soon going to make this idea more precise.

5Models in modal logic are also known as Kripke models, a reference to the work of Kripke who

established possible world semantics as a formal tool for the analysis of modal logics in his seminal paper

from 1963 [45].

20 Chapter 2. Modal and Temporal Logics

Definable operators. In propositional logic, it is not necessary to explicitly provide
semantics (that is, to give a truth table) for all the connectives of the language. Instead,
we may treat some of them as definable operators. Negation and conjunction alone, for
instance, form a functionally complete set of operators, that is, all of the other propo-
sitional connectives can be defined in terms of them. This approach has the advantage
that we only need to consider these two core operators during formal proofs and the like,
because we can always translate a general formula into a formula using only negation
and conjunction. We may rewrite formulas involving propositional connectives other
than negation and conjunction as follows:

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ)
ϕ→ ψ = ¬ϕ ∨ ψ
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ)

Additionally, we may treat the symbol ⊥ as an abbreviation for ¬>. Hence, we only
have to give semantics for the operators ¬, ∧, 3, and 2 and the special proposition >
here. (In fact, as we shall see later on, the modal operator 2 may also be considered a
defined operator.)

Truth in a model. Given the notion of a model introduced before, we can now give
a formal definition of the semantics of our basic modal language. Let F = (W,R) be
a frame and let M = (F , V) be a model based on that frame. We write M, w |= ϕ to
express that the formula ϕ is true at world w ∈ W in that model. (Alternatively, we
may say that ϕ holds or is satisfied at w.) The truth relation |= is defined inductively
as follows:

(1) M, w |= P iff w ∈ V (P) for propositional letters P ;

(2) M, w |= > (i.e. > is true at every world in any model);

(3) M, w |= ¬ϕ iff M, w 6|= ϕ (i.e. iff M, w |= ϕ is not the case);

(4) M, w |= ϕ ∧ ψ iff both M, w |= ϕ and M, w |= ψ;

(5) M, w |= 3ϕ iff there exists a w′ ∈W such that (w,w′) ∈ R and M, w′ |= ϕ;

(6) M, w |= 2ϕ iff for all w′ ∈W with (w,w′) ∈ R we have M, w′ |= ϕ.

We can now infer the semantics of the definable operators such as the connective for
disjunction. For instance, we have M, w |= ϕ ∨ ψ iff M, w |= ¬(¬ϕ ∧ ¬ψ) (by rewriting
of the disjunction) iff it is not the case that neither M, w |= ϕ nor M, w |= ψ hold (by
definition of the semantics of the negation and the conjunction operators) iff M, w |= ϕ

or M, w |= ψ (by application of the respective de Morgan law on the meta-level).
Observe that we have M, w |= 2ϕ iff M, w |= ¬3¬ϕ, i.e. ϕ is true at all accessible

worlds iff it is not the case that ϕ is not true at at least one accessible world. This
equivalence provides a formal basis for the duality of the box- and the diamond-operator

2.2 Possible World Semantics 21

•

•P,Q • P

•
Q

•

•P,Q • P

•
Q

•
Q

• P

• Q

• P

__?????????

??���������

??���������

__?????????

__?????????

??���������

OO OO

OO

OO
��

Figure 2.1: Three models

we have already pointed out earlier. It also shows that we could treat the box-operator
as a defined operator, just as disjunction and implication:

2ϕ = ¬3¬ϕ

Examples. Figure 2.1 shows three sample models. The one on the lefthand side, for
instance, is based on a frame with four worlds. The accessibility relation is shown as
arrows between worlds. The valuation function is indicated by the propositional letters
written next to the worlds. In these examples we consider a language with only two
propositional letters: P and Q. Neither of them happens to hold at the first world at the
bottom in the model on the lefthand side. This world has two successors. Both P and Q
are true at the left one, while only P holds at the one to the right. The fourth world (at
the top of the frame) again only satisfies Q. Two examples for formulas that are true at
the first world of this model would be 2P and 3Q, because P holds at every accessible
world, while there is at least one successor world at which Q is true. The formula 3Q is
also true at the first world in the second model, but 2P is not. And so on.

It is interesting to observe that our basic modal language is not powerful enough to
‘distinguish’ between the first and the third sample model. Precisely the same formulas
hold at the world at the bottom of either one of the two models. To see this, consider
that, if we look along the accessibility relation from the standpoint of that first world and
if we are only interested in either the existence of an accessible world at which certain
propositions are true or in universal properties of all accessible worlds, then the two
models indeed ‘look’ the same. For instance, for both first worlds it is the case that Q
is satisfied at all worlds that are accessible in two steps. The appropriate technical term
to describe this phenomenon is to say that the first model is a p-morphic image of the
third one. P-morphisms are discussed in some detail in the later parts of Chapter 3.

We should point out that the examples from Figure 2.1 are rather simple models
that have been selected purely for the purpose of illustrating the definition of truth given
before. None of them appears to be of much use with respect to any of the four application
domains (i.e. reasoning about necessity, belief, knowledge, or time, respectively) discussed

22 Chapter 2. Modal and Temporal Logics

earlier. Only models (or rather frames) with certain properties are admissible for these
specific modal logics. We are going to see what these properties are in the next section.

Satisfiability and validity. The formula 2P∧3¬P does not hold at any of the worlds
in any of our sample models from Figure 2.1. In fact, this formula can never be true
at any world, whatever the model. To see this, recall the semantics of 2P ∧ 3¬P . On
the one hand, the first conjunct requires P to be true at every accessible world. On
the other hand, the second conjunct postulates the existence of at least one accessible
world at which P is false. That is, this formula would require the existence of a world
that is propositionally inconsistent (as it would have to satisfy both P and ¬P). This is
not possible (see definition of the truth relation |= for the negation operator). We call
formulas such as 2P ∧3¬P unsatisfiable formulas.

The general definition of satisfiability goes as follows. A formula ϕ is called satisfiable
iff there are a model M and a world w in that model such that M, w |= ϕ holds. If ϕ
is true at all worlds in a given model M then we say that ϕ is globally true in M. This
is written as M |= ϕ. If ϕ is true at every world in every model then ϕ is called a valid
formula. This is written as |= ϕ. If ϕ is at least true at every world in every model based
on a frame with certain properties (such as having a transitive accessibility relation, for
instance) then we say that ϕ is valid in that class of frames. If ϕ is true at every world
in every model based on a particular frame F , then we say that ϕ is valid in that frame
and write F |= ϕ.

Recall that a logic is said to be decidable iff there exists a general algorithm that
will tell us for any given well-formed formula ϕ of the respective language whether ϕ is
valid, that is, whether ϕ belongs to the set of formulas that ‘make’ this logic, or not (in
finite time). Alternatively, we may also adopt an algorithm that decides whether ϕ is
satisfiable or not, because the problems of deciding validity and of deciding satisfiability
are closely related. A formula ϕ is valid iff its negation ¬ϕ is not satisfiable. Much of
Chapter 5 is devoted to a proof of decidability for our logic of ordered trees.

Multi-modal logics. For certain applications we may require a logic with more than
one pair of modal operators. In the case of epistemic logics, we may, for instance, wish
to model the knowledge of two agents, say, Mary and John (rather than just a single
agent as before). On the semantic level, we introduce one accessibility relation for each
mode of truth we want to include in the model. On the syntactic level, we introduce a
box- and a diamond-operator for each one of these accessibility relations. The various
definitions generalise in the obvious way.

The modal logic of ordered trees studied in this thesis is an example for such a
multi-modal logic.

Translation into first-order logic. An alternative way of giving semantics to a new
logic would be to define a translation from formulas of that logic into another well-
understood system. Here we are going to give the so-called standard translation from

2.2 Possible World Semantics 23

general multi-modal logics into classical first-order logic. Such an embedding from one
logic into the other also shows that the basic (multi-)modal language cannot be more
expressive than first-order logic. (This is a good thing, because otherwise we could not
hope for decidability.)

Below we are going to give an inductive definition of a translation function st from
modal formulas to first-order formulas. Every propositional letter P of the modal lan-
guage will be translated into a unary predicate P ′.6 For every pair of modal operators
2R and 3R pertaining to an accessibility relation R we introduce a binary predicate R′.
Every formula (with the exception of >) will be translated into a first-order formula with
a single free variable. The name of that free variable appears as an index to the transla-
tion function. For instance, we use stx to indicate that the resulting first-order formula
will have the free variable x. Intuitively, this variable stands for the worlds at which
the modal logic counterpart of the first-order formula is true. The standard translation
function is defined as follows:

stx(P) = P ′(x) for propositional letters P
stx(>) = >

stx(¬ϕ) = ¬ stx(ϕ)
stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ)
stx(3R ϕ) = (∃y)[R′(x, y) ∧ sty(ϕ)]
stx(2R ϕ) = (∀y)[R′(x, y) → sty(ϕ)]

Here, each time we translate another diamond- or box-operator we have to choose a new
bound variable y. The standard translation of modal formulas involving any of the other
propositional connectives in the language may be inferred from the definitions of these
operators in terms of negation and conjunction.

As an example, we translate the modal formula 2(P ∧ 3Q) into first-order logic.
If we use the unary predicates P ′ and Q′ as translations of the propositional letters P
and Q, respectively, and if we use the binary predicate R′ to represent the accessibility
relation underlying the pair of modal operators 2 and 3, using the standard translation
will yield the following result:

(∀y)[R′(x, y) → P ′(y) ∧ (∃z)[R′(y, z) ∧Q′(z)]]

Here, x is the free variable. Note that we have used a third variable name, namely
z, for the translation of the second modal operator appearing in the input formula.
Alternatively, we could have reused the variable name x at this point. The resulting
formula would then have been a first-order formula with only two distinct variable names
(x and y). Inspection of the translation function st shows that, in fact, this is always
possible: any formula of the basic modal logic can be translated using at most two

6In order to clearly distinguish the language used for modal formulas from that of first-order logic,

we use letters with accents (such as P ′) to denote first-order predicate symbols. Of course, in practice

this would not be necessary.

24 Chapter 2. Modal and Temporal Logics

variable names. In other words, our basic modal logic can be embedded into the two-
variable-fragment of first-order logic. The significance of this observation is that the
two-variable-fragment is known to be decidable.7 Hence, the basic modal logic must be
decidable, too.

Our decidability proof for our modal logic of ordered trees given in Chapter 5 is
also based on the embedding into another system that is known to be decidable (in this
case the second-order theory of two successor functions). A translation of our logic into
first-order logic (over the theory of ordered trees) is given in Chapter 6.

2.3 Axioms and Correspondences

Axiomatic characterisation. In the previous section, we have seen how we can char-
acterise the basic modal logic in terms of its model-theoretic semantics. Now we are going
to complement this view by giving an axiomatic (or proof-theoretical) characterisation
of the same logic. An axiomatisation of a logic is a collection of axioms and inference
rules. The axioms are the basic formulas that are taken to be ‘true’ and the rules can be
used to infer further such formulas. Formulas that can be derived in an axiomatic system
are called theorems of the system. A formula is called consistent iff it is not possible to
derive its complement.

Intuitively, the concept of consistency corresponds to the semantic concept of satis-
fiability, while the concept of theoremhood corresponds to semantic validity. Showing
that these concepts really coincide, that is, showing that the semantic and the axiomatic
characterisation of a logic match can provide deep insights into either one of them. We
call an axiomatisation sound (with respect to a given semantic characterisation) iff every
satisfiable formula is consistent. Dual to the concept of soundness is that of completeness.
We call an axiomatisation (weakly) complete iff every consistent formula is satisfiable.8

Axioms and rules. Modal logic extends classical propositional logic. In particular,
any formula that is a theorem of classical propositional logic (i.e. a tautology) will also be
a theorem of the basic modal logic. Furthermore, any formula that we can construct by
uniformly replacing propositional letters in a classical tautology by a well-formed formula
will be a theorem. For instance, ¬P ∨ P is a tautology and 3(ϕ ∧ ψ) is a well-formed
modal formula. Hence, the formula ¬3(ϕ ∧ ψ) ∨3(ϕ ∧ ψ) will be a theorem.

We are only going to give those axioms of the basic modal logic here that go beyond
classical logic. In fact, there are only two of them. The first one simply encodes the
duality of the box- and the diamond-operator which we have already discussed earlier:

(Dual) 2A↔ ¬3¬A

7This was first shown by Scott in 1962 [63], for first-order logic without equality. Decidability of the

two-variable-fragment with equality is due to Mortimer [57] (see also [11]).
8In Chapter 4 we also discuss the related concept of strong completeness (see page 106).

2.3 Axioms and Correspondences 25

That is, 2A↔ ¬3¬A is a theorem of the basic modal logic and so is any formula that we
can construct by substituting a well-formed formula for the letter A in this axiom. This
matches our earlier definition of the semantics of the two modal operators. A formula
such as A will be true in all accessible worlds iff it is not the case that it is not true in
some accessible world.

While the duality axiom is essentially a definition of one modal operator in terms of
the other, the second modal axiom really tells us something about the properties of our
modal operators:

(K) 2(A→ B) → (2A→ 2B)

Axiom (K) is also known as the distribution axiom, because it expresses that we may
distribute the box-operator with respect to an implication.9 Again, we can easily verify
that this is a sound axiom: whenever A→ B is true in all accessible worlds and we then
find that also A is true in all accessible worlds, we may conclude that the consequent B
must be true in all accessible worlds as well.

There are three inference rules in the system. The first one is the rule of uniform
substitution, which is familiar form classical propositional logic. It states that whenever
we have derived a particular theorem we may uniformly substitute any one propositional
letter in that formula by an arbitrary well-formed formula of our modal language and
we obtain another theorem of the system. The second rule of inference is the well-
known modus ponens, which says that whenever an implicational formula as well as its
antecedent are theorems, so is its consequent:

A, A→ B

B

The only strictly modal rule of the system is the so-called generalisation rule, which
is also known as the rule of necessitation, a reference to the alethic interpretation of
the modal box-operator. The rule states that whenever a formula A is known to be a
theorem then 2A will be a theorem as well:

A

2A

To see that this rule is semantically valid we make the following observation. If A is a
theorem then A must be true at every world in any model. Hence, A will certainly be
true at all worlds accessible from some other world. But the latter is the truth condition
we have used to semantically characterise the box-operator, i.e. 2A will also be true at
any world in any model.

This axiomatic system is known to be complete with respect to the semantics defined
in the previous section, that is, any formula for which we cannot derive its complement
must be a satisfiable formula. In other words, any formula that is valid can be derived.

9The name of the axiom (K) is generally understood to refer to Kripke, because it is characteristic

for the most basic modal logic that can be interpreted using Kripke models [45].

26 Chapter 2. Modal and Temporal Logics

We are not going to prove this result here. (A proof may, for instance, be found in [8].)
Chapter 4 is devoted to these issues as far as our modal logic of ordered trees is concerned.
It also outlines the general approach of obtaining completeness results by constructing a
so-called canonical model.

Example. As an example, we demonstrate how the formula 3(A∨B) → 3A∨3B can
be derived from the axioms of the calculus just presented, that is, how it can be shown to
be a theorem. We first observe that it is easily seen to be semantically valid: whenever
there is an accessible world in which either A or B is true then it will also be the case that
there is either an accessible world satisfying A or there is an accessible world satisfying
B. Now let us see how we can get to the same result on the syntactic level. The proof
steps in the following derivation should be mostly self-explanatory. Some steps that do
only involve simple propositional reasoning are not carried out in full detail, but we
could easily fill in the missing bits. To begin with, we have to make a good guess what
instantiation of an axiom or a propositional tautology may lead to the desired result.
Here is our derivation:

(1) 2(¬A→ (¬B → ¬A ∧ ¬B)) → (2¬A→ 2(¬B → ¬A ∧ ¬B)) from (K)
(2) ¬A→ (¬B → ¬A ∧ ¬B) propositional tautology
(3) 2(¬A→ (¬B → ¬A ∧ ¬B)) from (2) by generalisation
(4) 2¬A→ 2(¬B → ¬A ∧ ¬B) from (1) and (3)
(5) 2(¬B → ¬A ∧ ¬B) → (2¬B → 2(¬A ∧ ¬B)) from (K)
(6) 2¬A ∧2¬B → 2(¬A ∧ ¬B) from (4) and (5)
(7) ¬2(¬A ∧ ¬B) → ¬2¬A ∨ ¬2¬B from (6)
(8) 3¬(¬A ∧ ¬B) → 3A ∨3B from (7) and (Dual)
(9) 3(A ∨B) → 3A ∨3B from (8)

In practice, axiomatic derivations can be difficult to find. One usually has to work
backwards, starting from the theorem to be derived.

Additional axioms for specific logics. As we have already observed in the previous
section, not all modal frames are suitable for reasoning about, say, knowledge. Similarly,
not all formulas that are consistent with respect to the basic axiomatic system presented
in this section seem appropriate once we assign specific meaning to our modal operators.
As an example, consider the formula 2P ∧ ¬P . This formula is consistent, because its
negation is not derivable in our proof system.10 But do we want it to be consistent, for
instance, when working within an epistemic logic?

If we interpret the universal modality 2 as ‘Mary knows’, then our formula 2P ∧¬P
reads: ‘Mary knows P but P is not true’. This is certainly not compatible with our

10This should be intuitively clear by inspection of the axioms and proof rules available to us (but a

truly formal argument why this is not possible is certainly more difficult). Going back to semantics, it is

very easy to see that 2P ∧ ¬P is also a satisfiable formula. All that is required is a model with a world

where P is false but true at every accessible world.

2.3 Axioms and Correspondences 27

understanding of the notion of knowledge. Anything that is known (by Mary or whomever
else) in the true sense of the word must in fact be the case. We can integrate this idea
into our proof system by adding the following axiom:11

(T) 2A→ A

Postulating this axiom (for epistemic modal logics) means postulating veridicality of
Mary’s knowledge: her knowledge accurately reflects the actual state of her environment.
Given this additional axiom, 2P ∧¬P is easily seen to be inconsistent. Applying modus
ponens to 2P and a suitable instantiation of (T) yields P , which contradicts the second
conjunct ¬P . Axiom (T) is also desirable when reasoning about necessity. Surely,
everything that is necessarily true will also be actually true. For doxastic logic, on
the other hand, the situation is different. Not every proposition believed to be true by
John will in fact be true.

Next, let us consider the following axiom that may also arguably be added to our
proof system:12

(4) 2A→ 22A

In the context of reasoning about an agent’s knowledge, this axiom embodies the notion
of positive introspection. It expresses that everything that is known must also be known
to be known. Axiom (4) also makes sense for the three other areas of application we
have discussed earlier. The alethic reading would be that whenever A is necessarily true
then this is necessarily the case. Under a doxastic interpretation, it states that what is
believed is believed to be believed. Finally, in temporal logic, axiom (4) expresses that
whenever A will be true always in the future, then also always in the future it will be
the case that always in the future A will be true.

In epistemic logic, related to positive introspection is the concept of negative intro-
spection. We say that an agent is capable of performing a negative introspection of its
knowledge iff whenever it does not know about a proposition A then it does know that
it does not have this piece of knowledge. This property can be expressed by means of
the formula ¬2A → 2¬2A. If we uniformly substitute A by ¬A in this formula and
then use the duality axiom to rewrite combinations of negation and the box-operator by
diamond-operators, we end up with the following (neater version of this) axiom:13

(5) 3A→ 23A

The concept of negative introspection is not generally accepted as a property of knowl-
edge. That is, there are epistemic logics that include axiom (5) and there are others that
do not include it. Being aware of what one does not know (as in the case of negative

11The name of axiom (T) goes back to the work of Feys [21, 22] who first described a logical system

(“la logique t”) centred around this axiom (quoted after [15]).
12The name of this axiom is a reference to the work of Lewis [49]. Axiom (4) is the characteristic

axiom in S4, the fourth of his logical systems of strict implication.
13Axiom (5) is characteristic for S5, Lewis’ fifth system of strict implication; hence the name [49].

28 Chapter 2. Modal and Temporal Logics

introspection) arguably requires a higher state of consciousness than merely being aware
of what one does know (as for positive introspection). In the case of belief, i.e. for dox-
astic logics, the situation is less critical. If John does not believe in the truth of A then
he can be expected to also believe that he does not believe in A.

For alethic logic, axiom (5) seems reasonably acceptable: if something is possibly
true then this is necessarily so. For temporal logic, however, we clearly have to reject
axiom (5). It is not the case that, if A will be true at some point in the future, then this
will remain so forever.

We have mentioned on more than one occasion that the notion of belief is weaker than
that of knowledge, in the sense that what is believed is not necessarily required to be
true. Nevertheless, a rational agent will not believe just about anything. In particular,
it seems reasonable to postulate that a rational agent would not believe in a proposition
that is logically inconsistent. In this case, we should adopt the formula ¬2⊥ as an axiom.
The same is true for both alethic and epistemic logics: what is inconsistent can hardly
be necessarily true or ‘known’ to be true by a rational agent. Exploiting the duality of
2 and 3, we can rewrite the formula ¬2⊥ as follows:14

(D) 3>

The temporal interpretation of (D) is clear: it embodies the concept of an endless future;
for any point in time there always still exists a later point. Time never stops. This
will be a useful assumption for most applications, but whether or not to adopt it in
a particular situation is, as ever, entirely up to the logic engineer devising the formal
system in question.

Naming conventions for standard modal logics. The axioms we have introduced
in this section form the basis of some of the most important systems of basic modal
logic. The logic determined by axiom (K), together with the duality axiom and the set
of all classical tautologies as well as modus ponens, the generalisation rule, and the rule
of uniform substitution is known under the name of K. This is the logic we have so far
referred to as ‘the’ basic modal logic. The names of other logical systems can be derived
by appending the letters (or numbers) referring to the chosen additional axioms at the
end of the name of a logic. For instance, the logic KT4 is the modal logic we get by
adding axioms (T) and (4) to the basic calculus of K. Besides this systematic naming
scheme, also a number of rather more traditional names are being used for particular
basic modal logic systems. The logic KT4, for instance, is usually referred to as S4,
while KT5 is better known as S5. These are the original names of Lewis’ systems of
strict implications [49].

It follows from our discussion of the various additional axioms presented here, that S5
is a system that is appropriate for reasoning about alethic modes of truth,15 while KD45

14The name of axiom (D) stems from its central role in deontic logic, another important branch of

modal logics. Deontic logics are used to formalise concepts such as obligation and permission [3].
15Axioms (D) and (4) are derivable in S5.

2.3 Axioms and Correspondences 29

is an example for a doxastic logic. Both S4 and S5 may serve as epistemic logics that
allow us to model the knowledge of a single agent (the latter only if we are prepared to
accept negative introspection). However, no combination of the simple axioms presented
here seems to be strong enough to adequately characterise a system of temporal logic.

Indeed, axiomatising temporal logics is typically more difficult than axiomatising
various other systems of modal logic. Chapter 4 addresses some of the issues involved in
the context of our extended temporal logic based on ordered trees.

Correspondence theory. As we have just seen, the axiomatic approach can be very
helpful in making certain characteristics of modalities, such as veridicality or positive
introspection in the case of an epistemic interpretation, precise. On the other hand,
the semantic view often provides the better intuitions when we think about what is
true, can be true, or must be true. For instance, it is usually more convenient to think
about satisfiability and the existence of models rather than consistency and the lack
of axiomatic derivations. To bring these two perspectives on modal logic together once
again, in the remainder of this section, we shall discuss the question of how the additional
axioms introduced earlier are reflected in the structure of the corresponding models.

As we shall see, each one of them, in fact, corresponds to a simple (and intuitive)
property of the underlying accessibility relation. This object of study in modal logics is
known as correspondence theory [69].

The case of reflexive frames. Axiom (T), for instance, which we have introduced
earlier, characterises the class of reflexive frames, i.e. frames with a reflexive accessibility
relation. Recall that (T) stands for the formula 2A → A. By saying that this formula
characterises the class of reflexive frames we mean, more concretely, the following:

Claim: Let F = (W,R) be a frame. Then (T) is valid in F iff R is reflexive.

How can we prove such a correspondence result? Showing that reflexivity of the acces-
sibility relation associated with a particular frame implies validity of (T) in that frame
is the easier part. In short, we have to verify that 2A→ A is true at every world in any
model based on a reflexive frame. So let F = (W,R) be a frame with a reflexive accessi-
bility relation R. By definition of the notion of frame validity, showing that 2A→ A is
valid in F amounts to showing that M, w |= 2A→ A holds for every model M = (F , V)
based on the frame F and every world w ∈W . So let M = (F , V) be an arbitrary model
based on F and let w be an arbitrary world in W . To prove that M, w |= 2A → A

holds, we assume M, w |= 2A and try to infer M, w |= A. The former is the case iff
M, w′ |= A holds for all w′ ∈ W with (w,w′) ∈ R. This is where our premise of the
reflexivity of the accessibility relation comes into play. Given that R is reflexive, we have
(w,w) ∈ R, i.e. M, w |= A must hold. That is, we have shown that 2A→ A will be true
in any model M based on the frame F and at any world w in that frame. Hence, (T) is
valid in F as claimed.

30 Chapter 2. Modal and Temporal Logics

Axiom Frame Condition

(T) 2A→ A (∀x)R(x, x) (reflexive)
(B) A→ 23A (∀x)(∀y)[R(x, y) → R(y, x)] (symmetric)
(4) 2A→ 22A (∀x)(∀y)(∀z)[R(x, y) ∧R(y, z) → R(x, z)] (transitive)
(5) 3A→ 23A (∀x)(∀y)(∀z)[R(x, y) ∧R(x, z) → R(y, z)] (euclidean)
(D) 3> (∀x)(∃y)R(x, y) (serial)

Table 2.2: Basic correspondences

Now for the other direction. Suppose (T) is valid in the frame F = (W,R), i.e.
2A → A is true in every model based on F at every world in the frame. We need to
show that R must be a reflexive relation. For the sake of contradiction, assume this is
not the case, i.e. there exists a world w ∈ W such that (w,w) 6∈ R. We are going to
use this world w to define a valuation function V such that 2A → A is not satisfied
at w in the model M = (F , V). In fact, all we need to specify about V is what set
of worlds it maps the propositional letter A to. Let V be any valuation function such
that V (A) = W \ {w} and let M = (F , V) be the corresponding model. It follows that
M, w |= 2A holds, because A is satisfied at every world accessible from w (given that
w itself, the only world where A is false, is not accessible), and that M, w |= A does
not hold. Hence, M, w |= 2A→ A is not the case either, which contradicts our original
assumption of (T) being valid in F . This completes our proof of the above claim.

Other correspondences. Similarly to the reflexivity axiom (T), each one of the ad-
ditional axioms we have discussed earlier also corresponds to a simple frame condition.
These correspondences are summarised in Table 2.2 and can be proved to hold in essen-
tially the same manner as we have verified the correspondence between (T) and the class
of reflexive frames. The table also shows how the respective frame conditions can be
expressed in first-order logic. The formula (∀x)R(x, x), for example, defines the relation
associated with the binary predicate symbol R as being reflexive.

Axiom (4) characterises transitive frames and axiom (5) characterises those that have
a euclidean accessibility relation, i.e. frames where it is the case that whenever two worlds
are accessible from the same world then those two worlds must be accessible from each
other as well. Axiom (D) is valid in frames where every world has at least one successor
with respect to the accessibility relation; that is, (D) embodies the notion of seriality. In
addition to the axioms discussed earlier, Table 2.2 also lists another important schema:16

(B) A→ 23A

This formula may, for instance, be adopted as an axiom of alethic logic, in which case it
expresses that anything that is true in the actual world is necessarily possible. It is valid
in a frame iff that frame has got an accessibility relation that is symmetric.

16It appears that axiom (B) was first proposed by Becker [7], who referred to it as the “Brouwersche

Axiom” (quoted after [49]; see also [15]).

2.4 Temporal Logic 31

In the context of our ordered tree logics, we are briefly going to discuss issues in
correspondence theory in Chapter 3 (Section 3.3).

First-order definability. Our presentation may suggest that any modal axiom we
can think of characterises a frame condition that can be defined in terms of a first-order
formula over the predicate R representing the accessibility relation. This is in fact not
the case. The best known counterexample is the so-called McKinsey axiom:17

(M) 23A→ 32A

It can be shown that (M) does not correspond to any first-order frame condition. A
proof may, for instance, be found in [69].

Translation again. As a final remark in this section let us point out that in those cases
where a modal logic is first-order definable, the respective first-order frame conditions
must be taken into account if we want to embed that modal logic into first-order logic
(by means of translation). The logic S4, for example, — which is characterised by the
additional axioms (T) and (4) — cannot be embedded into the two-variable-fragment of
first-order logic anymore, because we require a minimum of three distinct variable names
to encode the transitivity condition corresponding to (4). Hence, the argument used at
the end of the previous section to show that the basic modal logic without any additional
axioms (i.e. the logic K) is decidable, would fail in this case.18

This concludes our general introduction to basic modal logic. The next section is
more specifically devoted to the case of temporal logic.

2.4 Temporal Logic

Temporal modal logics are modal logics over very specific frames that embody those
aspects of time we wish (and are able) to represent.

What is time? This is a (largely philosophical) question, which we are not going to
answer here. Instead, we are going to be rather more pragmatic and discuss some of
our options as far as representing aspects of time by means of a modal logic frame are
concerned. Recall that a frame consists of a set of worlds together with an accessibility
relation (or several accessibility relations in the case of multi-modal logics). If we want
to give such a frame a temporal interpretation, we first have to decide what worlds and
accessibility relation(s) should stand for. Generally speaking, worlds will be used to
represent the primitive objects in the domain of our temporal semantics. In most cases,
that is, for most temporal logics discussed in the literature, these primitive objects are
time points. Alternatively, we may also choose time intervals as primitives.

17Axiom (M) is called the McKinsey axiom, because it is a theorem in the system S4.1 proposed by

McKinsey in [55] (see also [42]).
18S4 is still a decidable logic, but we require a different method to prove this [8].

32 Chapter 2. Modal and Temporal Logics

In the case of a point-based semantics, the accessibility relation induces an earlier-
later ordering over time points. An example would be the temporal frame (N0, <),
where the set of points (worlds) is the set of the natural numbers (including 0) and the
accessibility relation < is the usual lower-greater ordering over N0. By adopting this
frame, we are making certain assumption about time: it is discrete (in particular, for
every point in time there is a unique next point), bounded to the left, namely by the
first time point 0 (the ‘big bang’, the beginning of time), and unbounded to the right
(i.e. the future is taken to be without end). None of these choices is obligatory though.
In particular, we may consider temporal frames that are dense (if the notion of a ‘next’
moment is inappropriate for an application) or unbounded to the left (if we want to
model both future and past). More fundamentally, in the case of the frame (N0, <), time
is understood to be linear. But again, this is not an obligatory choice. For instance, if
we wish to explicitly represent different possible futures, we may adopt a temporal frame
where time is branching. However, for the remainder of this introduction (the remainder
of this thesis, in fact) we are going to assume that time is linear.19

If we choose intervals as primitives, then a single accessibility relation representing a
simple earlier-later ordering (possibly together with the notion of alternative futures, in
the case of branching time) will not be enough anymore. Two distinct intervals may not
only lie either before or after each other, but for instance, one of them may also occur
during the other or they may overlap. While in this introduction, we are only going to be
concerned with point-based temporal logics, our modal logic of ordered trees discussed
in the rest of this thesis may also be interpreted as a (restricted) interval logic.20

Temporal logic operators. The language of the most basic temporal logics is the
same as the basic modal language introduced earlier. Besides the propositional connec-
tives, we have a box-operator 2 to refer to all future points in time and a diamond-
operator 3 to refer to some future point. In addition to that, temporal logics often
also include a so-called next-operator e to refer to the time point immediately after the
current one. If we also wish to speak about events that happened in the past, we may
choose a logic with two sets of operators, one for the future and the other one for the
past. We are going to use the symbols 2, 3, and e to denote future operators and 2,
3, and e for past operators.

An even more expressive temporal logic may also include the additional operators
since and until. Intuitively, the formula (ϕ until ψ) is true now iff ψ is true at some
point in the future and ϕ is true until that point in time. The operator since serves a
similar purpose with respect to past events. To be able to give a precise definition of
the meaning of these and the other operators, we first have to decide on a particular
semantics for our temporal logic. In what follows, we shall discuss propositional linear
temporal logics over various flows of (linear) time.

19An overview of branching time logics (as well as references to further reading) may be found in [33].
20On this point, consult in particular our discussion on pages 45 and 189.

2.4 Temporal Logic 33

Semantics of propositional linear temporal logics. A linear temporal logic frame
is a strict linear order F = (T,<).21 The set T is called the set of states (or time
points) and the relation < represents the temporal order declared over these states. A
temporal frame is a special case of a modal frame: T takes the role of the set of worlds,
which we have previously denoted by W , and < is a particular kind of accessibility
relation, which we have used the letter R for in the general case. A model is again a
pair M = (F , V), where F = (T,<) is a temporal frame and V is a valuation function
mapping propositional letters to sets of states in the frame. The truth of a temporal
formula at a state t ∈ T in a model M is now defined as follows:22

(1) M, t |= P iff t ∈ V (P) for propositional letters P ;

(2) M, t |= >;

(3) M, t |= ¬ϕ iff M, t 6|= ϕ;

(4) M, t |= ϕ ∧ ψ iff M, t |= ϕ and M, t |= ψ;

(5) M, t |= 3ϕ iff there exists a t′ ∈ T such that t < t′ and M, t′ |= ϕ;

(6) M, t |= 2ϕ iff for all t′ ∈ T with t < t′ we have M, t′ |= ϕ;

(7) M, t |= eϕ iff t has an immediate successor t′ ∈ T and M, t′ |= ϕ;

(8) M, t |= ϕ until ψ iff there exists a t′ ∈ T with t < t′ and M, t′ |= ψ, and
furthermore M, t′′ |= ϕ holds for all t′′ ∈ T with t < t′′ and t′′ < t′.

The semantics of the past operators are defined in direct analogy to the above. For
instance, we have M, t |= ϕ since ψ iff there is a t′ ∈ T with t′ < t and M, t′ |= ψ, and
ϕ holds at all states t′′ in between that t′ and t. The notions of satisfiability and validity
of a temporal logic formula are defined in analogy to the general case discussed earlier.

Instead of a general linear order (T,<) we may also choose to work with a specific flow
of time, such as the natural numbers (N0, <) or the reals (R, <), or we may put at least
some additional constraints on (T,<), such as being dense, discrete, or unbounded to
either side. These choices influence what formulas are going to be valid in the respective
logic. For instance, a formula of the form eϕ will never be true at any state if we choose
(R, <) as the underlying flow of time, because no real number has got an immediate
successor.

Definable operators. Rather than defining the semantics of the two box-operators of
the temporal language directly (as we have done here), we may also choose to treat them
as defined operators. As we have seen earlier, a box-operator can be defined in terms of
negation and the corresponding diamond-operator:

2ϕ = ¬3¬ϕ 2ϕ = ¬3¬ϕ
21Strict linear orders are defined in Appendix A.
22Propositional connectives other than negation and conjunction are again treated as defined operators.

34 Chapter 2. Modal and Temporal Logics

In fact, now that we have enriched our language with the operators since and until,
both diamond- and next-operators may also be treated as defined operators:

3ϕ = > until ϕ eϕ = ⊥ until ϕ

3ϕ = > since ϕ eϕ = ⊥ since ϕ

These syntactic definitions are easily seen to coincide with the semantic truth conditions
given earlier. For instance, the first part of the semantic definition of truth for the
formula (> until ϕ) postulates the existence of a future time point at which ϕ holds
— this is precisely how we have defined the truth of 3ϕ. To understand the syntactic
definition of the next-operators, consider the meaning of the formula (⊥ until ϕ). We
have M, t |= ⊥ until ϕ iff, to begin with, there exists a state t′ such that t < t′ and
M, t′ |= ϕ. The second part of the truth condition says that ⊥ must be true a every
state that lies strictly between t and t′. But ⊥ can never be true, i.e. there cannot be any
states between t and t′. Hence, t′ must be the immediate successor of t and M, t |= eϕ
will hold.

Expressive completeness. Our discussion shows that we can reduce the set of con-
nectives to four core operators: negation, conjunction, since and until. They form a
functionally complete set of operators with respect to our chosen temporal language, that
is, all of the other operators we have discussed here are definable in terms of these four. In
classical propositional logic, we know that negation and conjunction form a functionally
complete set of operators, not only with respect to the usual language of propositional
logic (which includes, for instance, the disjunction and the implication operators), but
also with respect to the logic itself. That is, it is not possible to even conceive an addi-
tional operator that is not expressible in terms of negation and conjunction alone. This
is a direct consequence of the simple observation that negation and conjunction suffice
to uniquely identify any row in a truth table.

Is there a similar phenomenon in temporal logic? Defining the notion of functional
completeness for classical propositional logic is straightforward. Propositional logic is
truth-functional, that is, a set of operators is functionally complete iff it can be used
to encode every possible function over a finite number of truth values. As for temporal
logic, a suitable definition of functional completeness (pertaining to the semantics of
the logic rather than a particular language) is not that immediate. What would be
a suitable benchmark, that is, how can we measure the expressive power of a set of
temporal operators? At this point, let us recall the standard translation of modal logics
into classical first-order logic discussed in Section 2.2. If we use < as the binary predicate
symbol representing the accessibility relation, then the formula (ϕ until ψ) translates
into the following first-order formula (with a free variable x):

(∃z)[x < z ∧ stz(ψ) ∧ (∀y)(x < y ∧ y < z → sty(ϕ))]

Here, sty(ϕ) and stz(ψ) represent the translations of the subformulas ϕ and ψ. The
translation of formulas involving other operators works accordingly. That is, the trans-

2.4 Temporal Logic 35

lation of any temporal logic formula will always be a first-order formula with one free
variable, a single binary predicate symbol < together with a number of unary predicate
symbols (representing the propositional letters in the input formula), and no constant
or function symbols. Furthermore, < has a fixed intended meaning, namely the earlier-
later ordering over the chosen flow of time. In other words, temporal logic formulas are
being translated into the monadic first-order theory of a particular linear order. Now the
question whether we can always translate any formula of that theory back into temporal
logic provides a useful yardstick for the expressive power of a temporal logic.

A set of operators of a temporal logic is called expressively complete with respect to
a certain flow of time (T,<) iff for every formula ϕ∗ of the monadic first-order theory
of (T,<) there is a formula ϕ of the temporal logic such that the standard translation
of ϕ is logically equivalent to ϕ∗. The concept of expressive completeness for temporal
logics has been introduced by Kamp in 1968 [44]. His main result was that since and
until (together with the connectives for negation and conjunction) are expressively
complete for linear orders (T,<) that are complete, i.e. where every non-empty bounded
subset of T has both a greatest lower bound and a least upper bound with respect to
<. This includes, in particular, the temporal frames (N0, <) and (R, <), but not, for
instance, (Q, <). For arbitrary linear flows of time additional operators — the so-called
Stavi connectives — are required to obtain expressive completeness [32]. The subject of
expressive completeness is comprehensively treated in the monograph on temporal logic
by Gabbay, Hodkinson, and Reynolds [30].

We shall briefly comment on issues related to expressive completeness for our modal
logic of ordered trees in Chapter 6.

Temporal logic and specification. The application of temporal logics in the area of
systems specification and verification is one of the great success stories of non-classical
logics in mainstream computer science. In fact, in recent years, writing temporal logic
based specifications and developing tools for their verification have become engineering
disciplines in their own right. In a theoretical text such as this we can only hope, at
best, to convey some of the basic ideas by means of example.

If we think of a system as a sequence of states in which certain basic propositions (say,
a variable having a certain value or a certain event occurring) are either true or false, then
we can identify such a system with a linear temporal logic model. A specification may be
thought of as a list of properties that we would like our system to have. Two important
classes of program properties — that arguably cover most properties one could wish to
include into a system specification — are the so-called safety and liveness properties,
which have been characterised by Lamport [47] as follows:

• Safety properties “assert that the program does not do something bad”.

• Liveness properties “assert that the program does eventually do something good”.

The latter immediately reminds us of the temporal diamond-operator: at some point in

36 Chapter 2. Modal and Temporal Logics

the future something good is going to happen. The former is reminiscent of the box-
operator: always in the future it is not the case that things get pear-shaped. That is, a
safety property can typically be expressed by a formula of the form 2¬Bad, where Bad
is itself a temporal formula, while a liveness property will often be of the form 3Good.
Such formulas may or may not be true at (all) the states of the model representing a
system, that is, such a system may or may not conform to its specification.

Examples. We conclude with a number of examples for simple specification formulas
taken form a variety of sources [30, 51]. For these examples, we do not assume any
specific flow of time. Our only requirement is that there is a first point in time and
that time is not bounded to the right. The specified system has a particular property iff
the corresponding formula is true at the first state in the model representing the system.
Many of these formulas start with the box-operator 2 to express that a particular formula
is supposed to be true at every state of the system.

• Mutual exclusion. Two processes A and B are never going to be in their critical
sections of execution at the same time:

2¬(CriticalA ∧ CriticalB)

• Partial correctness. After computation has finished a given postcondition will hold:

2(Finished → PostCondition)

• Termination and total correctness. Partial correctness together with termination
yields the property of total correctness:

3Finished ∧ 2(Finished → PostCondition)

• Response to an impulse. Whenever the system receives a particular impulse then
it will eventually respond appropriately:

2(Trigger → 3Response)

• Absence of unsolicited response. If at some point during program execution the
system performs a certain action, then that action must have been triggered by the
appropriate event:

3Action → (¬Action until Trigger)

This action may, for instance, be thought of as the system response from the
previous example.

• Unique events. A particular event may happen at most once, that is, whenever it
does happen it must be the case that it did not happened earlier as well:

2(Event → 2¬Event)

2.5 Bibliographic Notes 37

2.5 Bibliographic Notes

The aim of this chapter has been to introduce some of the fundamental concepts of
the study of modal and temporal logics and to indicate how they relate to the original
work reported in the remainder of this thesis. Our choice of topics has been somewhat
selective. Important omissions include, for instance, the whole area of deduction [4, 25,
59, 73] and particularly model checking [17, 18], first-order modal logics [26, 34, 42], and
combinations of modal systems [31, 53].

Literature. The brief survey by van Benthem [70] is a very readable introduction
to the field of modal logics and the forthcoming handbook chapter by Goldblatt [36]
provides an extensive review of its history. Recommendable textbooks on modal logic
in general include, for instance, those by Hughes and Cresswell [42], Chagrov and Za-
kharyaschev [13], and Blackburn, de Rijke, and Venema [8]. The latter, in particular,
has proved to be an extremely useful guide throughout the preparation of this thesis.
Another indispensable source of information on modal logic in general and temporal (and
dynamic) logics in particular is the excellent book by Goldblatt [35]. An important book
devoted specifically to the study of temporal logics is the work by Gabbay, Hodkinson,
and Reynolds [30] (see also the second volume [33]).

Throughout this chapter we have borrowed from the area of modal logics of knowledge
and belief, because they are particularly well suited to exemplify issues such as the
need for different sets of axioms for different applications. We are not going to further
continue this theme here and instead refer to the book by Fagin et al. [20] (and references
therein) for more information on the subject. The book by Huth and Ryan [43] is a
recent textbook focussing on the use of logic (and notably modal and temporal logics)
in different areas of computer science. It discusses, in particular, epistemic logics for
multi-agent systems and temporal logic model checking for specification and verification.
The area of temporal logic specification is also treated in great breadth as well as depth
in the two books on the subject by Manna and Pnueli [51, 52].

Conclusion. This concludes our general exposition of elementary modal and temporal
logics. In the next chapter we are going to return to our main object of investigation,
the modal logic of ordered trees.

Chapter 3

Semantic Characterisation

This chapter is mostly concerned with a semantic (as opposed to axiomatic) characteri-
sation of our modal logic of ordered trees. We start with a formal definition of its syntax
and model-theoretic semantics. After that, we are going to give a number of examples
that demonstrate the expressive power of ordered tree logics. For instance, powerful
operators such as the universal modality turn out to be definable within our logic. We
are also going to discuss a number of correspondence results, which show that the logic is
expressive enough to distinguish different classes of ordered trees (such as finite trees, for
example). Thereafter, we are going to show how we can characterise different ontological
categories of propositions. This allows us, for instance, to distinguish so-called proper-
ties from events, which are notions commonly referred to in the literature on planning
in artificial intelligence.

In our logic, frames are required to be ordered trees. Towards the end of this chapter
we investigate to what extent we can relax the conditions on frames without changing
the logic (that is, without changing the set of formulas that are satisfiable with respect
to these frames). For this investigation we are going to make heavy use of the concept
of p-morphic images of frames.

3.1 Syntax and Semantics

In this section we are going to give formal definitions of the syntax and semantics of the
modal logic of ordered trees we have already introduced informally in Chapter 1. We
shall refer to this logic as OTL, for ordered tree logic.

Syntax. We start by defining the syntax of well-formed formulas of OTL. The lan-
guage is built around a countable set of propositional letters (such as P orQ) and complex
formulas can be formed by combining simpler formulas by means of a number of logical
operators.

Definition 3.1 (Formulas) The set of well-formed formulas of OTL is the smallest
set such that propositional letters and the symbols > and ⊥ are formulas and, if ϕ and

39

40 Chapter 3. Semantic Characterisation

ψ are formulas, so are (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ → ψ), (ϕ ↔ ψ), (eϕ), (3ϕ), (2ϕ),
(eϕ), (3ϕ), (2ϕ), (eϕ), (3ϕ), (2ϕ), (3ϕ), (2ϕ), (3+ϕ), and (2+ϕ).

The symbols > (verum) and ⊥ (falsum) as well as the connectives ¬ (negation), ∧
(conjunction), ∨ (disjunction), → (implication), and ↔ (if-and-only-if) are familiar from
propositional logic. As for the modal operators, we distinguish next-operators (e, e, e),
diamond-operators (3, 3, 3, 3, 3+), and box-operators (2, 2, 2, 2, 2+). Following
standard convention, we are usually going to avoid redundant brackets when writing
formulas.

Semantics. The semantics of formulas in OTL will be given by means of a definition
of the notion of truth of a formula in a model. Models are based on ordered trees, i.e.
the frames for this modal logic are ordered trees.

Ordered trees. An ordered tree is a tree where the children of each node are ordered.
We use standard terminology when speaking about trees. In particular, we shall refer to
the parent of a node (the node directly above a given node) and the children of a node
(the nodes directly below a given node). The set of ancestors of a node includes that
node’s parent, the parent’s parent, and so forth. Similarly, the descendants of a node
are all the nodes on the branches below that node. Nodes sharing the same parent are
called siblings. As we are working with ordered trees, we shall distinguish siblings to the
left and siblings to the right of a given node. Finally, a node can have a left and a right
neighbour, that is, a sibling coming directly before or after, respectively, in the order
declared over that particular set of siblings.

Branches may be of finite or infinite length. Also, a node may have a finite or an
infinite number of children. A node does not necessarily have to have a first or a last
child; there could be infinitely many siblings in either direction. Also, we do not require
the order declared over the children of a node to be, say, discrete. Instead, we admit
any kind of linear order. (Discrete or dense linear orders may, however, be considered as
interesting special cases.)

Next we are going to formally define the notion of ordered tree. However, later on we
will often find it more convenient to refer to the intuitive notions introduced before. The
following definition of a tree is a slight modification of that given by Goldblatt in [35].1

Definition 3.2 (Trees) A tree is a pair T = (T,R), where T is a set and R is an
irreflexive binary relation over T satisfying the following conditions:

(1) For every t ∈ T there exists at most one t′ ∈ T with (t′, t) ∈ R.

1Here and in the sequel we are going to refer to a number of relational algebra operations. The inverse

of a relation R is denoted by R−1. The composition of two relations R1 and R2 is written as R1 ◦ R2.

Given a relation R, let R∗ denote the reflexive transitive closure of R and R+ the non-reflexive transitive

closure of R, respectively. (See also Appendix A.)

3.1 Syntax and Semantics 41

(2) There exists a unique r ∈ T such that {t ∈ T | (r, t) ∈ R∗} = T .

The elements of T are called nodes. The element r from condition (2) is called the root
of T . R is called the child relation and also gives rise to the following: the parent relation
R−1, the descendant relation R+, the ancestor relation (R−1)+, and the sibling relation
R−1◦R.

So by referring, for instance, to a node t1 as the parent of t2, we mean that (t1, t2) ∈ R.
Node t2 is then called a child of t1. Similarly, if (t1, t2) ∈ R+ then t1 is called an ancestor
of t2, and t2 is called a descendant of t1. Two nodes that share the same parent are called
siblings. Starting at any node, if we first move up one level using the parent relation
(that is, the inverse of the child relation) and then one level down via the child relation,
we will end up at a sibling of the first node. In other words, if we have (t1, t2) ∈ R−1◦R
then t1 is called a sibling of t2 and vice versa. Nodes that do not have any children at
all are called leaves. All other nodes of a tree are called internal nodes.

The nodes in a tree (the kind of tree characterised through Definition 3.2) may be
considered as being ‘generated’ by the root node via the transitive closure of the child
relation R. This excludes certain kinds of structures, such as trees (in a wider sense of
the word) where the child relation could, for instance, be dense. In other words, we only
consider trees of order-type N, that is, any branch could be mapped to an initial segment
of the natural numbers. It follows that the length of a branch will be either finite or
countably infinite.

The following is a formal definition of the notions of branch and subtree. Here (and
throughout) we write (T ′, R), where R is a binary relation declared over some superset
T of T ′, rather than explicitly restricting R to range only over T ′.

Definition 3.3 (Branches and subtrees) Let T = (T,R) be a tree and t ∈ T a node
within T . We refer to the set {t′ ∈ T | (t′, t) ∈ R∗} as (the nodes on) the branch above t
and to the tree ({t′ ∈ T | (t, t′) ∈ R∗}, R) as the subtree generated by t.

We are now ready to define ordered trees as trees with an additional (linear) order over
the nodes. Observe that the sibling relation R−1 ◦ R is an equivalence relation over
the set of nodes excluding the root. For a given node t the ‘quasi-equivalence class’
[t]R−1◦R = {t′ ∈ T | (t, t′) ∈ R−1◦R} is the set of siblings of t (including t itself); only if
t is the root of the tree then [t]R−1◦R is the empty set.

Definition 3.4 (Ordered trees) An ordered tree is a triple T = (T,R, S) where (T,R)
is a tree, S ⊆ R−1◦R, and ([t]R−1◦R, S) is a strict linear order for every t ∈ T .

If (t1, t2) ∈ S then t1 is called a left sibling of t2, and t2 is called a right sibling of t1.
If furthermore (t1, t2) 6∈ S ◦ S then t1 is called the left neighbour of t2, and t2 is called
the right neighbour of t1.

When referring to a node t in a tree T we will occasionally write t ∈ T instead of explicitly
introducing the set of nodes T (i.e. instead of writing t ∈ T with T = (T,R, S)).

42 Chapter 3. Semantic Characterisation

•
root

•P1, P2 • •
P1

•P2, P3

• • • • • •
P1

• • •
P2

• •

• •
P1

•
P1, P2

• • • • • •
P1

ww �� �� ''// // //

�� �� ��
// //

 ��
// yy ��

 �� �� %%// // // // //

�� �� ��
// //

�� �� �� ��
// // //

�� ��
//

Figure 3.1: A simple ordered tree model

We will sometimes write ≺ for the child relation R and < for the sibling order S.
As before, ≺∗ and ≺+ refer to the reflexive and the non-reflexive transitive closure of ≺,
respectively. We also write t1 ≤ t2 as an abbreviation for t1 < t2 or t1 = t2.

According to our definition of ordered trees, the horizontal relation declared over the
children of a given node could be any strict linear order. In particular, it is not required
to be discrete. This means, for example, that it is possible that a node has righthand
siblings but no righthand neighbour, namely when that node is dense, i.e. when there are
infinitely many nodes between itself and any of its righthand siblings. In other words,
our logic is going to be an extension of linear temporal logics over general flows of time.

Models. We can now move on to the definition of models and the notion of truth of
formulas in models for our logic OTL. Frames in this modal logic are ordered trees.

Definition 3.5 (Ordered tree models) An ordered tree model is a pair M = (T , V),
where T is an ordered tree and V is a valuation, that is, a mapping from propositional
letters to subsets of the set of nodes in T .

When speaking about models, we will sometimes simply write M = (T,R, S, V) as a
shorthand for M = (T , V) with T = (T,R, S).

Figure 3.1 shows a simple example of an ordered tree model.2 In the picture, the
child relation R is shown as a dotted line, while the right neighbour relation S \ S ◦ S
is drawn as a solid line. The valuation function V is indicated by writing propositional
letters (in the example these are P1, P2 and P3) next to the respective nodes. The set

2In this particular example every node has got a finite number of children and, consequently, the order

declared over sibling nodes must be discrete. However, this need not be the case in general.

3.1 Syntax and Semantics 43

V (P3), for instance, happens to be a singleton. It contains only the rightmost child of
the root node.

Truth. Intuitively, we think of V (P) as the set of nodes in T at which the atomic
proposition P is true. This notion is extended to complex formulas in the following
definition. (This definition only covers some of the operators of our language as the
remaining ones can be considered defined operators; see Definition 3.7.)

Definition 3.6 (Truth in an ordered tree model) We inductively define the notion
of a formula being true in an ordered tree model M = (T , V) at a node t ∈ T as follows:

(1) M, t |= P iff t ∈ V (P) for propositional letters P ;

(2) M, t |= >;

(3) M, t |= ¬ϕ iff M, t 6|= ϕ;

(4) M, t |= ϕ ∧ ψ iff M, t |= ϕ and M, t |= ψ;

(5) M, t |= eϕ iff t is not the root of T and M, t′ |= ϕ for the parent t′ of t;

(6) M, t |= 3ϕ iff t has an ancestor t′ with M, t′ |= ϕ;

(7) M, t |= eϕ iff t has a left neighbour t′ with M, t′ |= ϕ;

(8) M, t |= 3ϕ iff t has a left sibling t′ with M, t′ |= ϕ;

(9) M, t |= eϕ iff t has a right neighbour t′ with M, t′ |= ϕ;

(10) M, t |= 3ϕ iff t has a right sibling t′ with M, t′ |= ϕ;

(11) M, t |= 3ϕ iff t has a child t′ with M, t′ |= ϕ;

(12) M, t |= 3+ϕ iff t has a descendant t′ with M, t′ |= ϕ.

Instead of saying that ϕ is true at t in M (i.e. M, t |= ϕ) we may also say that ϕ is
satisfied at t or that it holds at t. In case of the truth definitions for formulas involving
either a diamond- or a next-operator, we call the satisfying node t′ a witness for the
truth of the formula in question.

Going back to the example of Figure 3.1, we can put this definition of truth into
practice. The formula 3P3, for instance, is true at the root of the tree, because it has
got a child at which P3 is true. The formula 3(P1 ∧ P3), on the other hand, does not
hold at the root, because none of its children satisfies both P1 and P3. An example for a
more complex formula that is true at the root would be 3(P2∧3(¬P1∧3+(P1∧ e>))).
Indeed, the root has got a child (its leftmost child to be precise) that satisfies P2 and
which has got a righthand sibling where P1 does not hold (two to be precise, but only
the second one also satisfies the other conditions) and which has got a descendent that
satisfies P1 and also has got a lefthand neighbour. This last node satisfying P1 is the one
shown in the lower righthand corner of the picture.

44 Chapter 3. Semantic Characterisation

Semantics of the remaining operators. For the remaining propositional connec-
tives and the box-operators of our language we may either directly define a semantics
along the lines of Definition 3.6 or define them in terms of the operators already covered
by that definition. In order to simplify proofs later on, we choose the latter way.

Definition 3.7 (Definable operators) The remaining operators of our language are
defined as abbreviations on the syntactic level:

⊥ = ¬> 2ϕ = ¬3¬ϕ
ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) 2ϕ = ¬3¬ϕ
ϕ→ ψ = ¬ϕ ∨ ψ 2ϕ = ¬3¬ϕ
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ) 2ϕ = ¬3¬ϕ

2+ϕ = ¬3+¬ϕ

Given these definitions, we can infer the semantics of the remaining operators. Take, for
instance, the universal ancestor modality 2, which has been defined to be a shorthand
for ¬3¬. A formula of the form 2ϕ is true at a node t iff the rewritten formula ¬3¬ϕ
is true at t. By Definition 3.6, the latter is the case iff it is not the case that t has got
an ancestor t′ such that ϕ is not true at t′. In other words, 2ϕ is true at t iff ϕ is true
at all ancestors of t.

For reference only, we spell out the definition of truth in an ordered tree model also
for the definable operators of our language. Let M = (T , V) be an ordered tree model
and let t ∈ T be a node within that model. Then it is easily seen that the following hold
as a consequence of Definitions 3.6 and 3.7:

(1) M, t 6|= ⊥;

(2) M, t |= ϕ ∨ ψ iff M, t |= ϕ or M, t |= ψ;

(3) M, t |= ϕ→ ψ iff M, t |= ϕ implies M, t |= ψ;

(4) M, t |= ϕ↔ ψ iff either both M, t |= ϕ and M, t |= ψ or neither;

(5) M, t |= 2ϕ iff M, t′ |= ϕ for all ancestors t′ of t;

(6) M, t |= 2ϕ iff M, t′ |= ϕ for all left siblings t′ of t;

(7) M, t |= 2ϕ iff M, t′ |= ϕ for all right siblings t′ of t;

(8) M, t |= 2ϕ iff M, t′ |= ϕ for all children t′ of t;

(9) M, t |= 2+ϕ iff M, t′ |= ϕ for all descendants t′ of t.

3.1 Syntax and Semantics 45

Satisfiability and validity. We are now ready to give definitions of the central notions
of satisfiability and validity for our modal logic. A formula ϕ is called satisfiable iff there
are a model and a node within that model where ϕ is true.

Definition 3.8 (Satisfiability) We say a formula ϕ has an ordered tree model M =
(T , V) iff there is a node t in T such that M, t |= ϕ holds. A formula is called satisfiable
iff it has an ordered tree model.

Truth in the sense of Definition 3.6 is a relation between a formula, a model, and a single
node in that model. A stronger requirement would be to ask for truth of a formula at
every node within a given model. This is the concept of global truth.

Definition 3.9 (Global truth) A formula ϕ is called globally true in an ordered tree
model M iff it is true at every node in M. We write M |= ϕ.

Instead of asking whether a given formula is true at every node in a single given model,
we could also ask whether that formula is globally true in every model based on a
particular ordered tree (or possibly even a whole class of ordered trees with certain
common properties). This is the concept of tree validity.3

Definition 3.10 (Tree validity) A formula ϕ is called valid in an ordered tree T iff it
is satisfied at every node in every model based on T . We write T |= ϕ.

Finally, if we also drop the reference to a particular ordered tree we get to the concept
of general validity.

Definition 3.11 (Validity) A formula ϕ is called valid iff it is satisfied at every node
in every ordered tree model. We write |= ϕ.

The problem of determining validity for a given formula ϕ can be reduced to the problem
of checking whether ¬ϕ is satisfiable.

Interpretation as an extended temporal logic. Our initial inspiration for devis-
ing a modal logic of ordered trees was to extend propositional linear temporal logic in a
way that allows us to describe systems evolving over time in a modular fashion. Under
this extended temporal logic view of OTL, nodes in a tree represent time periods (or
intervals). If node t1 is an ancestor of node t2 then we can think of the time period
corresponding to t2 as taking place during that corresponding to t1. If t1 is a lefthand
sibling of t2 then the time period corresponding to t1 takes place before that correspond-
ing to t2. If t1 and t2 are neighbours then the corresponding time periods meet, that
is, t1 takes place immediately before t2. We can apply the notion of one event taking

3In the general modal logic literature, the corresponding concepts are known as validity in a frame or

validity in a class of frames, respectively [8].

46 Chapter 3. Semantic Characterisation

place before another also to nodes that are not siblings. If t1 has an ancestor that is a
lefthand sibling of one of the ancestors of t2 then we also think of the period associated
with t1 as happening before that denoted by t2. As we shall see in the next section,
modal operator relating to this ‘global’ notions of past and future are definable in terms
of our basic operators.

Section 3.4 also discusses a number of issues relevant to using OTL as a tempo-
ral representation formalism and an embedding of a (restricted) interval logic into an
extended version of OTL is proposed in Chapter 6.

Interaction of vertical and horizontal operators. Apart from its potential with
regard to the specification of reactive systems and their refinement, as well as other appli-
cation domains that may benefit from the modular representation of processes developing
over time, OTL is also of interest for rather more abstract reasons. The modal opera-
tors of our language fall into two groups. There are the sibling and neighbour operators
pertaining to the horizontal dimension of an ordered tree on the one hand, and then
there are the remaining ones pertaining to its vertical dimension on the other. The two
interact in a subtle way. Suppose we consider the ‘vertical fragment’ and the ‘horizontal
fragment’ of OTL as two separate logical systems. The former would be a modal logic
over frames that are trees (without the additional sibling order) and the latter would be
a modal logic over linear frames. OTL may then be considered a combination of the
two. The study of combining different systems is an important field of activity in modal
logic research [31] and provides an interesting additional perspective on our logic.

The simplest way of combining two modal logics (with disjoint sets of modal opera-
tors) would be to form an independent join (or fusion), i.e. the smallest multi-modal logic
in the combined language (containing at least the union of the two logics in question).
That is, in a fusion there is no interaction at all between the modal operators of the
two original logics. In products of modal logics, on the other hand, operators from the
combined logics interact in very strong manner. A typical property of a product logic
is commutativity. A vertical and a horizontal accessibility relation are said to commute
iff by first following the vertical and then the horizontal relation we can reach the same
points in the model that we can reach by first following the horizontal and then the
vertical relation.

In OTL, vertical and horizontal accessibility relations do not commute in this strong
sense, but at least in some cases we can observe similar properties, albeit in a weaker
form. For instance, if — starting at some node t in the middle of a tree — we first move
down the child relation by a number of levels, then right along the sibling relation, and
then up again, we will eventually get back to the node t where we started. If, on the
other hand, we first move up, then right, and back down again at the end, we will not
encounter the starting node t again. So, intuitively, our logic does share some properties
with typical product logics, but it is not a product itself. In any case, the interaction of
the two kinds of operators is considerably stronger than in the case of a simple fusion of

3.1 Syntax and Semantics 47

two independent logics.4

While the fusion of two decidable multi-modal logics is known to be itself decidable,
products of logics such as the purely vertical and the purely horizontal components of
OTL are notoriously undecidable [31]. This makes OTL an interesting candidate to
examine the question of decidability. In Chapter 5, we are going to give a positive
answer to this question: OTL is in fact decidable. In the light of our discussion here,
this may be considered a surprising result.

A note on the choice of symbols. Our language includes thirteen different symbols
for the modal operators of OTL (and we are going to introduce even more in the next
section). Some readers may find this a little confusing at first and may even have their
objections regarding certain choices (“Why do some transitive operators have a + in the
superscript while others do not?”). Our reasons for this particular choice of symbols
were as follows. The first objective was to make the language simple. That means firstly
using familiar symbols (symbols familiar from temporal logics) and secondly avoiding
additions such as sub- or superscripts as far as possible. In the case of the modalities
‘pointing’ up, to the left, or to the right in an ordered tree the choice was easy. In all
three cases we have a diamond-operator referring to a node somewhere in the direction
indicated by the little bar, a box-operator referring to all nodes in that direction, and a
next-operator (i.e. a circle) to refer to the (unique) next node in that direction (if any).
So far we have a direct correspondence to the symbols used in standard temporal logics.

The dilemma begins when we have to decide on symbols for the modal operators
pointing down in a tree. Here the concept of a next-operator does not make sense
anymore, because typically there will be no unique next node when looking down a tree,
but rather several children. Instead, we already need both a universal and an existential
modality when referring to the immediate successors (i.e. the children) of a node. If we
still wish to distinguish transitive and intransitive modalities to speak about descendents
in general and children in particular, then we require two pairs of box- and diamond-
operators. In view of our second objective (namely to keep the symbols themselves
as simple as possible and to avoid unnecessary sub- and superscripts) the symbols 3

and 2 should be used for our language, either for the intransitive child operators or for
the transitive descendant operators. Adding a + in the superscript of a given modal
operator is a very simple way of indicating that this new operator is meant to relate to
the transitive closure of the relation underlying the first operator. On the other hand,
there is no clear and simple way to do the opposite, that is, to turn a transitive modal
operator into an operator pertaining to the immediate successor relation (not function!)
of the former. This is why we have decided to use 3 and 2 to refer to the children of a
node and 3+ and 2+ to refer to descendants.

So the fact that, for instance, 3 relates to a transitive relation while 3 does not is

4We are going to provide an axiomatic characterisation of this interaction of vertical and horizontal

operators in Chapter 4 (see remark on page 140).

48 Chapter 3. Semantic Characterisation

in fact not the result of an ‘asymmetric’ choice of symbols, but rather a consequence of
an asymmetric feature of the logic under investigation itself.

3.2 Some Defined Operators

Reflexive transitive closure. Apart from 2 and 3, all box- and diamond-operators
of OTL correspond to transitive relations. The descendant relation, which corresponds
to the modalities 3+ and 2+, is the (non-reflexive) transitive closure of the simple child
relation underlying 3 and 2. As explained earlier, this is indicated by the + in the
superscript. To indicate a reflexive transitive closure we shall use ∗ rather than +. The
transitive closure of a transitive relation is just that relation itself. Therefore, we can
easily define modalities which correspond to reflexive transitive closures of some of our
operators as abbreviations on the syntactic level.

3∗ϕ = ϕ ∨ 3ϕ 2∗ϕ = ϕ ∧ 2ϕ

3∗ϕ = ϕ ∨ 3ϕ 2∗ϕ = ϕ ∧ 2ϕ

3∗ϕ = ϕ ∨ 3ϕ 2∗ϕ = ϕ ∧ 2ϕ

3∗ϕ = ϕ ∨ 3+ϕ 2∗ϕ = ϕ ∧ 2+ϕ

The ancestor relation underlying 2 and 3 is the transitive closure of the parent relation
underlying e. If we required our order over siblings to be (strongly) discrete, then the
relation corresponding to 2 and 3 would in fact be the transitive closure of the relation
underlying e (and accordingly for the other direction). In the general case, however, it
is possible that a node has a sibling somewhere to the left, but no direct left neighbour.

Universal modality. Observe that, starting anywhere in a tree, the ancestor relation
can take us to the tree’s root, and from there the descendant relation takes us to any
node in the tree. Hence, the two modalities defined next are universal modalities,5 that
is, operators which range over all the nodes in a tree.

3ϕ = 3∗3∗ϕ 2ϕ = 2∗2∗ϕ

Suppose, for example, 2ϕ is true at a certain node t in some model M. Then ϕ must
be true at every node in M, that is, ϕ must be globally true.

Global past and future modalities. If we further pursue the idea that has led to
the definition of the universal modalities above, we can combine existing modalities in
such a way as to catch not only the siblings to, say, the right of a given node t, but all
the nodes that lie somewhere to the right of t anywhere in the tree. In our extended
temporal logic setting, such an operator may be described as a ‘global future’ modality.

5A less frequently used but arguably more appropriate term for the universal modality is global

modality. This avoids confusion with the use of the word ‘universal’ to refer to a box-operator (which

has universal meaning) as opposed to a diamond-operator (which has existential meaning).

3.2 Some Defined Operators 49

Global Past
•

◦ • • •

◦ ◦ ◦ • • • •

◦ ◦ • • • •

◦ ◦ • • • •

3ϕ

ϕ

wwoooooooooooo

��

��4
44

44

''OOOOOOOOOOOO

����
��
�

��/
//

//

����
��
�

��/
//

//

����
��

��

�� ��?
??

??
?

zzttttttttt

����
��
�

��/
//

//

$$JJJJJJJJJ

����
��
�

��/
//

//

��
��
�

��*
**

**

��
��
�

��*
**

**

��
��
�

��*
**

**
oooo

��

Global Future
•

• • ◦ ◦

• • • • ◦ ◦ ◦

• • • ◦ ◦ ◦

• • • • ◦ ◦

3ϕ

ϕ

wwoooooooooooo

��

��4
44

44

''OOOOOOOOOOOO

����
��
�

��/
//

//

����
��
�

��/
//

//

����
��

��

�� ��?
??

??
?

zzttttttttt

����
��
�

��/
//

//

$$JJJJJJJJJ

����
��
�

��/
//

//

��
��
�

��*
**

**

��
��
�

��*
**

**

��
��
�

��*
**

**

LL

LL
// //

��

Figure 3.2: Scope of the global past and future modalities

We think of the nodes representing time points in the future of t as those nodes we can
reach by first going up an unspecified number of levels in the tree (or staying at t), then
making at least one step to the right (that is, moving to a righthand sibling), and finally
moving down any number of levels (or possibly staying where we are).

Analogously, we can define a global past modality to refer to nodes anywhere to the
left of the current node. Here are the formal definitions of a pair of global past operators
3 and 2 and corresponding global future operators 3 and 2:

3ϕ = 3∗33∗ϕ 2ϕ = 2∗22∗ϕ

3ϕ = 3∗33∗ϕ 2ϕ = 2∗22∗ϕ

Figure 3.2 provides a graphical depiction of the scope of our global past and future
operators. Take, for instance, the tree on the righthand side. The formula 3ϕ is supposed
to hold at one of the nodes in the tree. To get to the witness formula ϕ shown in the
picture, we first have to move up two levels in the tree, then move two steps to the right,
and finally move down again by one level. The nodes in the scope of 3 are shown as
little empty circles (◦), while the rest of the nodes are represented as filled circles (•).
The lefthand side of the picture shows a similar example for the case of the existential
global past modality.

Difference operator. From the standpoint of a particular given node t in an ordered
tree we can partition that tree into four distinct ‘areas’. To start with, there is the branch
above t, which we can refer to using our ancestor modalities 3 and 2, respectively. Then
there is the subtree below t corresponding to the descendant modalities 3+ and 2+.
With the global past and future operators at hand, we can now also refer to the set of
nodes to the left and to the right of t, respectively.

If we combine these four pairs of operators we can define a modality to refer to any
node in the tree but the current one. This kind of modality is known as the difference
operator in the modal logic literature. Given the following definition, the formula 3ϕ,

50 Chapter 3. Semantic Characterisation

for instance, will be true at a node t iff ϕ is true at some node different from t.

3ϕ = 3ϕ ∨ 3+ϕ ∨ 3ϕ ∨ 3ϕ 2ϕ = 2ϕ ∧ 2+ϕ ∧ 2ϕ ∧ 2ϕ

The difference operator is a very powerful construct6 as it allows us to ‘name’ nodes in
a tree. As an example, suppose the formula Q ∧2¬Q is known to be true at node t (in
some model). Then Q is true at t but false at every other node in the tree underlying
our model. That is, Q acts as a name (on the syntactic level) for the node t.

Iterated modalities. To express that the same modality is applied n times to a for-
mula (with n ∈ N), we can use the following notation.7

2nϕ = 2 · · · 2︸ ︷︷ ︸
n times

ϕ

If, for the sake of generality, at some point we are going to use 2nϕ for n ∈ N0, that is
for natural numbers n including 0, then 20ϕ will simply stand for ϕ. The same notation
is also used for the other modalities of our language.

Tree features. In our logic, we can easily characterise simple features of nodes in a
tree, such as being the root or being a leftmost child. For example, a node is the leftmost
node in a group of siblings iff it satisfies the formula 2⊥ (which is equivalent to ¬3>),
i.e. iff there are no siblings to its left. The following propositions define roots, leaves,
leftmost and rightmost siblings, respectively. The proposition root, for example, is true
at a node t iff t is the root of the tree on which our model is based.

root = 2⊥ leftmost = 2⊥
leaf = 2⊥ rightmost = 2⊥

To be precise, the propositions leftmost and rightmost are also satisfied at the root
of a tree.

3.3 Correspondences

In this section, we are going to give a number of examples of simple formulas that can
be used to characterise certain properties of ordered trees (such as being finite or having
a discrete branching factor). The study of these kinds of relationships between syntax
(formulas) and semantics (structural properties of frames, or trees in our case) is known
as correspondence theory.

6Blackburn et al. [8], for instance, refer to the difference operator as “the hammer” at the bottom of

their modal logic toolbox.
7The set N of natural numbers is the set {1, 2, 3, . . .}, that is, 0 is not a natural number.

3.3 Correspondences 51

Bounded branching. In the general case, the orders declared over the children of
a node are not bounded, i.e. there need not be a leftmost or a rightmost sibling. By
postulating validity of the following proposition we can force the set of children of every
node in a tree to be bounded to either side:

bounded = 3∗leftmost ∧ 3∗rightmost

The formula guarantees the existence of both a leftmost and a rightmost node in every set
of children. So bounded is valid in a tree iff that tree is an ordered tree with a bounded
branching factor. Alternatively, we could say that a tree has a bounded branching factor
whenever 2bounded is true at some node in some model based on that tree.

Observe that bounded branching does not necessarily mean that the number of chil-
dren of each node has to be finite. A particular node may, for instance, have one child
for every rational number between 0 and 1.

Dense branching. Recall that the children of any given node in a tree form a (strict,
but otherwise general) linear order. We may wish this linear order to be dense. The
following formula expresses that the order declared over any set of sibling nodes in the
tree underlying a model is required to be dense. No node has either a left or a right
neighbour.8

dense = ¬ e> ∧ ¬ e>
Weakly discrete branching. We can also express that every node with a sibling to
its left should have a closest left sibling (i.e. a left neighbour) and every node with a
sibling to its right should have a closest right sibling. We call ordered trees satisfying
this condition weakly discrete (see Definition A.5 and our discussion of different notions
of discreteness in Appendix A).

weakly-discrete = (3> → e>) ∧ (3> → e>)

Discrete branching. We are now going to characterise trees with a strongly discrete
branching factor (that is, between any two sibling nodes there can be only finitely many
other siblings; see also Definition A.6).9 The following proposition is an adaptation of
the axiom schema (Z) used to characterise (strongly) discrete flows of time for linear
temporal logics [35]. Let A be an arbitrary propositional letter of our language.10 Then

8In fact, it suffices to postulate either ¬ d> or ¬ d> to guarantee that sibling nodes are ordered

densely. If no node can have a lefthand neighbour then no node can have a righthand neighbour either

(and vice versa).
9In the sequel, if not further specified, by a discrete order (or branching factor) we mean a strongly

discrete order (branching factor), as opposed to a weakly discrete one.
10As will be made precise in Proposition 3.13, discrete is valid in a tree iff that tree has a discrete

branching factor. For formulas, such as bounded, that do not include any propositional letters, this is

equivalent to saying that the formula is globally true in an ordered tree model iff that model is based on

52 Chapter 3. Semantic Characterisation

the following proposition is valid in a tree iff that tree is an ordered tree with a discrete
branching factor:

discrete = 2(2A→ A) → (32A→ 2A)

As it may be less evident than our previous examples, we shall formally prove this
correspondence result here. First, let us fix a definition of ordered trees with a discrete
branching factor.

Definition 3.12 (Discretely ordered trees) An ordered tree T = (T,R, S) is called
a discretely ordered tree iff ([t]R−1◦R, S) is a strongly discrete order for every node t ∈ T .

Now we can formally state our claim that the formula discrete characterises the class
of discretely ordered trees.

Proposition 3.13 (Discrete branching) Let T = (T,R, S) be an ordered tree. Then
T |= discrete holds iff T is a discretely ordered tree.

Proof. To simplify notation we shall write t < t′ for (t, t′) ∈ S and also use t ≤ t′ as an
abbreviation for t < t′ or t = t′.

‘⇐’: Suppose < restricted to any set of sibling nodes is a strongly discrete strict linear
order. We need to show that 2(2A→ A) → (32A→ 2A) is true at any given node t in
any model M based on T . So let us assume M, t |= 2(2A→ A) (1) and M, t |= 32A

(2). (We need to show M, t |= 2A.)
From (1) we get M, t′ |= 2A → A for all t′ with t < t′ (3). From (2) we can infer

that there is a t∗ with t < t∗ and M, t∗ |= 2A (4). Applying modus ponens to (4) and
(3) at node t∗ yields M, t∗ |= A (5).

Because < is a strongly discrete order we can define the distance d(t, t∗) of t and t∗

(with t 6= t∗) as the number of elements between t and t∗ plus one. By induction over
d(t, t∗), we can now show that M, t |= 2A will be true in any case. For the base case,
suppose d(t, t∗) = 1, i.e. t∗ is the direct successor of t. From (4) and (5) we immediately
obtain M, t |= 2A. For the induction step, we gradually move t forward and keep
t∗ fixed. So suppose d(t, t∗) = n + 1 (and that the claim has already been shown for
distances up to n). Let t1 be the direct successor of t, i.e. we have d(t1, t∗) = n and
hence, by the induction hypothesis, M, t1 |= 2A. Applying modus ponens to the latter
and (3) at t1 yields M, t1 |= A. So we get M, t |= 2A, which concludes our proof of this
direction of the claim.

‘⇒’: Now suppose 2(2A→ A) → (32A→ 2A) is true at every node in every model
based on T . We need to show that < restricted to any given set of siblings is a strongly
discrete order. For the sake of contradiction, assume this is not the case, i.e. we have

a tree with the respective property. In the case of discrete, however, if we wish to talk about models

rather than trees, we need to use an instance of discrete for each and every propositional letter in the

language (that is, we need to use it as an axiom schema).

3.3 Correspondences 53

two sibling nodes t1 and t2 with t1 < t2 and there are infinitely many nodes t such that
t1 < t and t < t2. We partially fix a valuation function V as follows:

V (A) = {t ∈ T | t < t2 and [t, t2] is finite} ∪ {t ∈ T | t2 ≤ t}
where [t, t2] = {t′ ∈ T | t ≤ t′ and t′ ≤ t2}

That is, V maps the propositional letter A to the set of those siblings of t1 and t2 that
either lie to the right of t2 or that are only separated from t2 by a finite number of nodes.
By definition, the set V (A) will not include t1.

Now consider the model M = (T , V) and check whether M, t1 |= discete holds
(as it should). We have M, t |= A for all t ∈ V (A) and M, t 6|= 2A for all t ∈ T with
t < t2 and t 6∈ V (A). Hence, the implication 2A → A will be true at any sibling of
t2. In particular, we get M, t1 |= 2(2A → A). Because of M, t2 |= 2A we also get
M, t1 |= 32A. On the other hand, we have M, t1 6|= 2A, i.e. we get M, t1 6|= discrete.
This is a contradiction to the premise that discrete is valid in T , i.e. our assumption
that < restricted to any set of siblings is not discrete must be false. 2

Finite branching. For many applications, trees with a finite (or even a fixed) branch-
ing factor will be sufficient. We can restrict models to those based on finitely branching
trees by forcing the branching factor to be both bounded and strongly discrete.

finite-branching = bounded ∧ discrete

We can also fix a specific finite branching factor. Let n ∈ N. Then the following formula
characterises a tree with branching factor n:

branching(n) = ¬leaf → 3(leftmost ∧ en−1rightmost)

This formula is true at an internal node (i.e. a node that is not a leaf) iff it has got a
child that is a leftmost sibling which in turn has got a rightmost sibling n − 1 steps to
its right. Hence, every node that has any children at all will have exactly n children.
The formula branching(2), for instance, is valid in an ordered tree iff that tree is a
binary tree. An alternative way of characterising the class of binary trees is given by the
following formula:

binary = (leftmost ↔ rightmost) → root

For any node that is not the root of a tree, the above formula can only be true if
leftmost and rightmost have distinct truth values. Hence, every node but the root
has to be either a leftmost or a rightmost sibling, but not both.

Blackburn and Meyer-Viol [9] have developed a modal logic of finite binary trees. As
demonstrated by the authors, such trees have important applications in computational
linguistics. For binary trees, we can easily define modalities to refer to the left or right
child of a given node. The formula 3(leftmost ∧ ϕ), for example, is true at a node t
whenever t has got a left child at which ϕ is true.

54 Chapter 3. Semantic Characterisation

Finite depth. The following is an adaptation of Blackburn and Meyer-Viol’s axiom
(F3). It characterises trees of finite depth. Again, A may be any propositional letter.

finite-depth = A → 3∗(A ∧2+¬A)

We can easily check that finite-depth is valid in trees of finite depth. Whenever a
formula A is true at some node t then on any of the (finite) branches below t there must
be a last occurrence of A (this could be at t itself). At that node of last occurrence
(which may be a leaf node) the formula A ∧2+¬A is true.

For the other direction, i.e. to show that finite-depth being valid in a tree forces
that tree to be of finite depth, we shall only sketch a proof here. Let T be a tree with a
least one infinite branch (we will show that it does not validate finite-depth). We fix
a valuation V for the propositional letter A as follows. Let A be false in the leaves of T
as well as any internal nodes that dominate solely finite branches. For all other nodes t
we declare an alternating valuation: let A be true at t iff the depth of t in the tree (that
is, the distance from the root) is an even number. This means, in particular, that A is
true at the root of T (because there must be at least one infinite branch). Then, in the
model M = (T , V), the formula finite-depth does not hold at the root of T : A is true
at the root, but there is no node t in the tree such that A is true at t and false at every
node below t.

Characterising trees that have only infinite branches, that is, trees without leaves is
considerably easier than axiomatising finite depth. A model is based on an ordered tree
without leaves iff the formula ¬leaf is globally true in that model. Observe that ¬leaf

is equivalent to 3>, the seriality axiom with respect to the existential child modality.

Degenerate trees. In general, a node may have any number of children. However,
for certain purposes we may regard a tree where some nodes have a single child as a
degenerate tree. For instance, if we use OTL as an extended temporal logic we may run
into problems when we interpret the single child t1 of a node t2 as a time period during
the period associated with t2. Such an interpretation would entail that period t1 should
be strictly shorter than t2. On the other hand, one may wish to interpret t1 and t2 as
the same time periods. In order to avoid problems of this kind in the first place, we may
wish to restrict our attention to the class of non-degenerate trees, that is, to trees where
every internal node has got at least two children.

The following formula is valid in a tree iff every node in that tree besides the root is
not both the leftmost and the rightmost member of a set of siblings. This excludes the
possibility of single children.

non-degenerate = (leftmost ∧ rightmost) → root

3.4 Ontological Considerations 55

3.4 Ontological Considerations

We may wish to use the logic of ordered trees to model the behaviour of a complex
system changing over time. Here, time runs from left to right (that is, along the relation
underlying 3), and the children of a node allow us to zoom into a particular period of
time to specify the system in more detail. If we start thinking about OTL as a temporal
representation language, we will soon encounter a number of questions and possibly
even, initially, entertain doubts regarding the logic’s adequacy for such an undertaking.
Suppose we have ϕ being true at some node t. If we think of the children of t as a more
fine-grained representation of the time period associated with t, then should this not
imply that ϕ must also hold at any of the children of t?

The best possible answer to such a question would be: it depends. In fact, it depends
on the ontology of ϕ. What kind of proposition is ϕ supposed to represent?

Ontological categories. Suppose, for example, that ϕ stands for ‘Mary travelled all
the way from Islington to Aldwych’. In that case, ϕ may very well be true at some
node t, but false at one of t’s children (that is, during a time period within the one
corresponding to t). In fact, we might even want to enforce ¬ϕ for all descendants of
t as Mary cannot complete her entire journey both over the duration of t and also in a
shorter period within t.11 If, on the other hand, ϕ stands for a proposition like ‘Mary
has long blonde hair’ then we do want ϕ to hold at descendants of t as well. In the
literature on foundations of planning in artificial intelligence propositions of the latter
kind have been called properties or facts, while propositions like ‘Mary travelled all the
way from Islington to Aldwych’ are known as events [2, 54, 65].12

Such ontological distinctions often form an integral part of the definition of a planning
formalism. In Allen’s work [2], for example, the definition of the predicates holds and
occur, which are used to distinguish between different types of propositions, is central to
the entire system. holds is applied only to properties and occur is reserved for the use
with occurrences (an ontological category that includes events). While Allen’s approach
has undoubtedly been one of the most influential in this area, it has also received a
certain amount of criticism. Shoham [65], in particular, argues against the “seductive
unclarity” of a logic with this kind of built-in ontology. He proposes that, in the first
instance, one should rather not make any specific commitments to ontology, but then
allow for the definition of a fine ontological structure on top of the basic formalism.

This is also the approach we have taken in the definition of our logic. Propositions
in OTL are just that: propositions. Initially, we do not associate them with any spe-
cific ontological category (such as properties or events). However, certain ontological

11We should stress that we are not concerned with the grammatical tense of the verb ‘travelled’ here.

The proposition ‘Mary travelled all the way from Islington to Aldwych’ being true at node t is interpreted

as Mary completing her journey during the time period t, not during some period in the past of t.
12In the area of software engineering, the corresponding ontological categories are sometimes referred

to as states and actions, respectively [23, 46].

56 Chapter 3. Semantic Characterisation

categories can be defined within the logic. In this section we give a number of examples.

Homogeneity. According to the semantics given for OTL, a formula ϕ being satisfied
at some node t does not imply that ϕ also has to hold at all nodes that are below t in the
tree. Whether this is appropriate or not depends on the kind of proposition represented
by the formula ϕ.

Propositions like ‘Mary has long blonde hair’, i.e. properties, are homogeneous: ‘tem-
porally’ speaking, a homogeneous proposition ϕ is true iff it is true at every time interval
within the reference interval. Following Shoham [65] we define homogeneous propositions
as propositions that are both downward-hereditary and upward-hereditary. A proposi-
tion is called downward-hereditary if whenever it holds at some node it also holds at
all descendants of that node. Analogously, a proposition is called upward-hereditary if
whenever it holds at all descendants of a given node it also holds at that node itself
(assuming that node has any descendants at all).

down-hered(ϕ) = ϕ → 2+ϕ

up-hered(ϕ) = 3> → (2+ϕ → ϕ)
hom(ϕ) = down-hered(ϕ) ∧ up-hered(ϕ)

So ϕ is a homogeneous proposition (with respect to a given model) iff hom(ϕ) is globally
true in that model.

Strong negation. Negation as we have defined it here is weak in the sense that ¬ϕ
being satisfied at a particular node simply means that it is not the case that ϕ is satisfied
at that node. It does, however, not preclude ϕ from being satisfied at some of the
descendants of that node. For propositions corresponding to certain kinds of ontological
categories the notion of strong negation may be more appropriate. We can define a strong
negation operator as follows:

∼ϕ = 2∗¬ϕ

The formula ∼ϕ is true at a node t iff ϕ is false at t and all nodes that are descendants
of t. What kind of properties does this new operator have? The following proposition,
for instance, gives us a restricted version of de Morgan-like laws for strong negation. We
may rewrite ∼ϕ∧ ∼ψ as ∼ (ϕ ∨ ψ) and vice versa. We may also rewrite ∼ϕ∨ ∼ψ as
∼(ϕ ∧ ψ), but not the other way round.

Proposition 3.14 (Restricted de Morgan laws for strong negation) The fol-
lowing hold for all formulas ϕ and ψ:

(1) |= ∼ϕ∧ ∼ψ ↔ ∼(ϕ ∨ ψ)

(2) |= ∼ϕ∨ ∼ψ → ∼(ϕ ∧ ψ)

3.4 Ontological Considerations 57

Proof. (1) We show that the formulas ∼ϕ∧ ∼ψ and ∼ (ϕ ∨ ψ) are equivalent: ∼ϕ∧ ∼
ψ ≡ 2∗¬ϕ ∧2∗¬ψ ≡ 2∗(¬ϕ ∧ ¬ψ) ≡ 2∗¬(ϕ ∨ ψ) ≡ ∼(ϕ ∨ ψ).

(2) Suppose ∼ ϕ∨ ∼ ψ, which is equivalent to 2∗¬ϕ ∨ 2∗¬ψ, is true. Then also
2∗(¬ϕ ∨ ¬ψ) has to be true. The latter is equivalent to 2∗¬(ϕ ∧ ψ), which in turn is
equivalent to ∼(ϕ ∧ ψ). 2

To see that indeed ∼ ϕ∨ ∼ ψ and ∼ (ϕ ∧ ψ) are not equivalent, i.e. that the opposite
direction of (2) would not be valid, consider the following counterexample. Suppose we
have a tree consisting only of a root node with a single child. Further suppose that ϕ
holds at the root, but not the child, and that ψ holds at the child node, but not at the
root. Then ∼ (ϕ ∧ ψ) is clearly true at the root, because at no node both ϕ and ψ are
true. However, ∼ϕ∨ ∼ψ does not hold at the root, because for neither ϕ nor for ψ it is
the case that they do not hold at any of the two nodes.

The following result suggests that ∼ may be the appropriate negation operator to be
applied to homogeneous propositions.

Proposition 3.15 (Strong negation of homogeneous propositions) The strong
negation of a homogeneous proposition ϕ is itself homogeneous, that is, global truth of
hom(ϕ) implies global truth of hom(∼ϕ).

Proof. We start by showing that the strong negation of any proposition (that is, not
just that of homogeneous ones) is downward-hereditary. It is easy to see that 2∗¬ϕ →
2+2∗¬ϕ is a valid formula. This is equivalent to down-hered(∼ϕ), which means that
the strong negation of any formula ϕ will be downward-hereditary.

Next we prove that ∼ϕ is upward-hereditary under the assumption that ϕ is homo-
geneous. We need to show the global truth of up-hered(∼ϕ), i.e. that given 3> and
2+2∗¬ϕ at some node t we can infer that 2∗¬ϕ is also true at t. Observe that 2+2∗¬ϕ
is equivalent to 2+¬ϕ, so we only need to show that we can infer ¬ϕ. For the sake of
contradiction, suppose that ϕ is true at t. Because t has descendants (enforced by 3>)
and because ϕ is homogeneous, t will have descendants satisfying ϕ. This contradicts
2+¬ϕ. Hence, both ¬ϕ and 2+¬ϕ, and therefore also 2∗¬ϕ, need to be true at t. This
completes our proof of Proposition 3.15. 2

Strong double negation. We have ∼∼ϕ ≡ 2∗¬2∗¬ϕ ≡ 2∗3∗ϕ. As 2∗ϕ implies
2∗3∗ϕ it is easy to see that the formula ϕ →∼∼ ϕ must be true for homogeneous
propositions ϕ.

The converse, however, does not hold, that is, we cannot eliminate a strong double
negation, not even for homogeneous propositions. To see this, consider the following
counterexample. Let T be an infinite binary tree where every right child is a leaf (i.e.
there is one long branch to the left with many short ones to the right). Let ϕ be the
only propositional letter in our language and define the ordered tree model M = (T , V),
with V (ϕ) being the set of all right children. Then 2∗3∗ϕ (and thereby ∼∼ϕ) is true
in the root of T , but ϕ is not.

58 Chapter 3. Semantic Characterisation

Finally, it is worth noting that over trees of finite depth the formula ∼∼ϕ→ ϕ actu-
ally is globally true for homogeneous propositions ϕ.13 This can be shown by induction
over the height of a node in a tree. For the base case, assume we are in a leaf node. Then
∼∼ϕ, which is equivalent to 2∗3∗ϕ, directly implies ϕ. For the induction step, assume
we are in a node t of height n + 1, that is, all branches below t have at most length n.
Let ∼∼ϕ be true at t. By Proposition 3.15, ∼∼ϕ is homogeneous, i.e. ∼∼ϕ also holds
in every node below t. Now, by the induction hypothesis, we can conclude that ϕ must
be true at every node below t. As ϕ is homogeneous, this means that ϕ must also hold
at t itself.

Comparison with Allen’s system. It is interesting to compare our discussion of ho-
mogeneity and strong negation with Allen’s holds predicate used to characterise prop-
erties in [2]. Allen’s definition of strong negation is essentially the same as ours and
his properties roughly correspond to our homogeneous propositions. What is different
is that the strong negation operator of [2] is involutive, that is, elimination of strong
double negation is a valid operation for those ‘homogeneous’ propositions. In fact, Allen
characterises his properties as precisely those propositions ϕ that validate ϕ↔ 2+3+ϕ

(translated into our formalism). That is, a proposition ϕ is called a property (a ‘homo-
geneous’ proposition) iff ϕ being true at t is equivalent to ϕ being true infinitely many
times on every branch below t. In Allen’s setting, where every interval has subinter-
vals (every node has children, in our formalism), this is a stronger requirement14 than
just postulating the equivalence of ϕ and 2+ϕ (see [2] for a proof). As Allen defines
the strong negation of a property ϕ as 2+¬ϕ (i.e. ∼∼ ϕ is equivalent to 2+3+ϕ), we
immediately get ∼∼ϕ ≡ ϕ.

Strict implication. Our implication operator → has classical semantics: ϕ → ψ is
true at a node t whenever ϕ is false at t or ψ is true at t. We may also wish to employ
the concept of strict implication: a proposition ϕ strictly implies another proposition ψ
(at a node t) iff whenever ϕ is true at a descendent t′ of t (including t itself) then also
ψ is true at t′. Such a strict implication operator ⇒ can be defined as follows:

ϕ⇒ ψ = 2∗(ϕ→ ψ)

The connection between strong negation and strict implication is summarised in the
equivalence ∼ ϕ ≡ ϕ⇒ ⊥, the validity of which is readily verified.

Connections to intuitionistic logic. In the proof of Proposition 3.15 it has been
noted that ∼ ϕ is a downward-hereditary formula for any formula ϕ. By the same
argument, we can show that also ϕ ⇒ ψ (strict implication) is downward-hereditary
for any ϕ and ψ. Furthermore, it is easily observed that both ϕ ∧ ψ and ϕ ∨ ψ are

13This observation is due to Naza Aguirre (personal communication).
14See also Shoham’s critique of Allen’s definition of the holds predicate in [65].

3.4 Ontological Considerations 59

downward-hereditary whenever ϕ and ψ are. In other words, the set of downward-
hereditary propositions is closed under application of ∼, ∧, ∨, and ⇒.

At this point it is interesting to observe that, for downward-hereditary propositions,
the {∼,∧,∨,⇒}-fragment of our logic coincides with propositional intuitionistic logic.
This can be seen by comparison with the definition of the possible worlds semantics for
intuitionistic logic as given, for instance, in [72].15 In particular, observe that the law of
the excluded middle does not hold for the strong negation operator ∼. Formulas of the
form ∼ ϕ ∨ ϕ are not necessarily globally true in all models, even when ϕ is downward-
hereditary. A simple counterexample would be any model where ¬ϕ holds at one node
but ϕ is true at one of its children.

Other ontological categories. The notion of homogeneity has been discussed in some
detail here as it is probably the most important ontological concept in the context of
temporal reasoning. We are going to give two more examples of ontological categories.

The first one concerns the characterisation of events. An event, that is, a proposition
like our ‘Mary travelled all the way from Islington to Aldwych’ should not hold over two
time periods one of which properly contains the other. Shoham [65] calls propositions of
this type gestalt.16 In the context of a tree, we can interpret this condition as follows.
A proposition ϕ is gestalt iff whenever ϕ is true at a node t then it must be false at all
ancestors and descendants of t.

gestalt(ϕ) = ϕ → (2¬ϕ ∧ 2+¬ϕ)

Another ontological concept that can be expressed is locality. A proposition ϕ is called
local if ϕ is true during a particular time period iff it is true at the beginning of that
period [37]. In our system, the beginning of a time period may be identified with the
leftmost child of a node. The following definition takes into account that a node does
not necessarily have to have a leftmost child (although we may wish to postulate that
property independently, as outlined in the previous section).

local(ϕ) = (3leftmost ∧ ϕ) ↔ 3(leftmost ∧ ϕ)

What we have seen here are just examples. Hopefully, they give some impression of
the variety of options available to us when using OTL as a temporal representation
formalism.

15The semantics of intuitionistic logic can be defined via possible world models with frames that are

partial orders and persistent valuation functions (that is, a propositional letter that is true at some world

cannot be false at a later world). The aspect of persistence is captured by our restriction to downward-

hereditary propositions. Also observe that the accessibility relation R∗ underlying the modality 2∗ is a

partial order. The fact that R∗ is generated by a tree is not a restriction, because in the definition of the

semantics of intuitionistic logic the accessibility relation is only used ‘in one direction’.
16Related to this, Shoham also defines the class of solid propositions, that is, propositions that cannot

be true at overlapping time intervals. This would provide an alternative way to characterise events, but

the notion of overlapping intervals cannot be represented in OTL.

60 Chapter 3. Semantic Characterisation

3.5 General Models and P-morphisms

In this and the following section we are going to take a closer look at the semantics
of OTL. At the beginning of this chapter we have defined our logic as a modal logic
over frames that are ordered trees and we have given the various modal operators of our
language a semantics by referring to intuitive notions such as ‘left sibling’ or ‘parent’.
Taking a somewhat broader view, we could also think of OTL as a multi-modal logic
over frames with two basic accessibility relations R (the child relation) and S (the order
declared over siblings). The meaning of our modal operators can then be defined in terms
of these basic relations and a number of compound accessibility relations constructed
from R and S.

In our intended semantics, the relation R is required to characterise a tree and S

is required to be a linear order for each and every set of sibling nodes in that tree.
Loosening these constraints on R and S slightly may not always change the logic, in the
sense that the same formulas as before may be those that have models. In what follows,
we are going to make precise this idea of widening the class of admissible frames.17 Our
main technical tool will be certain types of mappings between frames that are known as
p-morphisms.

General models. Our first aim will be to give an alternative definition of the semantics
of our logic, namely as a multi-modal logic with a number of compound accessibility
relations based on the basic relations R and S. To this end, we are going to introduce
the notion of a general model where we drop the constraints on the basic accessibility
relations R and S completely. This will provide us with a basis upon which we are
later going to define manipulations of the accessibility relations that are satisfiability
preserving.

Next-operators with general models? Our modal language includes a number of
next-operators. Defining the semantics of formulas with next-operators over general
models is problematic, because it is not clear how to generalise the notion of a next state
when moving from orders with unique immediate successors to general relations.

Rather than attempting to generalise this notion, we will simply think of next-
operators as ordinary diamond-operators, that is, we do not generally require the under-
lying accessibility relation to be functional. For example, in our intended models (models
based on ordered trees) the parent relation R−1 is functional, that is, any node can have
at most one parent. For the general models, we will drop this condition and treat the

17At this point it maybe worthwhile to point out that the material of this and the following section is

not only intended to provide us with a deeper understanding of the model-theoretic semantics of OTL,

but will also be required to prove completeness for the axiomatisation discussed in Chapter 4. In fact,

the aforementioned ‘wider class of admissible frames’ (which we are going to give a precise definition for

later on, cf. loosely ordered trees) is precisely the class of frames we encountered during our initial efforts

to prove completeness for a preliminary set of axioms.

3.5 General Models and P-morphisms 61

parent modality e as an existential modality (i.e. like a diamond-operator) over R−1.
In our intended models the accessibility relation underlying e (the right sibling re-

lation) is definable in terms of S, namely as S \ S ◦ S. This definition makes sense,
because we know that S is not branching to the right. Hence, it captures the notion of
an immediate successor. In the general setting, where S could be any binary relation,
such a definition would seem rather arbitrary and we shall not adopt it. Instead, we will
introduce a third accessibility relation N , which only in intended models will be required
to coincide with the immediate successor relation induced by S.

Definition 3.16 (General frames) A general frame is a quadruple F = (T,R, S,N)
where T is a non-empty set, and R, S and N are binary relations over T . The elements
of T are called worlds.

As for the case of ordered trees before, we shall occasionally simply refer to worlds t in
a frame F rather than explicitly introducing a set of worlds T for that frame first.

When speaking about an intended frame we shall mean a frame that corresponds to
an ordered tree. In other words, a general frame F = (T,R, S,N) is called an intended
frame if (T,R, S) is an ordered tree and N = S \ S ◦ S, that is, for every node in the
tree N points to its immediate righthand successor with respect to the linear order S,
whenever there is such a successor.

Definition 3.17 (General models) A general model is a pair M = (F , V) where F =
(T,R, S,N) is a general frame and V is a valuation, that is, a mapping from propositional
letters to subsets of the set of worlds T .

Again, we may either write M = (F , V) with F = (T,R, S,N) or directly M =
(T,R, S,N, V). In Definition 3.18 we are going to fix the notion of truth for general
models. The semantics of our various modalities will be defined with respect to (possibly
complex) accessibility relations depending on R, S and N . The relation S−1, for exam-
ple, will be used to refer to those worlds that, within an ordered tree model, we would
call left siblings.

The following definition should be read in conjunction with Definition 3.6, where the
notion of truth for our intended models has been defined.

Definition 3.18 (Truth in a general model) We inductively define the notion of a
formula being true in a general model M = (F , V) with F = (T,R, S,N) at a world
t ∈ T as follows:

(1) M, t |= P iff t ∈ V (P) for propositional letters P ;

(2) M, t |= >;

(3) M, t |= ¬ϕ iff M, t 6|= ϕ;

(4) M, t |= ϕ ∧ ψ iff M, t |= ϕ and M, t |= ψ;

62 Chapter 3. Semantic Characterisation

(5) M, t |= eϕ iff there is a t′ ∈ T with (t, t′) ∈ R−1 and M, t′ |= ϕ;

(6) M, t |= 3ϕ iff there is a t′ ∈ T with (t, t′) ∈ (R−1)+ and M, t′ |= ϕ;

(7) M, t |= eϕ iff there is a t′ ∈ T with (t, t′) ∈ N−1 and M, t′ |= ϕ;

(8) M, t |= 3ϕ iff there is a t′ ∈ T with (t, t′) ∈ S−1 and M, t′ |= ϕ;

(9) M, t |= eϕ iff there is a t′ ∈ T with (t, t′) ∈ N and M, t′ |= ϕ;

(10) M, t |= 3ϕ iff there is a t′ ∈ T with (t, t′) ∈ S and M, t′ |= ϕ;

(11) M, t |= 3ϕ iff there is a t′ ∈ T with (t, t′) ∈ R and M, t′ |= ϕ;

(12) M, t |= 3+ϕ iff there is a t′ ∈ T with (t, t′) ∈ R+ and M, t′ |= ϕ.

Observe that in case the underlying frame F = (T,R, S,N) is such that (T,R, S) is
an ordered tree and N = S \ S ◦ S, the above notion of truth coincides with the one
originally formulated in Definition 3.6. The remaining operators of our language can
again be considered defined operators; see Definition 3.7.

While we are going to reserve the term ‘satisfiable’ for formulas that have an ordered
tree model, we are going to speak about formulas that are satisfiable in a general model
based on some frame belonging to a certain class of frames.

Definition 3.19 (Satisfiability in general models) We say a formula ϕ is satisfi-
able in a model based on a frame belonging to some class of general frames iff there is a
general model M = (F , V) based on a frame F from that class with a world t in F such
that M, t |= ϕ holds.

The concepts of global truth, validity with respect to a particular frame, and validity in
general can be defined in analogy to Definitions 3.9, 3.10 and 3.11, respectively.

P-morphisms. The notion of p-morphism (or bounded morphism) plays a central
role in the study of modal logics [8, 13, 35]. It provides us with a powerful tool to
describe satisfiability preserving transformations between models. Further below we will
state the definition of p-morphisms for our particular modal logic with three accessibility
relations, all of which are used ‘in both directions’. We start by introducing the concept
of p-morphism for pairs of a domain and a binary relation declared over that domain.

Definition 3.20 (P-morphisms for relational structures) Let T and T ′ be sets
and let R be a binary relation over T and R′ a binary relation over T ′. A function
f : T → T ′ is called a (simple) p-morphism from (T,R) to (T ′, R′) iff it satisfies the
following conditions:

(1) if (t1, t2) ∈ R then (f(t1), f(t2)) ∈ R′;

(2) if (f(t1), t′2) ∈ R′ then there is a t2 ∈ T with f(t2) = t′2 and (t1, t2) ∈ R.

3.5 General Models and P-morphisms 63

We call f a bidirectional p-morphism, if in addition to the above it also satisfies the
following condition:

(3) if (t′1, f(t2)) ∈ R′ then there is a t1 ∈ T with f(t1) = t′1 and (t1, t2) ∈ R.

The first of these conditions is sometimes called the homomorphic condition as it guaran-
tees f to be a homomorphism. The second condition has been called the back condition
in [8] and the third one may be called the inverse back condition. If in the above def-
inition the p-morphism f is a surjective function then (T ′, R′) is called the p-morphic
image of (T,R).

Next we are going to introduce the notion of p-morphism for our general frames. In
short, we call a function a p-morphism from one frame to another if that function is
a bidirectional p-morphism with respect to the three accessibility relations of a general
frame.

Definition 3.21 (P-morphisms for frames) Let F = (T,R, S,N) and F ′ =
(T ′, R′, S′, N ′) be general frames. A function f : T → T ′ is called a p-morphism from F
to F ′ iff it satisfies the following conditions:

(1) f is a bidirectional p-morphism from (T,R) to (T ′, R′);

(2) f is a bidirectional p-morphism from (T, S) to (T ′, S′);

(3) f is a bidirectional p-morphism from (T,N) to (T ′, N ′).

We are not going to distinguish simple and bidirectional p-morphisms for frames. When
speaking about a p-morphism in the context of a general frame we shall always mean a
bidirectional p-morphism. Again, if the p-morphism f is a surjective function from T

onto T ′, then the frame F ′ is called the p-morphic image of F .
Finally, we extend the notion of p-morphisms to general models.

Definition 3.22 (P-morphisms for models) Let M = (F , V) and M′ = (F ′, V ′) be
general models with F = (T,R, S,N) and F ′ = (T ′, R′, S′, N ′). A function f : T → T ′

is called a p-morphism from M to M′ iff it satisfies the following conditions:

(1) f is a p-morphism from (F , R) to (F ′, R′);

(2) t ∈ V (P) iff f(t) ∈ V ′(P) for all t ∈ T and all propositional letters P .

Also in the case of models, if there exists a p-morphism f from M to M′ that is a
surjective function then we say that M′ is a p-morphic image of M.

As will be stated as Theorem 3.24 below, the truth of a formula ϕ in a general model
M is invariant under p-morphisms. The proof of that theorem will make use of the
following lemma.

64 Chapter 3. Semantic Characterisation

Lemma 3.23 (P-morphisms for compound relations) Let f be a bidirectional p-
morphism from (T,R1) to (T ′, R′

1) and from (T,R2) to (T ′, R′
2). Then also the following

are true:

(1) f is a bidirectional p-morphism from (T,R−1
1) to (T ′, R′−1

1);

(2) f is a bidirectional p-morphism from (T,R1 ∪R2) to (T ′, R′
1 ∪R′

2);

(3) f is a bidirectional p-morphism from (T,R1 ◦R2) to (T ′, R′
1 ◦R′

2);

(4) f is a bidirectional p-morphism from (T,Rn
1) to (T ′, R′n

1) for all n ∈ N;

(5) f is a bidirectional p-morphism from (T,R+
1) to (T ′, R′+

1);

(6) f is a bidirectional p-morphism from (T,R∗
1) to (T ′, R′∗

1).

Proof. For each of the six statements we have to show that the three conditions for p-
morphisms formulated in Definition 3.20 also hold for the complex relation in question.

(1) Inverse. (1) If (t1, t2) ∈ R−1
1 then (t2, t1) ∈ R1, which implies (f(t2), f(t1)) ∈

R′
1 (because f is a p-morphism with respect to R1), which in turn implies

(f(t1), f(t2)) ∈ R′−1
1 .

(2) If (f(t1), t′2) ∈ R′−1
1 then (t′2, f(t1)) ∈ R′

1, i.e. there exists a t2 ∈ T such that
f(t2) = t′2 and (t2, t1) ∈ R1, which implies (t1, t2) ∈ R−1

1 .

Condition (3) is dual to condition (2) and can be checked analogously.

(2) Union. (1) (t1, t2) ∈ R1 ∪ R2 implies either (t1, t2) ∈ R1 or (t1, t2) ∈ R2. That
is, we get (f(t1), f(t2)) ∈ R1 or (f(t1), f(t2)) ∈ R2, hence the desired result
(f(t1), f(t2)) ∈ R1 ∪R2.

(2) Let (f(t1), t′2) ∈ R′
1 ∪R′

2, i.e. either (f(t1), t′2) ∈ R′
1 or (f(t1), t′2) ∈ R′

2. Hence,
there must be a t2 ∈ T with f(t2) = t′2 satisfying either (t1, t2) ∈ R1 or (t1, t2) ∈ R2,
and thereby also (t1, t2) ∈ R1 ∪R2.

Condition (3) is checked analogously.

(3) Composition. (1) Let (t1, t3) ∈ R1 ◦R2, i.e. there is a t2 ∈ T such that (t1, t2) ∈ R1

and (t2, t3) ∈ R2 hold. Because f is a p-morphism for both R1 and R2 we get
(f(t1), f(t2)) ∈ R′

1 and (f(t2), f(t3)) ∈ R′
2, hence (f(t1), f(t3)) ∈ R′

1 ◦R′
2.

(2) Let (f(t1), t′3) ∈ R′
1 ◦ R′

2 i.e. there is a t′2 ∈ T ′ such that (f(t1), t′2) ∈ R′
1

and (t′2, t
′
3) ∈ R′

2 hold. Because f is a p-morphism for R1, there is a t2 ∈ T

with f(t2) = t′2 and (t1, t2) ∈ R1. As we also obtain (f(t2), t′3) ∈ R′
2 and f is

a p-morphism with respect to R2, there has to be a t3 ∈ T with f(t3) = t′3 and
(t2, t3) ∈ R2. Finally, we therefore get (t1, t3) ∈ R1 ◦R2.

Condition (3) is checked analogously.

3.5 General Models and P-morphisms 65

(4) Iteration. Given the result for the composition of relations, it can easily be shown
by complete induction that f is a bidirectional p-morphism from (T,Rn

1) to (T,R′n
1)

for any n ∈ N.

(5) Transitive closure. Checking the three p-morphism conditions for the transitive
closure is now straightforward:

(1) Let (t1, t2) ∈ R+
1 , that is, there exists an n ∈ N such that (t1, t2) ∈ Rn

1 . But
then also (f(t1), f(t2)) ∈ R′n

1 for the same n, i.e. (f(t1), f(t2)) ∈ R′+
1 .

(2) Let (f(t1), t′2) ∈ R′+
1 , i.e. (f(t1), t′2) ∈ R′n

1 for some n ∈ N. So there exists a
t2 ∈ T with f(t2) = t′2 and (t1, t2) ∈ Rn

1 , hence also (t1, t2) ∈ R+
1 .

Condition (3) is checked analogously.

(6) Reflexive transitive closure. First observe that any function from T to T ′ must
be a bidirectional p-morphism from (T,=) to (T ′,=). Given that the reflexive
transitive closure of a relation is the union of the non-reflexive transitive closure of
that relation and =, the desired result follows immediately from cases (2) and (5).

This concludes our proof of Lemma 3.23. 2

We should point out that p-morphisms are not generally preserved under taking com-
plements or forming either intersections or differences of relations.18

The following P-morphism Theorem is, essentially, a standard result in modal logics.
What is a little different in our case is that the results proved in Lemma 3.23 allow
us to limit the checking of the p-morphism conditions to the three basic accessibility
relations of a model (namely R, S and N) rather than checking them for all of the
eight compound accessibility relations referred to in the definition of the semantics of
our modal operators.19

Theorem 3.24 (P-morphisms) Let M = (F , V) and M′ = (F ′, V ′) be general models
with F = (T,R, S,N) and F ′ = (T ′, R′, S′, N ′), and let f be a (bidirectional) p-morphism
from M to M′. Then for all worlds t ∈ T and all formulas ϕ we have:

M, t |= ϕ iff M′, f(t) |= ϕ

Proof. By induction on the structure of formulas ϕ. For the base case, assume ϕ is a
propositional letter. The statement then is a direct consequence of the second condition
for p-morphisms formulated in Definition 3.22. It is also trivially true for the formula >.

18Here is a simple counterexample for the case of the difference operation. Let T = {t1, t2} and

T ′ = {t′} and define the following relations over these two domains: R1 = {(t1, t1), (t1, t2), (t2, t2)}, R2 =

{(t1, t1), (t2, t2)}, R′
1 = {(t′, t′)}, and R′

2 = {(t′, t′)}. Then the function f with f(t1) = t′ and f(t2) = t′ is

a bidirectional p-morphism both from (T,R1) to (T ′, R′
1) and from (T,R2) to (T ′, R′

2), because all three

conditions of Definition 3.20 are fulfilled. However, f is not a p-morphism from (T,R1\R2) to (T ′, R′
1\R′

2),

because the homomorphic condition fails for one pair of elements: although we have (t1, t2) ∈ R1\R2,

the required (f(t1), f(t2)) ∈ R′
1\R′

2 does not hold.
19See items (5)–(12) in Definition 3.18.

66 Chapter 3. Semantic Characterisation

For the induction step, we have to consider all the core operators of our language.
Those are the operators referred to in Definition 3.18. The definable operators from
Definition 3.7 need not be considered here. We start with the propositional connectives:

(1) Negation. We have M, t |= ¬ϕ iff M, t 6|= ϕ, which by the induction hypothesis is
equivalent to M′, f(t) 6|= ϕ, which in turn is equivalent to M′, f(t) |= ¬ϕ.

(2) Conjunction. We have M, t |= ϕ ∧ ψ iff both M, t |= ϕ and M, t |= ψ. By the
induction hypothesis this is equivalent to M′, f(t) |= ϕ and M′, f(t) |= ψ, i.e.
M′, f(t) |= ϕ ∧ ψ.

Next we turn to the modal operators. The formulations of the truth conditions for
the various modal operators in Definition 3.18 have a common structure: truth of a
formula requires the existence of a successor world with respect to a (possibly complex)
accessibility relation and the truth of the main subformula of the formula in question at
that world. These accessibility relations are all constructed from R, S, and N using only
the operations of inverse and transitive closure, both of which are covered by Lemma 3.23.
That is, f is a p-morphism with respect to all these relations (and the corresponding
relations of M′).

These observations allow us to treat all modal operators in the same way. For the
induction step for the case of a modal operator applied to a principal subformula ϕ, we
shall prove the following general claim:

Claim: If α and α′ are binary relations such that f is a p-morphism from
(T, α) to (T ′, α′) then, for all t ∈ T and all formulas ϕ (covered by the
induction hypothesis), there exists a tα ∈ T with (t, tα) ∈ α and M, tα |= ϕ

iff there exists a t′α ∈ T ′ with (f(t), t′α) ∈ α′ and M′, t′α |= ϕ.

‘⇒’: Assume there exists a tα ∈ T with (t, tα) ∈ α and M, tα |= ϕ. From the in-
duction hypothesis we get M′, f(tα) |= ϕ and from the homomorphic condition we get
(f(t), f(tα)) ∈ α′. Hence, there indeed exists a t′α ∈ T ′, namely f(tα), satisfying the
required conditions.

‘⇐’: Now assume there exists a t′α ∈ T ′ with (f(t), t′α) ∈ α′ and M′, t′α |= ϕ. By the
back condition, there exists a tα ∈ T with f(tα) = t′α (that is, in particular M′, f(tα) |=
ϕ) and (t, tα) ∈ α. Now, using the induction hypothesis, we obtain M, tα |= ϕ.

This concludes our proof for the case of diamond- and next-operators and thereby
our proof of Theorem 3.24. 2

Composing p-morphisms. Before we move on to discuss how we can apply the P-
morphism Theorem for our investigation of ordered tree logics, we shall prove two very
simple lemmas that show that we can compose p-morphisms as expected.

Lemma 3.25 (Composition of p-morphisms for relational structures) If f is a
bidirectional p-morphism from (T,R) onto (T ′, R′) and g is a bidirectional p-morphism

3.6 Loosely Ordered Trees 67

from (T ′, R′) onto (T ′′, R′′) then f ◦ g must be a bidirectional p-morphism from (T,R)
onto (T ′′, R′′).

Proof. We need to check the three conditions from Definition 3.20:

(1) Homomorphic condition. Let (t1, t2) ∈ R. We can infer (f(t1), f(t2)) ∈ R′ and
then (g(f(t1)), g(f(t2))) ∈ R′′, using the homomorphic condition for f and g, re-
spectively. Thus we obtain (f ◦ g(t1), f ◦ g(t2)) ∈ R′′ as required.

(2) Back condition. Let (f◦g(t1), t′′2) ∈ R′′, which is the same as (g(f(t1)), t′′2) ∈ R′′. By
the back condition for g, there must be a t′2 ∈ T ′ with g(t′2) = t′′2 and (f(t1), t′2) ∈ R′.
Now the back condition for f provides us with a t2 ∈ T with f(t2) = t′2 (i.e. also
f ◦ g(t2) = t′′2) and (t1, t2) ∈ R, as required.

(3) Inverse back condition. This can be shown in analogy to the back condition.

Finally, the surjectivity of f ◦ g follows immediately from the surjectivity of the single
functions f and g. 2

Lemma 3.26 (Composition of p-morphisms for models) Let M, M′ and M′′ be
general models. If f is a p-morphism from M onto M′ and g is a p-morphism from M′

onto M′′ then f ◦ g must be a p-morphism from M onto M′′.

Proof. We need to check the conditions from Definition 3.22. Let M = (T,R, S,N, V),
M′ = (T ′, R′, S′, N ′, V ′) and M′′ = (T ′′, R′′, S′′, N ′′, V ′′). The fact that f ◦ g is a
bidirectional p-morphism from (T,R) onto (T ′′, R′′), from (T, S) onto (T ′′, S′′), and from
(T,N) onto (T ′′, N ′′) follows from Lemma 3.25. We also have t ∈ V (P) iff f(t) ∈ V ′(P)
iff g(f(t)) ∈ V ′′(P) for all t ∈ T and all propositional letters P , so we are done. 2

3.6 Loosely Ordered Trees

Applications of p-morphisms. How are we going to apply the P-morphism Theo-
rem? The general idea is to exploit it in situations where we want to give a constructive
proof of the satisfiability of a given formula, but can only build a model that almost cor-
responds to an ordered tree. If we can show that a general model M′ is the p-morphic
image of some model M that is based on an ordered tree then satisfiability of a formula
ϕ in M′ entails, by the P-morphism Theorem, satisfiability of ϕ in M, and thereby
satisfiability of ϕ in OTL.

Of course, only some very specific models can be shown to be p-morphic images of
intended models. Our aim for this section will be to identify a suitable class of frames that
(1) can be shown to be p-morphic images of ordered trees and that (2) relax the definition
of an ordered tree sufficiently to really simplify constructive satisfiability proofs.20 We
are first going to establish a number of necessary conditions that any such frame will
have to satisfy (in order to qualify as the p-morphic image of an ordered tree).

20This class of frames will later be defined as the class of loosely ordered trees.

68 Chapter 3. Semantic Characterisation

Some properties preserved under taking p-morphic images. For a model based
on an ordered tree, the accessibility relations underlying the three next-operators are
all functional : any given node has at most one successor with respect to any of these
three relations. The following lemma shows that this property is preserved under taking
p-morphic images.

An immediate consequence of this is that for a general frame F = (T,R, S,N) to
be the p-morphic image of an intended frame (i.e. a general frame corresponding to an
ordered tree) it is a necessary condition that R−1, N and N−1 are all functional relations.

Lemma 3.27 (P-morphic images of functional relations) Let f be a surjective p-
morphism from (T,R) to (T ′, R′) and let R be a functional relation. Then R′ must be
functional, too.

Proof. R is functional, i.e. (t, t1) ∈ R and (t, t2) ∈ R implies t1 = t2 for all t, t1, t2 ∈ T .
We need to prove the same property for R′. So let t′, t′1, t

′
2 ∈ T ′ with (t′, t′1) ∈ R′ and

(t′, t′2) ∈ R′. Given that f is required to be surjective there must be a t ∈ T (at least
one) with f(t) = t′, so we have (f(t), t′1) ∈ R′ and (f(t), t′2) ∈ R′. Applying the back
condition to the former we can establish that there exists a t1 ∈ T with f(t1) = t′1 and
(t, t1) ∈ R. By the same argument we get f(t2) = t′2 and (t, t2) ∈ R for some t2 ∈ T .
As R is functional, we can infer t1 = t2, hence also f(t1) = f(t2). This in turn gives us
t′1 = t′2, the required result. 2

Another simple property that is preserved under taking p-morphic images is that of one
relation being a subrelation to another relation.

Lemma 3.28 (P-morphic images of subrelations) Let f be a surjective p-
morphism from (T,R1) to (T ′, R′

1) and from (T,R2) to (T ′, R′
2) and let R1 ⊆ R2. Then

R′
1 ⊆ R′

2 must hold, too.

Proof. Let (t′1, t
′
2) ∈ R′

1. We need to show (t′1, t
′
2) ∈ R′

2. Given that f is a surjective
function there must be a t1 ∈ T with f(t1) = t′1, i.e. we have (f(t1), t′2) ∈ R′

1. Using
the back condition we see that now there must also be a t2 ∈ T with f(t2) = t′2
and (t1, t2) ∈ R1. The latter implies (t1, t2) ∈ R2, because we have R1 ⊆ R2. The
homomorphic condition then yields the desired result, namely (f(t1), f(t2)) ∈ R′

2 and
thereby (t′1, t

′
2) ∈ R′

2. 2

This last result entails, for instance, that for any general frame F = (T,R, S,N) to be
the p-morphic image of an ordered tree we require N ⊆ S (because the right neighbour
relation is a subrelation to the right sibling relation) and S ⊆ R−1◦R (because the right
sibling relation is a subrelation to the sibling relation).

The next lemma establishes that transitivity is preserved as well. Hence, as the order
declared over siblings in an ordered tree is transitive, the relation S in a general frame
F = (T,R, S,N) needs to be transitive as well for F to qualify as the p-morphic image
of an intended frame.

3.6 Loosely Ordered Trees 69

Lemma 3.29 (P-morphic images of transitive relations) Let f be a surjective p-
morphism from (T,R) to (T ′, R′) and let R be a transitive relation. Then R′ must be
transitive, too.

Proof. Suppose we have (t′1, t
′
2) ∈ R′ and (t′2, t

′
3) ∈ R′. By the same kind of argument as

before (using surjectivity and the back condition) we show that there exist t1, t2, t3 ∈ T
with f(t1) = t′1, f(t2) = t′2, and f(t3) = t′3 as well as (t1, t2) ∈ R and (t2, t3) ∈ R. Transi-
tivity of R yields (t1, t3) ∈ R. Hence, by the homomorphic condition, (f(t1), f(t3)) ∈ R′,
that is, (t′1, t

′
3) ∈ R′ as required. 2

Another property that can easily be seen to be preserved under taking p-morphic images
is connectedness. In fact, we only require the homomorphic condition to show this. A
textbook example for a property that is not preserved is irreflexivity. A counterexample
would be the function f : (Z, <) → ({0},≤), where < and ≤ are the usual order relations
over integers, with f(n) = 0 for all n ∈ Z. All three conditions from Definition 3.20 are
fulfilled, i.e. f is a (surjective) bidirectional p-morphism, but the irreflexivity of < is not
preserved in the p-morphic image. Hence, the p-morphic image of any strict linear order
(irreflexive, transitive, and connected), such as the sibling order S of an ordered tree, is
bound to be a linear order (transitive and connected, but not necessarily either reflexive
or irreflexive).

While irreflexivity is not preserved in the general case, there are certain classes of
irreflexive frames for which any p-morphic image will also be irreflexive. We are going
to see an example for this very soon.

P-morphic images of trees. So far we have studied what happens to relatively simple
properties of relations (such as transitivity or irreflexivity) when we apply a p-morphism.
Our next aim will be to prove that the p-morphic image of a tree is always a tree itself.
This result will be stated in Lemma 3.32. The next two lemmas will be required in the
proof of the former. They show how two particular properties of trees are preserved
under taking p-morphic images.

Trees are rooted, that is, within every tree there must be a unique node, the root,
from which every other node can be reached via the transitive closure of the child relation
R. As the following lemma shows, this property is preserved under the application of
p-morphisms.

Lemma 3.30 (P-morphic images of rooted frames) Let f be a surjective bidirec-
tional p-morphism from (T,R) to (T ′, R′) and let there be a unique element r ∈ T such
that {t ∈ T | (r, t) ∈ R∗} = T . Then there exists a unique element r′ ∈ T ′ such that
{t′ ∈ T ′ | (r′, t′) ∈ R′∗} = T ′.

Proof. First recall that, by Lemma 3.23, f is a p-morphism from (T,R∗) to (T ′, R′∗).
Define r′ = f(r). We need to show that (f(r), t′) ∈ R′∗ for all t′ ∈ T ′. So assume there

70 Chapter 3. Semantic Characterisation

exists a t′ ∈ T ′ with (f(r), t′) 6∈ R′∗. T ′ is the p-morphic image of T , so there must be
a t ∈ T with f(t) = t′. But (T,R) is rooted with root r, that is, we have (r, t) ∈ R∗

and hence, by the homomorphic condition, (f(r), f(t)) ∈ R′∗, which contradicts our
assumption.

It remains to be shown that the root element in T ′ will be unique. So for the sake of
contradiction, let us assume that besides r′ there also exists an alternative root element
a′ ∈ T ′ with a′ 6= r′ and {t′ ∈ T ′ | (a′, t′) ∈ R′∗} = T ′. Given that r′ is already known
to be a root of T ′, the latter condition will hold iff (a′, r′) ∈ R′∗. (To see this, observe
that whenever we can reach r′ we can also reach any other node in the set.) This is
equivalent to (a′, f(r)) ∈ R′∗. Using the inverse back condition we can now establish the
existence of an element a ∈ T with f(a) = a′ and (a, r) ∈ R∗. But then, by the same
argument as before, a must be a root element in T . Because T is supposed to have a
unique root, we must infer a = r. Thus we obtain f(a) = f(r) and then a′ = r′, which
contradicts our earlier assumption of a′ being a second root element. 2

As pointed out before, irreflexivity, whilst not preserved in the general case, may still be
a property of the p-morphic images of certain classes of irreflexive frames. One such class
is the class of trees, as the next lemma will show. Recall that in a tree (T,R), R is not
only required to be irreflexive, but in addition we know that (T,R) must be rooted and
R is what we may call conversely functional: every element has at most one predecessor
with respect to the relation R. These additional properties will allow us to prove that
irreflexivity is preserved in the p-morphic image.

Lemma 3.31 (P-morphic images of trees: irreflexivity) Let f be a surjective
bidirectional p-morphism from (T,R) to (T ′, R′) and let (T,R) be a tree. Then R′ must
be irreflexive.

Proof. Let r be the root of (T,R). For the sake of contradiction, assume there is a
reflexive point t′ ∈ T ′, i.e. (t′, t′) ∈ R′. Let t be any element in T with f(t) = t′. Given
that t is an element in a tree it must have a distance n ∈ N0 from the tree’s root r, that
is, we have (r, t) ∈ Rn. Then there can be no element t∗ ∈ T for which we have, for
instance, (t∗, t) ∈ Rn+1, because there are no further elements ‘above’ the root.

By Lemma 3.23, f must also be a p-morphism both from (T,Rn) to (T,R′n) and from
(T,Rn+1) to (T,R′n+1). Thus, by the homomorphic condition, we get (f(r), f(t)) ∈ R′n.
But t′, which is the same as f(t), is assumed to be a reflexive point, so we also get
(f(r), f(t)) ∈ R′n+1. If we rewrite f(r) as r′ we obtain (r′, f(t)) ∈ R′n+1. Hence, by the
inverse back condition, there must be a t∗ ∈ T with f(t∗) = r′ and (t∗, t) ∈ Rn+1, which
contradicts what has been said before. Hence, R′ will indeed be an irreflexive relation. 2

We are now ready to put these results together and show that p-morphic images of trees
are trees themselves.

3.6 Loosely Ordered Trees 71

Lemma 3.32 (P-morphic images of trees) Let f be a surjective bidirectional p-
morphism from (T,R) to (T ′, R′) and let (T,R) be a tree. Then (T ′, R′) must be a
tree, too.

Proof. We need to show that (T ′, R′) is a tree according to Definition 3.2, that is, we
need to show that R′ is an irreflexive and conversely functional relation and that (T ′, R′)
is rooted.

(1) Irreflexivity. By Lemma 3.31, the relation R′ must be irreflexive.

(2) Converse functionality. By Lemma 3.23, f is also a p-morphism from (T,R−1)
onto (T ′, R′−1). Hence, by Lemma 3.27, R′−1 must be functional, as required.

(3) Rootedness. Lemma 3.30 guarantees that (T ′, R′) will be rooted and will have a
unique root element.

This concludes our proof of Lemma 3.32. 2

Necessary conditions for p-morphic images of ordered trees. We have now seen
several examples for properties that are necessarily preserved under taking p-morphic
images. Most of them are rather general concepts, such as transitivity or functionality.
Only the last result on p-morphic images of trees is a little more specific. They allow us
to formulate a number of necessary conditions any p-morphic image of any ordered tree
will comply to. From our discussion so far, we can already draw up the following list
of properties. Most of these have already been mentioned above; the following merely
serves as a summary.

Suppose F = (T,R, S,N) is the p-morphic image of an ordered tree (i.e. an intended
frame). Then F will have (at least) the following properties:21

(1) (T,R) must be a tree.

(2) S must be a transitive relation.

(3) S must be a subrelation to R−1◦R.

(4) S must be connected over quasi-equivalence classes with respect to R−1◦R.

(5) N and N−1 must be functional relations.

(6) N must be a subrelation to S.

As we shall see, this list is not exhaustive yet. We can be even more specific about the
properties of p-morphic images of ordered trees.

21These results will be fomally proved as part of Proposition 3.34.

72 Chapter 3. Semantic Characterisation

Sufficient conditions for p-morphic images of ordered trees. More importantly
than the necessary conditions discussed so far, we want to formulate a set of sufficient
conditions, that, if met by a general frame F , guarantee that F is the p-morphic image
of an ordered tree. The above list of necessary conditions already leaves only a small
degree of freedom for such a definition. Essentially, our choices are restricted to some
aspects of the relation N .

Frames that fulfil our sufficient conditions will be called loosely ordered trees. That,
indeed, any loosely ordered tree is the p-morphic image of an ordered tree will be proved
in Lemma 3.40 towards the end of this section. Our second aspiration, namely that this
definition of a class of frames is useful will be put to the test in the next chapter.

Definition 3.33 (Loosely ordered trees) A general frame F = (T,R, S,N) is called
a loosely ordered tree iff it satisfies the following conditions:

(1) (T,R) is a tree.

(2) S is a transitive relation.

(3) S ⊆ R−1◦R

(4) R−1◦R ⊆ S∗ ∪ S−1

(5) N and N−1 are functional relations.

(6) N ⊆ S

(7) S \ S ◦ S ⊆ N

(8) N−1◦ S ⊆ S∗

(9) S ◦N−1 ⊆ S∗

Here, S∗ denotes the reflexive closure of S, that is, the relation S ∪ {(t, t) | t ∈ T}.
Given that S is required to be transitive, there is no need to distinguish the reflexive
transitive closure (for which we had originally reserved this notation) from the simple
reflexive closure.

The bigger picture. From a technical point of view, the central result of this section
will be formulated in Lemma 3.40 (on page 93), which essentially expresses that the set
of conditions laid down in the definition above are sufficient for a frame to provably be
the p-morphic image of an ordered tree. The following proposition complements this
result by showing that all of these conditions are in fact also necessary. This means
that our choice of definition of loosely ordered trees (our definition of general frames
characterising p-morphic images of ordered trees) is ideal in the sense that no class of
frames strictly including the class of loosely ordered trees could still characterise our
logic OTL.22

22At least there is no such class of frames that we could identify using only our methods based on

p-morphisms.

3.6 Loosely Ordered Trees 73

Proposition 3.34 (P-morphic images of ordered trees) Let F and F ′ be general
frames and let f be a surjective p-morphism from F to F ′. Then F ′ must be a loosely
ordered tree whenever F is an ordered tree.

Proof. Let F = (T,R, S,N) be an ordered tree, that is a general frame such that (T,R, S)
is an ordered tree according to Definition 3.4 and N corresponds to the immediate suc-
cessor function underlying S (i.e. N = S \ S ◦ S). Furthermore, let F ′ = (T ′, R′, S′, N ′)
be a general frame and let f be a surjective p-morphism from F to F ′. To show that F ′

is a loosely ordered tree as claimed, we need to check that it fulfils the conditions laid
down in Definition 3.33. In fact, all but one of these follow almost immediately from the
lemmas on properties preserved under taking p-morphic images already proved in this
section.

Most of the conditions in Definition 3.33 express that a particular (compound) rela-
tion is required to be a subrelation to another (compound) relation. With the exception
of the difference operation used in condition (7), all the relational algebra operations
used to construct the relations involved are covered by Lemma 3.23. This means, for in-
stance, that f must be a bidirectional p-morphism from (T, S ◦N−1) onto (T ′, S′ ◦N ′−1),
because f is known to be a bidirectional p-morphism from (T, S) onto (T ′, S′) and from
(T,N) onto (T ′, N ′). Therefore, Lemma 3.28 (on p-morphic images of subrelations) ap-
plies to all of these conditions. Hence, all of the following must be true: S′ ⊆ R′−1◦R′,
R′−1◦ R′ ⊆ S′∗ ∪ S′−1 (which means that S′ is connected over quasi-equivalence classes
with respect to R′−1◦R′), N ′ ⊆ S′, N ′−1◦ S′ ⊆ S′∗, and S′ ◦N ′−1⊆ S′∗.

Furthermore, (T ′, R′) must be a tree (Lemma 3.32), S′ must be a transitive relation
(Lemma 3.29), and both N ′ and N ′−1 must be functional (Lemma 3.27).

The only condition that remains to be verified is condition (7): S′ \ S′ ◦ S′ ⊆ N ′.
So let t′1 and t′2 be two elements of T ′ such that (t′1, t

′
2) ∈ S′ \ S′ ◦ S′, that is, we have

(t′1, t
′
2) ∈ S′ but (t′1, t

′
2) 6∈ S′ ◦ S′. We are going to show that this implies (t′1, t

′
2) ∈ N ′.

The function f is required to be surjective, which means there exists a world t1 ∈ T

with f(t1) = t′1. That is, we have (f(t1), t′2) ∈ S′. By the back condition, there exists a
t2 ∈ T such that f(t2) = t′2 and (t1, t2) ∈ S. We also know that (t1, t2) 6∈ S ◦ S, because
otherwise the homomorphic condition would yield (f(t1), f(t2)) ∈ S′ ◦ S′, which would
contradict our assumption (t′1, t

′
2) 6∈ S′ ◦ S′. Together we obtain (t1, t2) ∈ S \ S ◦ S. But

F is an ordered tree, that is, we have N = S \ S ◦ S. Hence, (t1, t2) ∈ N must also be
the case. Now the homomorphic condition yields (f(t1), f(t2)) ∈ N ′. Thus (t′1, t

′
2) ∈ N ′

indeed holds as required. 2

What does a loosely ordered tree look like? At first sight, some of the conditions
of Definition 3.33 may seem somewhat technical, if not arbitrary (at least before having
studied the proof of Proposition 3.34). So let us motivate the name loosely ordered tree
a little. Our main structure is a tree: T is the set of nodes and R is the child relation. S
is a transitive relation operating over sibling nodes. That no other nodes can be related
via S is ensured by condition S ⊆ R−1◦R. In fact, any two nodes that are siblings (that

74 Chapter 3. Semantic Characterisation

are related via R−1◦R) are either related via S or its inverse (or they are identical). This
is guaranteed by condition R−1◦ R ⊆ S∗ ∪ S−1. This means that S is a transitive and
connected relation over any given quasi-equivalence class [t]R−1◦R (for t ∈ T , except the
root of the tree). For an ordered tree, S would be required to be a strict linear order over
the elements of the same equivalence classes. Recall that a strict linear order is a relation
that is irreflexive, transitive, and connected. So the only property that is missing here
is irreflexivity. The triple (T,R, S) is almost like an ordered tree, the only difference is
that S is not required to be irreflexive.

Clusters and irreflexive points. We are now going to take a closer look at the
structure imposed on a set of sibling nodes by the relation S. Given two distinct sibling
nodes t1 and t2, we have either (t1, t2) ∈ S or (t2, t1) ∈ S (or both), because S is
connected over siblings. Without loss of generality, let us assume that t1 is the node that
comes ‘first’, i.e. let (t1, t2) ∈ S. On top of that, (t2, t1) ∈ S may or may not hold as
well. Suppose it does. Then, because S is also transitive, any node t ‘between’ t1 and
t2, that is, every node t with (t1, t) ∈ S and (t, t2) ∈ S, will in fact be related to all the
other nodes between t1 and t2 via both S and S−1 as well.

We are going to refer to such a (maximal) set of nodes all of which are related via
both S and S−1 as a cluster. This includes the case of a single reflexive point, that is, a
node related to itself via S. Because S is a transitive relation, any node that is part of
a cluster must be a reflexive point. Nodes that do not belong to a cluster will be called
irreflexive points.

The children of any given node form a strictly ordered collection of clusters and
irreflexive points. Next we turn our attention to the internal structure of clusters imposed
on them by the relation N .

Sequences and cycles. In an ordered tree, N is meant to represent the immediate
successor relation underlying S. In a loosely ordered tree, the conditions imposed on N
are a little weaker. However, N is still required to be a subrelation to S and both N

and N−1 are required to be functional. The former means that N can only operate on
sibling nodes (because S is subject to the same restriction). Functionality means that
any node can have at most one successor and one predecessor with respect to N . Hence,
N will give rise to a sequence of nodes (a set of nodes where the first one is connected
to the second, the second to the third, and so forth). Such a sequence may or may not
be cyclic (that is, the last node in a sequence could again be connected to the first one).
A single point without either a successor or a predecessor may be regarded as a special
case of a non-cyclic sequence. A single reflexive point is a special case of a cycle.

How do these structures imposed on the children of a node by the relation N relate to
the structure of clusters imposed by S? Let us first consider the case of cycles. Two nodes
t1 and t2 are part of the same cycle iff we have both (t1, t2) ∈ N+ and (t2, t1) ∈ N+.
Hence, t1 and t2 must also be part of the same S-cluster, because N ⊆ S and S is
transitive. This means that N -cycles can only occur within S-clusters, no cycle can

3.6 Loosely Ordered Trees 75

involve nodes from more than one cluster. Also, no node that is part of a cycle can be
an S-irreflexive point.

Next we turn to the case of non-cyclic N -sequences. The condition S \S ◦S ⊆ N says
that nodes that do have an immediate successor with respect to S will be connected via
N . This is the case for successive S-irreflexive points, which means that any sequence of
S-irreflexive points will also be a non-cyclic N -sequence.

Apart from that, non-cyclic N -sequences can also occur within S-clusters. As we
shall see, the last two conditions of Definition 3.33 guarantee that any sequence that
forms part of a cluster will occur entirely within that cluster. To see this, suppose we
have two nodes t1 and t2 with (t1, t2) ∈ N and we know that t1 is part of some S-cluster.
We will show that t2 must belong to the same cluster. Any node that is part of a cluster
must be a reflexive point, i.e. we have (t1, t1) ∈ S. Hence, we get (t2, t1) ∈ N−1◦ S. By
condition N−1◦ S ⊆ S∗ we therefore have (t2, t1) ∈ S∗. But we also have (t1, t2) ∈ S,
so t2 must indeed be part of the same cluster as t1. We can use the final condition
S ◦ N−1 ⊆ S∗ in a similar manner in order to guarantee that also in the case where t2
is known to belong to a cluster, its predecessor t1 will have to be part of that very same
cluster.23

In summary, a loosely ordered tree is like an ordered tree where the order declared
over siblings is only required to be a strict linear order over clusters of sibling nodes,
rather than over the nodes themselves. Furthermore, the notion of a successor function
over siblings has been replaced with the (a little less restrained) functional relation N .
In the context of a loosely ordered tree, we are sometimes going to refer to S as the
pseudo sibling relation (or order) and to N as the pseudo neighbour relation.

Ordered trees are loosely ordered trees. We should also point out that the notion
of loosely ordered trees constitutes a generalisation of ordered trees. The conditions
on ordered trees only involving the relations R and S are in fact directly stated in
Definition 3.33.24 For a general frame corresponding to an ordered tree we have N =
S \ S ◦ S. Both S \ S ◦ S and its inverse are functional relations whenever S is a strict
linear order. Furthermore, replacing N by S\S◦S in conditions (6)–(9) of Definition 3.33
results in simple truths (again, provided S is a strict linear order). This shows that every
ordered tree is also a loosely ordered tree.

As mentioned before, our aim is to show that every loosely ordered tree is the p-

23Another, possibly more intuitive, way of motivating conditions (8) and (9) would be the following.

The relation N is intended to model small ‘steps’ to the right, while S corresponds to bigger steps, which

may be made up of one or more of the small steps. Under this perspective, the compound relation N−1◦S
expresses the concept of first making a small step to the left and then a big step to the right. If N and

S model these steps the way we intend them to, then after these two steps we should come out in a

position to the right of where we started (or at most at the starting position itself). This can be assured

by postulating condition (8): N−1◦ S ⊆ S∗. Condition (9) has a corresponding effect for the case where

we first make a big step to the right and then a small one to the left.
24In particular, the condition R−1◦R ⊆ S∗∪S−1 is simply another way of saying that S is a connected

relation over quasi-equivalence classes with respect to the relation R−1◦R.

76 Chapter 3. Semantic Characterisation

morphic image of an ordered tree. The proof proceeds over several steps; we shall
introduce two p-morphisms to eliminate the different types of possible ‘defects’ in a
loosely ordered tree.

Defects. By defects we mean features of a loosely ordered tree that violate conditions
of an ordered tree. Our informal discussion of loosely ordered trees suggests that there
are two types of defects. The first type of defect concerns the pseudo neighbour relation
N . In an ordered tree all N -sequences have to be non-cyclic. Loosely ordered trees, on
the other hand, also allow for N -cycles. Therefore, we have to consider any such cycle a
defect. The following definition gives a formal characterisation of a loosely ordered trees
lacking this type of defect.

Definition 3.35 (Cycles) A loosely ordered tree F = (T,R, S,N) is called a loosely
ordered tree without cycles iff there is no t ∈ T such that (t, t) ∈ N+.

The second type of defect we will have to look at concerns the lack of irreflexivity of the
pseudo sibling relation S in loosely ordered trees. In our informal discussion of loosely
ordered trees above we have seen that this allows for clusters of nodes. Clusters are
groups of nodes all of which are related to each other via S (and thereby also via S−1).
This means, in particular, that every node in a cluster will be reflexive with respect to
S. In fact, the latter is sufficient a condition to characterise clusters. The following
definition makes this notion formal.

Definition 3.36 (Clusters) A loosely ordered tree F = (T,R, S,N) is called a loosely
ordered tree without clusters iff there is no t ∈ T such that (t, t) ∈ S.

The next proposition shows that, of the two kinds of defects we have identified above,
clusters are the main ‘culprits’. Whenever a loosely ordered tree can be shown not to
have any clusters at all, that tree will in fact be an ordered tree (and will therefore not
contain any cycles either).

Proposition 3.37 (Clusters) A loosely ordered tree without clusters is an ordered tree.

Proof. Let F = (T,R, S,N) be a loosely ordered tree without clusters. Recall that F
corresponds to an ordered tree iff (T,R, S) is an ordered tree according to Definition 3.4
and N is the immediate successor function underlying S, that is, N = S \ S ◦ S.

By Definition 3.33, (T,R) is a tree and S is a transitive relation that is connected
over quasi-equivalence classes [t]R−1◦R for t ∈ T (except the root). As F is also required
to have no clusters, S must be irreflexive. Hence, ([t]R−1◦R, S) is a strict linear order for
every t ∈ T . Thus (T,R, S) is an ordered tree.

We still need to show N = S \ S ◦ S. As we have S \ S ◦ S ⊆ N for any loosely
ordered tree, this amounts to proving N ⊆ S \ S ◦ S. For the sake of contradiction,
assume there are t1, t2 ∈ T with (t1, t2) ∈ N but (t1, t2) 6∈ S \ S ◦ S. Using condition

3.6 Loosely Ordered Trees 77

N ⊆ S, we can infer (t1, t2) ∈ S ◦ S, i.e. there exists a t ∈ T such that (t1, t) ∈ S and
(t, t2) ∈ S. Putting (t2, t1) ∈ N−1 and (t1, t) ∈ S together, we obtain (t2, t) ∈ N−1◦ S.
Condition N−1 ◦ S ⊆ S∗ yields (t2, t) ∈ S∗. Together with (t, t2) ∈ S we then have
(t2, t2) ∈ S∗ ◦ S. But S is transitive, so we also get (t2, t2) ∈ S, which contradicts our
assumption of F not having any clusters. Hence, N = S \ S ◦ S must hold and we are
done. 2

Despite this result (namely that eliminating all clusters is enough to obtain ordered trees)
our actual construction will fall into two parts. In the first step we will show how to
eliminate all cycles in a given loosely ordered tree. Only in the second step we will then
eliminate clusters, taking advantage of the fact that our trees may be assumed to be
cycle-free.

Bulldozing and unravelling. The technique central to our construction is known as
bulldozing in the modal logic literature. It has first been used by Segerberg to prove a
number of completeness results for basic temporal logics over different irreflexive flows
of time [64]. The basic idea is to replace a part of a frame that (1) has some undesired
property (typically lack of irreflexivity) and (2) locally encodes an infinite nesting of
accessibility (like, for instance, a single reflexive point) by an infinite number of copies
of the respective part of the frame in a way that makes this infinite aspect explicit and
does away with the undesired property at the same time. Showing that such a frame
transformation is an admissible operation involves showing that the original frame can be
considered the p-morphic image of the new frame. In the context of loosely ordered trees,
an example for such a part of a frame would be a cycle: (1) it constitutes an undesired
property (because ordered trees do not allow for cycles) and (2) it finitely encodes an
infinite number of N -successors (because we can go round the cycle an infinite number
of times). In the proof of Lemma 3.38 below we are going to apply (a variant of) the
bulldozing technique to the problem of eliminating cycles from a loosely ordered tree.

Another important technique that we are going to make use of is unravelling. Given
a frame and some designated world in that frame we can construct a new frame by
considering every finite path we can follow in the original frame, starting from that
designated world, as a world of the new frame. The original frame can then be shown to
be the p-morphic image of the unravelled frame. What makes the unravelling technique
particularly interesting for our case is that the resulting frame must always be a tree
(and the designated world used for the unravelling process will be the root of that tree).

In the proofs of the following two lemmas we are going to use a combination of
bulldozing and unravelling to help eliminate cycles and clusters from a given loosely
ordered tree. (Applications of these techniques for logics other than OTL may, for
instance, be found in [8].)

Lemma 3.38 (Cycle elimination) Every model based on a loosely ordered tree is the
p-morphic image of a model based on a loosely ordered tree without cycles.

78 Chapter 3. Semantic Characterisation

(1) Pick a start node:

◦
t1

•
t2

•t3

•t4 •t5

• t6

let t1 ∈ Start

(2) Cut cycle between start and end node:

◦
t1

•t2

•t3
•
t4

•t5

• t6

(3) Concatenate an infinite number of copies:

◦(t1,0)

•(t2,0)

•(t3,0)
•

(t4,0)

•
(t5,0)

•(t6,0)

◦(t1,1)

•(t2,1)

•
(t3,1) •

(t4,1)

•(t5,1)

•(t6,1)

◦(t1,2)

•(t2,2)

•(t3,2)
•

(t4,2)

•
(t5,2)

•(t6,2)

◦(t1,3)

•(t2,3)

•
(t3,3) •

(t4,3)

•(t5,3)

•(t6,3)

◦(t1,4)

•(t2,4)

•(t3,4)
•

(t4,4)

•
(t5,4)

•(t6,4)

◦(t1,5)

oo

XX2222

FF����

//

��2
22

2

����
��

+3
VV,,,,,

HH�����

66llll ((RRRR

��,
,,

,,

��

VV

VV,,,,,

HH�����

66llll ((RRRR

��,
,,

,,

����
��
�

����
��
�

��,
,,

,,

((RRRR 66llll

HH�����

VV,,,,,

VV,,,,,

HH�����

66llll ((RRRR

��,
,,

,,

����
��
�

����
��
�

��,
,,

,,

((RRRR 66llll

HH�����

VV,,,,,

VV,,,,,

HH�����

66llll ((RRRR

��,
,,

,,

����
��
�

//

Figure 3.3: Unwinding (bulldozing) cycles

Proof. Let F = (T,R, S,N) be a loosely ordered tree that may contain a number of
cycles and let M = (F , V) be a model based on that tree. Our aim will be to construct a
new frame and a corresponding model in such a way that we can show that there exists
a p-morphism from that new model onto M and that the new frame is a loosely ordered
tree without cycles.

For our construction, the general idea is to ‘unwind’ (or bulldoze) cycles, that is,
we will ‘cut open’ each cycle to turn it into a non-cyclic sequence and then replace the
original cycle with an infinite number of copies of that sequence. To be able to cut open
a cycle we will pick an arbitrary start node in each cycle. That is, the result of cutting
open a cycle will be a non-cyclic sequence commencing with that start node and ending
with the node originally preceding the start node in the cycle. The infinite number of
copies will be generated by considering pairs of nodes (from the original frame) and
integers. Figure 3.3 exemplifies the process of unwinding for the simple case of a cycle
with six nodes.

While, on the one hand, this approach allows us to eliminate any cycles in a frame, on
the other hand, the resulting structure will not be a tree anymore. When we replaced a

3.6 Loosely Ordered Trees 79

node by an infinite number of copies of itself, we should have applied the same process to
the subtree below that node. However, the structure described before may be considered
a compact representation of a tree. The second frame depicted in Figure 3.4 on page 80
is an example of such a compact structure. We can get a proper tree by unravelling this
structure along the child relation R.

We are going to present our construction in two stages. In the first stage we describe
the process of unwinding cycles. This involves the formal definition of our set of pairs
of nodes and integers as well as the definition of a new auxiliary neighbour relation over
these pairs. In the second stage we then unravel the structure over pairs constructed
before to again obtain a tree.

Unwinding cycles. We are now going to formally define the set of pairs mentioned
before. The first element in each pair will be a node from T and the second element will
be an integer. For nodes that are part of a cycle the full set of integers will be used. Any
other node t ∈ T will only induce a single pair (t, 0). Recall that a node t is part of a
cycle iff (t, t) ∈ N+ holds. We define our set of pairs as follows:

Pairs = {(t, n) ∈ T×Z | (t, t) ∈ N+} ∪ {(t, 0) ∈ T×Z | (t, t) 6∈ N+}

Next, in order to be able to describe the process of cutting open cycles, we have to pick
a start node for each cycle. These will be represented in form of a set of nodes called
Start . Two nodes t1 and t2 belong to the same cycle iff we have both (t1, t2) ∈ N+ and
(t2, t1) ∈ N+. If we already know that the two nodes in question are nodes of a cycle
then checking only one of these conditions suffices to establish that they belong to the
same cycle. Hence, Start needs to be a set of nodes satisfying the following conditions:

(1) Start ⊆ {t ∈ T | (t, t) ∈ N+}

(2) If (t1, t1) ∈ N+ then there exists a t2 ∈ Start with (t1, t2) ∈ N+.

(3) If both t1 ∈ Start and t2 ∈ Start with t1 6= t2 then (t1, t2) 6∈ N+.

There are no other constraints on the choice of the set Start .
The crucial step in our construction is the definition of the new pseudo neighbour

relation NPairs . We first give the formal definition and then we are going to explain the
details.

((t1, n1), (t2, n2)) ∈ NPairs iff (t1, t2) ∈ N and one of the following holds:
− (t2, t1) ∈ N+ and n1 = n2 and t2 6∈ Start
− (t2, t1) ∈ N+ and n2 = n1 + 1 and t2 ∈ Start
− (t2, t1) 6∈ N+

First of all, observe that ((t1, n1), (t2, n2)) ∈ NPairs can only hold if we also have (t1, t2) ∈
N in the original frame. So nodes that are not neighbours in the original frame can never
‘become’ neighbours in the new structure.

80 Chapter 3. Semantic Characterisation

•

◦

• •

•

◦ ◦ ◦ ◦

• •

•

◦ ◦ ◦ ◦

• • • • • • • •

��
ee

����
��
��

��/
//

//
/

//

zzttttttttttt

����
��
��

��/
//

//
/

$$JJJJJJJJJJJ

��?
??

??
??

?

''OOOOOOOOOOOOOO

�� ��?
??

??
??

?

����
��

��
��

��wwoooooooooooooo

����
��

��
��

// // ////

//

zzttttttttttt

����
��
��

��/
//

//
/

$$JJJJJJJJJJJ

��
��
��

��)
))

))
)

��
��
��

��)
))

))
)

��
��
��

��)
))

))
)

��
��
��

��)
))

))
)

// // ////

// // // //

bulldozing+3 unravelling+3

Figure 3.4: Unravelling a bulldozed tree

For the first and second case of our definition of NPairs , the condition (t2, t1) ∈ N+

means that t1 and t2 must belong to the same cycle. The additional condition n1 = n2

(in the first case) says that they also belong to the same copy of the same cycle. Then
the copies of the original nodes will be neighbours in the new structure if they are also
neighbours in the cut cycle. This can be checked by ensuring that t2 is not the start
node of the cycle in question. So for the first case, our formal definition coincides with
the informal outline of the construction given before.

For the second case of our definition, t1 and t2 are also members of the same cycle.
If t2 is the start node of our cycle then t1, which is the lefthand neighbour of t2 in the
original frame, must be the end node of the cut version of that cycle. Hence, we want
the two to become neighbours in the new frame only when they are part of consecutive
copies, that is, whenever n2 = n1 + 1.

For the third and final case we have (t1, t2) ∈ N but (t2, t1) 6∈ N+. This can only be
the case if t1 and t2 are neighbours in a non-cyclic sequence. (Hence, both n1 and n2

will be 0 in this case.) They will continue to be neighbours in the new structure, i.e. we
have given the right definition also for this case.

Unravelling. We can now turn to the second part of our construction, namely the un-
ravelling of the compact structures obtained as a result of bulldozing all cycles in the
given loosely ordered tree. The general idea is exemplified in Figure 3.4. Here we have
a very simple loosely ordered tree with just one cycle consisting only of a single node
(the only child of the root node). Unwinding this cycle results in the structure depicted
in the middle part of the figure. We obtain infinitely many copies of the node originally
contained in the cycle and each one of them is related to the same two ‘grandchildren’.
To turn this structure into a proper tree we have to make the appropriate number of
copies of the grandchildren. One way of achieving this is to unravel the compact struc-
ture, that is, to create a grandchild node for every distinct path from the root to one
of the grandchildren in the compact structure.25 The resulting tree is depicted on the
righthand side of Figure 3.4.

We are now going to formalise this idea. Let t0 ∈ T be the root of our original tree

25In fact, this is a rather simple variant of the unravelling technique, because we only apply it to our

‘compact structures’ (as opposed to general frames), which are already relatively close to actual trees.

3.6 Loosely Ordered Trees 81

(T,R). We define ~T as the set of all finite sequences26 of pairs [(t0, n0), . . . , (tm, nm)]
with (ti, ni) ∈ Pairs for all i ∈ {0, . . . ,m} and (ti, ti+1) ∈ R for all i ∈ {0, . . . ,m−1}.
The elements of ~T shall be referred to as paths. We write ~t+ [p] for the path we obtain
by appending the pair p to the end of path ~t. At times, we will also require the notion
of an empty path, which will be denoted as []. The empty path itself is not a member
of ~T , but [] + [(t0, 0)], for instance, is.

We have to define three accessibility relations and a valuation function over paths
in ~T . The unravelling process will proceed along the original child relation R, or rather
what is still left of it after the move from nodes in a tree to pairs. The new relation ~R

will hold for pairs of paths, where the second path is the result of adding an additional
R-step to the first path:

(~t1,~t2) ∈ ~R iff ~t2 = ~t1 + [p] for some p ∈ Pairs

Next we define a new pseudo sibling relation ~S:

(~t1,~t2) ∈ ~S iff ~t1 = ~t+ [(t1, n1)] and ~t2 = ~t+ [(t2, n2)] and (t1, t2) ∈ S
for some ~t ∈ ~T and some (t1, n1), (t2, n2) ∈ Pairs

Our definition of the new pseudo neighbour relation ~N refers to the relation NPairs over
pairs defined before:

(~t1,~t2) ∈ ~N iff ~t1 = ~t+ [p1] and ~t2 = ~t+ [p2] and (p1, p2) ∈ NPairs

for some ~t ∈ ~T and some p1, p2 ∈ Pairs

Finally, we declare a new valuation function ~V mapping propositional letters P to sets
of paths in ~T . Given a propositional letter P , we want a path ~t to belong to ~V (P) iff
t ∈ V (P) for the last pair (t, n) in ~t. (The remainder of ~t, i.e. the path excluding the last
pair (t, n), is either itself an element of ~T or the empty path [].)

~t ∈ ~V (P) iff ~t = ~t1 + [(t, n)] and t ∈ V (P)
for some ~t1 ∈ ~T ∪ {[]} and some (t, n) ∈ Pairs

Let ~F = (~T , ~R, ~S, ~N) be our new frame and let ~M = (~F , ~V) be our new model based on
that frame. This completes our construction as outlined before. We now need to show
that (1) ~F is a loosely ordered tree without cycles and that (2) M is a p-morphic image
of ~M.

Properties of the unravelled frame. To verify that ~F is indeed a loosely ordered tree as
claimed we need to check the nine conditions from Definition 3.33 in turn. Then we will
have to check that there are no cycles left.

26Here we use the term sequence in the usual mathematical sense, i.e. this has nothing to do with our

N -sequences.

82 Chapter 3. Semantic Characterisation

(1) (~T , ~R) is a tree. We have to check the three conditions of Definition 3.2. The
relation ~R is certainly irreflexive, because we can never append an additional pair
to a path and obtain the same path again. Furthermore, ~R must be conversely
functional, because removing the last element from a path (which is the operation
underlying ~R−1) always leaves us with exactly one path. Finally, (~T , ~R) must be
rooted with root element [(t0, 0)], because ~T has been defined precisely as the set
of paths we can construct by successively appending new pairs to [(t0, 0)] and this
operation coincides with the definition of ~R.

(2) ~S is transitive. This is an immediate consequence of the definition of ~S and the
fact that S is known to be a transitive relation.

(3) Condition ~S ⊆ ~R−1◦ ~R. Let (~t1,~t2) ∈ ~S. By definition of ~S, there must be a ~t ∈ ~T

and (t1, n1), (t2, n2) ∈ Pairs such that ~t1 = ~t+[(t1, n1)] and ~t2 = ~t+[(t2, n2)]. This
implies (~t1,~t) ∈ ~R−1 and (~t,~t2) ∈ ~R, i.e. we get (~t1,~t2) ∈ ~R−1◦ ~R.

(4) Condition ~R−1◦ ~R ⊆ ~S∗ ∪ ~S−1. Two paths can only stand in the relation ~R−1◦ ~R
if they are either identical or identical up to their penultimate elements, because
moving from the first to the second means first removing the final element from the
first and then appending a (possibly different) element to that shorter path. What
elements could possibly be removed or added in that process depends on R. That
is, we have (~t1, ~t2) ∈ ~R−1◦ ~R iff there exist some ~t ∈ ~T and some (t1, n1), (t2, n2) ∈
Pairs such that ~t1 = ~t+ [(t1, n1)], ~t2 = ~t+ [(t2, n2)], and (t1, t2) ∈ R−1◦ R. Given
that the original frame is known to be a loosely ordered tree, the latter condition
implies (t1, t2) ∈ S∗∪S−1. Inspection of the definition of ~S shows that this implies
(~t1, ~t2) ∈ ~S∗ ∪ ~S−1 as required.

(5) ~N and ~N−1 are functional. We first show that NPairs is a functional relation. Sup-
pose we have ((t, n), (t1, n1)) ∈ NPairs and ((t, n), (t2, n2)) ∈ NPairs . (We need to
show (t1, n1) = (t2, n2).) Given that N is known to be functional, we immediately
get t1 = t2. We now have to consider the three subconditions in the definition of
NPairs . Which one of them could possibly be fulfilled is entirely determined by t

and t1 (or the equivalent t2, respectively). If we have (t1, t) ∈ N+ then we either
have t1 ∈ Start or t1 6∈ Start . In both cases the value of the second coordinate is
fixed and only depends on n, that is, we also get n1 = n2. If we have (t1, t) 6∈ N+,
then we immediately obtain n = n1 = n2 = 0. The fact that N−1

Pairs must be
functional as well can be established by an analogous argument.

Functionality of both ~N and ~N−1 now follows immediately by inspection of the
definition of ~N .

(6) Condition ~N ⊆ ~S. By definition of NPairs , ((t1, n1), (t2, n2)) ∈ NPairs implies
(t1, t2) ∈ N . The latter in turn implies (t1, t2) ∈ S, because the original frame is
a loosely ordered tree. Now ~N ⊆ ~S follows immediately from the definitions of ~N
and ~S.

3.6 Loosely Ordered Trees 83

(7) Condition ~S \ ~S ◦ ~S ⊆ ~N . Let ~t1 and ~t2 be paths such that (~t1, ~t2) ∈ ~S \ ~S ◦ ~S,
i.e. there are ~t ∈ ~T and (t1, n1), (t2, n2) ∈ Pairs such that ~t1 = ~t + [(t1, n1)]
and ~t2 = ~t + [(t2, n2)] as well as (t1, t2) ∈ S but (t1, t2) 6∈ S ◦ S. This implies
(t1, t2) ∈ N , because the original frame is a loosely ordered tree. It also implies
(t2, t1) 6∈ N+, because otherwise we could infer (t1, t2) ∈ S ◦ S (using N+ ⊆
S). Hence, ((t1, n1), (t2, n2)) ∈ NPairs , which has been the missing condition for
(~t1, ~t2) ∈ ~N to hold. This proves ~S \ ~S ◦ ~S ⊆ ~N .

(8) Condition ~N−1 ◦ ~S ⊆ ~S∗. Let ~t1 and ~t2 be paths such that (~t1, ~t2) ∈ ~N−1 ◦ ~S.
Then there must be a ~t ∈ ~T as well as (t1, n1), (t2, n2), (t, n) ∈ Pairs such that
~t1 = ~t + [(t1, n1)], ~t2 = ~t + [(t2, n2)], and (~t + [(t, n)]) ∈ ~T . The latter is meant
to represent the element in ~T we reach when moving from ~t1 ‘backwards’ via ~N−1

before moving ‘forward’ to get to ~t2. That is, we have ((t, n), (t1, n1)) ∈ NPairs

and (t, t2) ∈ S. The former implies (t, t1) ∈ N . Thus we get (t1, t2) ∈ N−1◦ S,
which in turn entails (t1, t2) ∈ S∗. Putting everything together, we finally obtain
(~t1,~t2) ∈ ~S∗, the desired result.

(9) Condition ~S ◦ ~N−1⊆ ~S∗. This condition can easily be verified using an argument
similar to that employed for the previous case.

(10) No cycles. We have to show that there is no ~t ∈ ~T such that (~t,~t) ∈ ~N+. If we can
prove that ((t, n), (t, n)) 6∈ N+

Pairs for all (t, n) ∈ Pairs, then the desired result will
follow immediately by inspection of the definition of ~N .

For the sake of contradiction, assume there exists a pair (t, n) ∈ Pairs with
((t, n), (t, n)) ∈ N+

Pairs . That is, there exists an m ∈ N such that ((t, n), (t, n)) ∈
Nm

Pairs . So there must be a set of pairs {(ti, ni) ∈ Pairs | 1 ≤ i ≤ m} with
(t, n) = (t1, n1) = (tm, nm) and ((ti, ni), (ti+1, ni+1)) ∈ NPairs for all i < m. The
latter implies (ti, ti+1) ∈ N as well as (ti+1, ti) ∈ N+ for all i < m. Hence, the third
case in the definition of NPairs never applies for any of the ((ti, ni), (ti+1, ni+1)).
For the first two cases, the integer coordinate in a pair can only stay constant or
increase. Given that n1 and nm are both required to be equal to n, the integer
coordinate can in fact never increase, that is, we have ni = n for all i ≤ m. There-
fore, ((ti, ni), (ti+1, ni+1)) ∈ NPairs must hold for all i < m by the first case in
the definition of NPairs . But then none of the ti can be a member of Start . This
contradicts the second constraint on the definition of the set Start , because the ti
are exactly those nodes for which we have (t, ti) ∈ N+.

Hence, ~F is indeed a loosely ordered tree without cycles.

P-morphic image of the unravelled model. Our next aim is to show that the original
model M is a p-morphic image of the unravelled model ~M. Let f be the function from
~T to T that maps every path to the first coordinate (a node in the original tree) of its
final element:

f : [(t0, n0), . . . , (tm, nm)] 7→ tm

84 Chapter 3. Semantic Characterisation

We need to prove that f is a p-morphism from ~M onto M (according to Definition 3.22).
This amounts to showing f is a bidirectional p-morphism form (~T , ~R) to (T,R), from
(~T , ~S) to (T, S), and from (~T , ~N) to (T,N), that ~t ∈ ~V (P) iff f(~t) ∈ V (P) for all paths
~t and all propositional letters P , and that f is surjective. We start by showing that f is
a bidirectional p-morphism from (~T , ~R) to (T,R).

(1) Homomorphic condition. We need to show that (~t1,~t2) ∈ ~R implies (f(~t1), f(~t2)) ∈
R. So let (~t1,~t2) ∈ ~R with, say, ~t1 = ~t+ [(t1, n1)], that is, the final pair of the path
~t1 is (t1, n1).27 Then ~t2 must be of the form ~t+[(t1, n1), (t2, n2)]. As ~t2 ∈ ~T we must
have (t1, t2) ∈ R. But f(~t1) = t1 and f(~t2) = t2, i.e. we have (f(~t1), f(~t2)) ∈ R.

(2) Back condition. We need to show that whenever (f(~t1), t2) ∈ R holds then there
exists a ~t2 ∈ ~T such that f(~t2) = t2 and (~t1,~t2) ∈ ~R. So let (f(~t1), t2) ∈ R and let ~t1
be of the form ~t+[(t1, n1)]. We certainly have (t2, 0) ∈ Pairs, because t2 ∈ T . Thus
~t+ [(t1, n1), (t2, 0)] must be a path in ~T and we can define ~t2 = ~t+ [(t1, n1), (t2, 0)].
For this choice of ~t2 we have f(~t2) = t2 and (~t1,~t2) ∈ ~R as required.

(3) Inverse back condition. We need to show that whenever (t1, f(~t2)) ∈ R holds then
there exists a ~t1 ∈ ~T such that f(~t1) = t1 and (~t1,~t2) ∈ ~R. Let (t1, f(~t2)) ∈ R

and let (t2, n2) be the last pair in ~t2, i.e. f(~t2) = t2. Then we have (t1, t2) ∈ R,
which means that ~t2 must be of the form ~t + [(t1, n1), (t2, n2)]. Now, if we define
~t1 = ~t+ [(t1, n1)] we get f(~t1) = t1 and (~t1,~t2) ∈ ~R as required.

Next we prove that f is also a bidirectional p-morphism from (~T , ~S) to (T, S).

(1) Homomorphic condition. (~t1,~t2) ∈ ~S implies (f(~t1), f(~t2)) ∈ S as required. This is
an immediate consequence of the definition of ~S.

(2) Back condition. We need to show that whenever (f(~t1), t2) ∈ S holds then there
exists a ~t2 ∈ ~T such that f(~t2) = t2 and (~t1,~t2) ∈ ~S. So let (f(~t1), t2) ∈ S and
suppose ~t1 is of the form ~t + [(t1, n1)], i.e. f(~t1) = t1 and (t1, t2) ∈ S. The latter
implies (t1, t2) ∈ R−1◦ R, because F is a loosely ordered tree. Hence, ~t + [(t2, 0)]
must be an element of ~T . (Observe that (t2, 0) ∈ Pairs, because t2 ∈ T .) We can
now define ~t2 = ~t+ [(t2, 0)], which fulfils all requirements: ~t2 ∈ ~T , f(~t2) = t2, and
(~t1,~t2) ∈ ~S.

(3) Inverse back condition. We have to show that whenever (t1, f(~t2)) ∈ S holds then
there exists a ~t1 ∈ ~T such that f(~t1) = t1 and (~t1,~t2) ∈ ~S. So let (t1, f(~t2)) ∈ S

and suppose ~t2 is of the form ~t + [(t2, n2)]. Our construction is analogous to the
previous case: ~t1 = ~t + [(t1, 0)] must be an element of ~T and fulfils the required
conditions.

27In situations like this, where we say that a path ~t1 ∈ ~T is of the form ~t+ [(t1, n1)], but do not claim

that ~t is itself an element of ~T , we include the possibility that ~t stands for the empty path [], that is, ~t1
may just be [(t1, n1)]. (In that case t1 would have to be the root node t0 and n1 would have to be 0,

because [(t0, 0)] is the only path of length one in ~T .)

3.6 Loosely Ordered Trees 85

The next step is to show that f is a bidirectional p-morphism from (~T , ~N) to (T,N).

(1) Homomorphic condition. (~t1,~t2) ∈ ~N implies (f(~t1), f(~t2)) ∈ NPairs by definition
of ~N , which in turn implies (f(~t1), f(~t2)) ∈ N by definition of NPairs . So we are
done.

(2) Back condition. We have to prove that (f(~t1), t2) ∈ N implies the existence of a
path ~t2 ∈ ~T such that f(~t2) = t2 and (~t1,~t2) ∈ ~N . So suppose we have (f(~t1), t2) ∈
N and that ~t1 has the form ~t+ [(t1, n1)], i.e. f(~t1) = t1 and (t1, t2) ∈ N .

First we show that there must be an n2 such that ((t1, n1), (t2, n2)) ∈ NPairs . We
have either (t2, t1) ∈ N+ or (t2, t1) 6∈ N+. In the former case, t1 and t2 are part
of the same cycle (that is, one of the first two cases in the definition of NPairs will
apply). We define n2 = n1 + 1 if t2 ∈ Start and n2 = n1 otherwise. In either case
we have ((t1, n1), (t2, n2)) ∈ NPairs . Now suppose (t2, t1) 6∈ N+, i.e. t1 and t2 are
neighbours in a non-cyclic sequence. In this case n1 must be 0 and if we set n2 = 0
as well, we also get ((t1, n1), (t2, n2)) ∈ NPairs . In summary, there always exists an
integer n2 such that ((t1, n1), (t2, n2)) ∈ NPairs .

Now define ~t2 = ~t+[(t2, n2)]. This path fulfils our requirements: we have f(~t2) = t2
by definition of f and (~t1,~t2) ∈ ~N by definition of ~N . That ~t2 really is an element
of ~T can easily be shown by exploiting the fact (t1, t2) ∈ N entails (t1, t2) ∈ R−1◦R
(because F is a loosely ordered tree).

(3) Inverse back condition. We need to show that whenever (t1, f(~t2)) ∈ N is the case
then there exists a ~t1 ∈ ~T such that f(~t1) = t1 and (~t1,~t2) ∈ ~N hold. So let
(t1, f(~t2)) ∈ N where ~t2 is of the form ~t+[(t2, n2)]. As with the back condition, the
crucial step is to show that there exists an integer n1 such that ((t1, n1), (t2, n2)) ∈
NPairs . Our construction is essentially the same as before. We define n1 = n2−1 iff
both (t2, t1) ∈ N+ and t2 ∈ Start and n1 = n2 in all other cases. ((t1, n1), (t2, n2)) ∈
NPairs will hold in any case. Now we can define a new path ~t1 = ~t+[(t1, n1)], which
meets all of our requirements.

The final condition to be verified concerns the valuation functions of our models. We
need to check that ~t ∈ ~V (P) iff f(~t) ∈ V (P) for all paths ~t ∈ ~T and all propositional
letters P . But this is easily seen to be the case by a simple inspection of the definitions
of ~V and f .

So f is indeed a p-morphism from ~M to M. Furthermore, f must be a surjective
function, because for every t ∈ T there is at least one pair (t, n) ∈ Pairs, and for every
element in Pairs there is at least one path in ~T leading to that pair. Hence, M is a
p-morphic image of ~M. This completes our proof of Lemma 3.38, as we have shown
that for any model M based on a loosely ordered tree we can construct a model ~M
based on a loosely ordered tree without cycles for which we can define a p-morphism f

mapping onto M. 2

86 Chapter 3. Semantic Characterisation

The next lemma shows how we can eliminate clusters in a loosley ordered tree that is
known not to contain any cycles. Recall that we have seen in Proposition 3.37 that
loosely ordered trees without clusters are in fact ordered trees.

Lemma 3.39 (Cluster elimination) Every model based on a loosely ordered tree with-
out cycles is the p-morphic image of a model based on an ordered tree.

Proof. Let F = (T,R, S,N) be a loosely ordered tree without cycles and let M = (F , V)
be a model based on that tree. We are going to use M to construct a new frame and a
new model based on that frame in such a way that we can show that the new frame is
in fact an ordered tree and M is a p-morphic image of the new model.

In our construction clusters will be eliminated through bulldozing. In a loosely or-
dered tree without cycles, a cluster can contain any number of non-cyclic N -sequences
as well as single points (that is, points not related to any other node via the relation N).
As mentioned before, we may regard those single points as special case of N -sequences.
So, in fact, a cluster is a collection of non-cyclic N -sequences. In the first step of our
construction we will define a strict linear order S′ over the children of any one child
that is both a subrelation to S and a superrelation to the transitive closure of N . In
other words, S′ is an arbitrary ordering of the nodes in a cluster that ‘respects’ the order
already imposed by N .

It can easily be seen that simply replacing S by S′ does not suffice for the construction
of a suitable new model. In the original model, all nodes in a cluster are related to each
other via the relation S. That means, that in the constructed model we will have to
generate enough copies of each node to ensure that still every kind of node comes up
both before and after every kind of node within any one cluster. This will be achieved by
generating pairs of nodes of the original model and integers. That is, every cluster will
be replaced with the full set of integers and every integer will correspond to one copy of
the ‘straightened’ version (using S′) of the cluster.

To see that this is still not enough, consider that a node in a cluster may not have
direct neighbours to both sides, namely if it is an endnode of an N -sequence. We have
to ensure that this characteristic will also be maintained after our bulldozing operation.
To this end, we are going to introduce triples of nodes of the original tree, integers, and
rational numbers. In the model construction described so far, we then replace every
N -sequence with infinitely many copies of that sequence, one for each rational number.
As we do not break up the sequences themselves, any node that is supposed to have a
neighbour will still have that neighbour, but in any other node the new order will be
dense.

Figure 3.5 provides a simple example for the bulldozing part of the construction
we have just outlined. The cluster under considertaion here consists of the four nodes
t1, t2, t3 and t4. The first three form an N -sequence, while t4 is a single node (or
an N -sequence consisting of a single node). When choosing a strict linear order S′ to
straighten this cluster, we have two options. The node t4 could either come before t1

3.6 Loosely Ordered Trees 87

(1) Straighten clusters by choosing a strict linear order S′:

•
t1 •

t2

•t3

•t4

let (t3, t4) ∈ S′
•
t1

•
t2

•
t3

•
t4

(2) Densify by introducing a rational number coordinate:

(•
(t1,3.7)

•
(t2,3.7)

•
(t3,3.7)

•
(t1,8.2)

•
(t2,8.2)

•
(t3,8.2)

) (•
(t4,−6.1)

•
(t4,5.8)

)

(3) Concatenate an infinite number of copies (introduce an integer coordinate):

() () () () () ()

(,0,) (,1,) (,2,)

N
**TTTT N

JJ����
+3 // // //___

// // // //

//

Figure 3.5: Bulldozing clusters

or after t3. In Figure 3.5 we have opted for the latter. In the next step, we introduce
the rational number coordinate to ‘densify’ the order constructed so far. Observe that
S′ ‘dominates’ the order over rational numbers whenever two nodes come from distinct
N -sequences, otherwise the rational numbers dominate the nodes. For instance, (t3, 3.7)
precedes (t1, 8.2), because t1 and t3 come from the same N -sequence and 3.7 is lower
than 8.2. On the other hand, (t1, 8.2) precedes (t4,−6.1), even though −6.1 is the lower
number of the two. This is so, because t1 and t4 do not belong to the same N -sequence
and we have defined S′ such that (t1, t4) ∈ S′ holds. In the third step we introduce the
integer coordinate to generate an infinite number of copies of the densified straightened
clusters. We should stress that this example only refers to a single cluster. The ordering
of nodes from distinct clusters is not affected by our bulldozing operation. So whenever
the node coordinates in two triples come from different clusters then they dominate the
order over triples.

At the end of the construction, we will have to unravel again (as in the proof of
Lemma 3.38) to turn the bulldozed structure described before into a tree. Figure 3.4 on
page 80 may also serve as an example for the unravelling part of this construction.

Bulldozing clusters. We are now going to give a formal definition of the set of triples of
nodes, integers, and rational numbers required for the bulldozing part of our construction.
In the case of nodes that belong to a cluster the full sets of integers and rational numbers,
respectively, will be used. In the case of irreflexive nodes t only a single triple (t, 0, 0)
will be introduced. Recall that, according to Definition 3.36, a node t is part of a cluster
iff it is reflexive with respect to the pseudo sibling relation S, that is, iff (t, t) ∈ S holds.

88 Chapter 3. Semantic Characterisation

Hence, the following is an appropriate definition of the required set of triples:

Triples = {(t, n, x) ∈ T×Z×Q | (t, t) ∈ S} ∪ {(t, 0, 0) ∈ T×Z×Q | (t, t) 6∈ S}

For the next step of our construction, we have to choose a relation S′ with N+ ⊆ S′ ⊆ S

such that ([t]R−1◦R, S
′) is a strict linear order for each t ∈ T . This is always possible,

because (1) we have N+ ⊆ S (because N ⊆ S is required to hold in any loosely ordered
tree and S is required to be transitive), (2) the relation S is connected and transitive over
the same equivalence classes, and (3) the relation N+ is known to be irreflexive (because
we have explicitly excluded loosely ordered trees with N -cycles). Now we can give a
definition of a new pseudo sibling order over triples. Note that this is only an auxiliary
construction; the final sibling relation will be given later on as part of our definition of
the unravelled frame. We first give the formal definition of the new relation STriples and
then explain the different parts of the definition in detail.

((t1, n1, x1), (t2, n2, x2)) ∈ STriples iff (t1, t2) ∈ S and (t2, t1) 6∈ S or
(t1, t2) ∈ S and (t2, t1) ∈ S and n1 < n2 or
(t1, t2) ∈ S and (t2, t1) ∈ S and n1 = n2 and
− (t1, t2) ∈ S′ \N∗ or
− (t1, t2) ∈ (N ∪N−1)∗ and x1 < x2 or
− (t1, t2) ∈ N+ and x1 = x2

The righthand part of this definition is a disjunction of three conjunctions, where the
fourth conjunct inside the third disjunct is again a disjunction. The first conjunct in
each of the three main disjuncts is (t1, t2) ∈ S, which means that S ‘dominates’ the
order STriples . In other words, triples with nodes that have not been pseudo siblings in
our loosely ordered tree cannot become siblings in the bulldozed structure.

In the first case of the above definition, that is, in case (t1, t2) ∈ S but also (t2, t1) 6∈ S
apply, the nodes t1 and t2 must belong to distinct clusters or irreflexive points in the
original tree. In this case the other two coordinates have no influence on the ordering of
the two triples concerned.

If, on the other hand, t1 and t2 belong to the same cluster, that is, if we have both
(t1, t2) ∈ S and (t2, t1) ∈ S, we can distinguish the following three cases. First of all, the
two triples concerned, (t1, n1, x1) and (t2, n2, x2), may be part of different copies in the
bulldozed structure. If this is the case, then the former precedes the latter iff n1 < n2,
that is, iff the ‘index’ of the former copy is lower than that of the latter. If n1 > n2

then (t1, n1, x1) should certainly not precede (t2, n2, x2), so n1 = n2 must be true in all
remaining cases (of which we are going to distinguish three).

It may, for instance, be the case that t1 and t2 (although part of the same cluster),
are not part of the same N -sequence. If, however, t1 still precedes t2 with respect to
our straightening order S′, then (t1, n, x1) should precede (t2, n, x2) irrespectively of the
values of x1 and x2. This is the case if (t1, t2) ∈ S′ \N∗ holds.

For the two remaining cases, we are concerned with triples that belong to the same
copy (integer coordinate) and that have been generated from nodes belonging to the same

3.6 Loosely Ordered Trees 89

N -sequence in the original tree. Observe that t1 and t2 belong to the same N -sequence
iff (t1, t2) ∈ (N ∪ N−1)∗ is true. Then, if we also have x1 < x2, the first triple must
precede the second. If we only have x1 = x2, then the two triples belong to the same
copy also with respect to the rational number coordinate. In this case t1 is required to
precede t2 in the original N -sequence, that is, (t1, t2) ∈ N+ is required to hold. There
are no other cases where we intend ((t1, n1, x1), (t2, n2, x2)) ∈ STriples to hold.

Let us now establish some properties of the relation STriples . First of all, STriples must
be an irreflexive relation, because by the above definition either t1 and t2 or n1 and n2

or x1 and x2 are required to be distinct. This must be so, because for each case of the
definition we refer to an irreflexive relation over one of the coordinates. (In particular,
S′ \N∗ and N+ are known to be irreflexive.)

Furthermore, STriples must be a transitive relation. This follows essentially from
the transitivity of S and we only sketch a proof here. Let ((t1, n1, x1), (t2, n2, x2)) ∈
STriples and ((t2, n2, x2), (t3, n3, x3)) ∈ STriples . Node t2 is either part of a clus-
ter or it is not. If it is not, then both ((t1, n1, x1), (t2, n2, x2)) ∈ STriples and
((t2, n2, x2), (t3, n3, x3)) ∈ STriples must hold by the first condition in the definition of
STriples and ((t1, n1, x1), (t3, n3, x3)) ∈ STriples follows immediately by transitivity of S.
Otherwise they must both hold by one of the other conditions and we get (t1, t3) ∈ S

as well as (t3, t1) ∈ S. A detailed inspection of the possible combinations of conditions
shows that we also get ((t1, n1, x1), (t3, n3, x3)) ∈ STriples .

We also note that whenever two nodes t1 and t2 are siblings then any two triples
to which they give rise will be related either via STriples or its inverse. In other words,
STriples is connected over triples the first coordinates of which are sibling nodes in the
original loosely ordered tree.

Before we move on to the unravelling part of our construction, we also define an
auxiliary neighbour relation over triples:

((t1, n1, x1), (t2, n2, x2)) ∈ NTriples iff (t1, t2) ∈ N and n1 = n2 and x1 = x2

That is to say, two triples are neighbours iff they belong to the same copy, with respect
to both the integer and the rational number coordinate, and the two nodes concerned
have been pseudo neighbours in the original loosely ordered tree.

Observe that ((t1, n1, x1), (t2, n2, x2)) ∈ NTriples entails ((t1, n1, x1), (t2, n2, x2)) ∈
STriples , namely by the last condition in the definition of STriples . Also, no other triple
would ‘fit’ between (t1, n1, x1) and (t2, n2, x2) in this situation, i.e. we certainly have
NTriples ⊆ STriples \STriples ◦STriples . Further inspection of the definition of STriples shows
that the converse must hold as well, that is, we have NTriples = STriples \STriples ◦STriples .

Unravelling. The result of the bulldozing operation described before is not a tree, but
rather a compact representation of a tree. In the second part of our construction, we
need to turn this structure into a proper tree (an ordered tree, in fact, as we shall see
in the sequel). This will be achieved through unravelling, in analogy to the process of

90 Chapter 3. Semantic Characterisation

unravelling described in the proof of Lemma 3.38. For the new unravelled model ~M,
every finite path starting in the root of the bulldozed frame gives rise to a node in the new
tree. The intuition underlying this construction is illustrated in Figure 3.4 on page 80.

Let t0 be the root node in the original tree (T,R). We define the set of worlds ~T in the
unravelled frame as the set of all finite sequences of triples [(t0, n0, x0), . . . , (tm, nm, xm)]
with (ti, ni, xi) ∈ Triples for i ∈ {0, . . . ,m} and (ti, ti+1) ∈ R for i ∈ {0, . . . ,m − 1}.
Again, the elements of ~T will be referred to as paths and we write ~t+ [u] to denote the
path we obtain by appending the triple u to the end of path ~t.

The child relation ~R of the unravelled frame is defined as follows:

(~t1,~t2) ∈ ~R iff ~t2 = ~t1 + [u] for some u ∈ Triples

The sibling relation ~S is supposed to hold between two paths iff the auxiliary sibling
relation STriples holds over the respective last triples in those paths:

(~t1,~t2) ∈ ~S iff ~t1 = ~t+ [u1] and ~t2 = ~t+ [u2] and (u1, u2) ∈ STriples

for some ~t ∈ ~T and some u1, u2 ∈ Triples

Similarly, ~N is defined in terms of NTriples :

(~t1,~t2) ∈ ~N iff ~t1 = ~t+ [u1] and ~t2 = ~t+ [u2] and (u1, u2) ∈ NTriples

for some ~t ∈ ~T and some u1, u2 ∈ Triples

Finally, our new valuation function ~V is defined as a mapping from propositional letters
to sets of paths in ~T . (Observe that the following definition also covers the case of the
‘root path’ [(t0, 0, 0)].)

~t ∈ ~V (P) iff ~t = ~t1 + [(t, n, x)] and t ∈ V (P)
for some ~t1 ∈ ~T ∪ {[]} and some (t, n, x) ∈ Triples

Let ~M = (~F , ~V) be the general model based on the general frame ~F = (~T , ~R, ~S, ~N). This
model ~M is the unravelled bulldozed model the construction of which we have sketched
at the beginning of this proof. We now need to show that ~F is indeed an intended frame
(i.e. a general frame that corresponds to an ordered tree) as claimed and then that we
can define a p-morphism f mapping ~M onto the original model M.

Properties of the unravelled frame. We have to show that the unravelled frame ~F is an
ordered tree, or rather that (~T , ~R, ~S) is an ordered tree according to Definition 3.4 and
that we have ~N = ~S \ ~S ◦ ~S.

(1) (~T , ~R) is a tree. Showing that (~T , ~R) is a tree involves checking that ~R is irreflexive
and conversely functional and that (~T , ~R) has a root element (see Definition 3.2).
Irreflexivity and converse functionality are immediate consequences of the definition
of ~R. It is also easy to see that the path [(t0, 0, 0)] must be the root of (~T , ~R).

3.6 Loosely Ordered Trees 91

(2) Condition ~S ⊆ ~R−1◦ ~R. This follows directly from the definitions of ~S and ~R.

(3) Strict linear order over siblings. Irreflexivity and transitivity of ~S immediately
follow from the respective properties of the relation STriples . Furthermore, ~S must
be connected over sibling nodes in the tree (~T , ~R), because STriples is connected
over triples that can be appended to the same path. Hence, ~S must be a strict
linear order over every set of siblings in the unravelled tree.

(4) Condition ~N = ~S\ ~S◦ ~S. This follows immediately from the corresponding property
of the auxiliary sibling and neighbour relations NTriples and STriples , which we have
established earlier: NTriples = STriples \ STriples ◦ STriples .

P-morphic image of the unravelled frame. It remains to be shown that the original
model M is a p-morphic image of the unravelled bulldozed model ~M. To prove this we
first define a suitable function f from the set of paths ~T to the original set of nodes T :

f : [(t0, n0, x0), . . . , (tm, nm, xm)] 7→ tm

That is, f maps a path ~t to the first coordinate (a node in the original tree) of its final
element (a triple). We claim that f is a surjective p-morphism from ~M to M. In order
to validate this claim we need to show that f is a bidirectional p-morphism from (~T , ~R)
to (T,R), from (~T , ~S) to (T, S), and from (~T , ~N) to (T,N), that we have ~t ∈ ~V (P) iff
f(~t) ∈ V (P) for all propositional letters P and all ~t ∈ ~T , and that f is indeed a surjective
function onto T .

We start by showing that f is a bidirectional p-morphism from (~T , ~R) to (T,R),
which involves checking the three conditions from Definition 3.20.

(1) Homomorphic condition. Let (~t1,~t2) ∈ ~R. We need to show that this implies
(f(~t1), f(~t2)) ∈ R. Suppose ~t1 is of the form ~t + [(t1, n1, x1)].28 Then ~t2 must be
of the form ~t + [(t1, n1, x1), (t2, n2, x2)]. As ~t2 is an element of ~T we must have
(t1, t2) ∈ R. This is the desired result, because we have f(~t1) = t1 and f(~t2) = t2
by definition of f .

(2) Back condition. Let (f(~t1), t2) ∈ R. We need to show that there exists a ~t2 ∈ ~T

such that f(~t2) = t2 and (~t1,~t2) ∈ ~R. Suppose ~t1 is of the form ~t + [(t1, n1, x1)],
that is, we have in particular f(~t1) = t1 and hence (t1, t2) ∈ R. Now define
~t2 = ~t+[(t1, n1, x1), (t2, 0, 0)]. This must be an element of ~T , because ~t1 is, because
(t2, 0, 0) ∈ Triples, and because (t1, t2) ∈ R. The path ~t2 fulfils our requirements:
we have f(~t2) = t2 and (~t1,~t2) ∈ ~R.

(3) Inverse back condition. Let (t1, f(~t2)) ∈ R. We need to prove the existence of
a path ~t1 ∈ ~T with f(~t1) = t1 and (~t1,~t2) ∈ ~R. Suppose the last triple in ~t2 is
(t2, n2, x2), i.e. f(~t2) = t2. That is, we have (t1, t2) ∈ R. Hence, the first coordinate

28That is, ~t is either an element of ~T or the empty path [].

92 Chapter 3. Semantic Characterisation

of the penultimate triple in ~t2 must be t1. In other words, ~t2 must be of the form
~t + [(t1, n2, x2), (t2, n2, x2)]. Thus, for ~t1 = ~t + [(t1, n1, x1)] we get f(~t1) = t1 and
(~t1,~t2) ∈ ~R as required.

Our next goal is to show that f is also a bidirectional p-morphism from (~T , ~S) to (T, S).

(1) Homomorphic condition. (~t1,~t2) ∈ ~S implies (f(~t1), f(~t2)) ∈ STriples , which in turn
implies (f(~t1), f(~t2)) ∈ S. Done.

(2) Back condition. Let (f(~t1), t2) ∈ S. We need to show that there is a ~t2 ∈ ~T with
f(~t2) = t2 and (~t1,~t2) ∈ ~S. Suppose ~t1 is of the form ~t+[(t1, n1, x1)], that is, f(~t1) =
t1 and (t1, t2) ∈ S. As F is a loosely ordered tree we also have (t1, t2) ∈ R−1◦ R.
Now, given that t2 ∈ T and therefore (t2, 0, 0) ∈ Triples, the path ~t + [(t2, 0, 0)]
must also be an element of ~T (because the first coordinate of the last riple in ~t

must be related to t2 via the relation R). Set ~t2 = ~t+ [(t2, 0, 0)]. This path has all
the required properties and we are done.

(3) Inverse back condition. Let (t1, f(~t2)) ∈ S and let ~t2 be of the form ~t+[(t2, n2, x2)].
We have to prove the existence of a path ~t1 ∈ ~T such that f(~t1) = t1 and (~t1,~t2) ∈ ~S.
This can be done in direct analogy to the previous case: the path ~t1 = ~t+[(t1, 0, 0)]
fulfils our requirements.

Next we prove that f is a bidirectional p-morphism from (~T , ~N) to (T,N).

(1) Homomorphic condition. (~t1,~t2) ∈ ~N implies (f(~t1), f(~t2)) ∈ NTriples , while the
latter again implies (f(~t1), f(~t2)) ∈ N . So we are done.

(2) Back condition. Let (f(~t1), t2) ∈ N . We need to show that there is a path ~t2 ∈ ~T

such that f(~t2) = t2 and (~t1,~t2) ∈ ~N . Suppose ~t1 is of the form ~t + [(t1, n, x)],
i.e. f(~t1) = t1 and (t1, t2) ∈ N . The latter means that t1 and t2 must belong
to the same N -sequence in the original loosely ordered tree. Hence, in case t1
is part of a cluster (which would imply that n and x could have any values, not
just 0) then t2 would be part of the same cluster. In any case, (t2, n, x) will be
a member of Triples. Furthermore, we get ((t1, n, x), (t2, n, x)) ∈ NTriples . Now
define ~t2 = ~t + [(t2, n, x)]. This path must be an element of ~T , because we get
(t1, t2) ∈ R−1 ◦ R from (t1, t2) ∈ N and the fact that the original frame F is a
loosely ordered tree. The other two conditions are also fulfilled: f(~t2) = t2 and
(~t1,~t2) ∈ ~N .

(3) Inverse back condition. This condition can be verified in the same manner as the
back condition before.

The next step is to verify that the two valuation functions ~V and V are related to each
other as postulated in Definition 3.22. We have indeed ~t ∈ ~V (P) iff f(~t) ∈ V (P) for all
~t ∈ ~T and all propositional letters P . This is an immediate consequence of the definitions
of the new valuation function ~V and the function f .

3.6 Loosely Ordered Trees 93

Finally, it is easy to see that f must be a surjective function. For every node t ∈ T
we have (t, 0, 0) ∈ Triples and, by definition of the unravelling process, for every triple
in Triples there is at least one path leading to that triple. In summary, f must be a
p-morphism from the unravelled model ~M onto the original model M as claimed before.
Before we have shown that the frame F the model M is based on must be an ordered
tree. Hence, M is the p-morphic image of a model based on an ordered tree. Given
that M could be any model based on any loosely ordered tree without cycles, every such
model is the p-morphic image of a model based on an ordered tree. This completes our
proof of Lemma 3.39. 2

Putting it all together. The hard work is done and, finally, we can reap the rewards
of our efforts. At the beginning of this section we set out to characterise a set of sufficient
conditions for a general frame to provably be the p-morphic image of an ordered tree. It
is now clear that the frame conditions defining a loosely ordered tree (Definition 3.33)
meet this requirement. We record this result in the following lemma:

Lemma 3.40 (Loosely ordered trees) Every model based on a loosely ordered tree is
the p-morphic image of a model based on an ordered tree.

Proof. Let M′′ be a general model that is based on a loosely ordered tree. By
Lemma 3.38, there exists a model M′ based on a loosely ordered tree without cycles
such that M′′ is the p-morphic image of M′. Now by Lemma 3.39, there exists a model
M based on an ordered tree such that M′ is the p-morphic image of M. Let f be the
p-morphism mapping M onto M′ and let g be the p-morphism mapping M′ onto M′′.
Then by Lemma 3.26, the composed function f ◦ g must be a surjective p-morphism
from M to M′′, that is, M′′ is indeed the p-morphic image of a general model based on
an ordered tree as claimed. 2

Recall that, shortly after we introduced the class of loosely ordered trees, we have shown
that the opposite direction holds as well: any p-morphic image of a model based on an
ordered tree will be a model based on a loosely ordered tree (Proposition 3.34).

The following theorem states the immediate consequence of Lemma 3.40 as far as the
satisfiability of formulas in models based on either ordered trees or loosely ordered trees
is concerned. In this theorem, p-morphisms are not mentioned anymore, which has the
advantage that we will be able to make use of the results of this section later on without
having to delve back into the technical details on how these results have been obtained
in the first place.

Theorem 3.41 (Satisfiability in loosely ordered trees) A formula has got a model
based on an ordered tree iff it has got a model based on a loosely ordered tree.

Proof. Every ordered tree is also a loosely ordered tree. Therefore, every formula that
holds in a model based on an ordered tree also has a model based on a loosely ordered

94 Chapter 3. Semantic Characterisation

tree, namely that very same model. The other direction is an immediate consequence of
Lemma 3.40 and Theorem 3.24. 2

We are going to apply this theorem in the next chapter (Theorem 4.47 on page 139)
where we prove completeness of an axiomatisation with respect to the class of loosely
ordered trees and thereby, by Theorem 3.41, also with respect to ordered trees.

Modal logics of loosely ordered trees. Theorem 3.41 could be reformulated to
express that a formula is valid in every ordered tree iff it is valid in every loosely ordered
tree. If we think of a logic as the set of formulas that are valid over a particular class
of frames, then this means that our modal logic of ordered trees coincides with what we
might call the modal logic of loosely ordered trees.

Given that ordered trees are the simpler and more intuitive structure of the two, we
still prefer to think of our logic as a logic of ordered trees. From a more technical point
of view, however, the characterisation as a logic of loosely ordered trees is the ‘sharper’
one, as it omits a number of unnecessary frame conditions. Proposition 3.34 (on page 73)
showed that, at least as long as we restrict our set of tools to p-morphisms, it is in fact
the sharpest semantic characterisation of our logic there is. That is, there is no larger
class of frames (that we could identify using only our approach based on p-morphisms)
that still gives rise to the same logic (the same set of valid formulas).

3.7 Summary

We briefly recall some of the main ideas developed in this chapter.

Semantics of ordered tree logics. We have provided a formal semantic character-
isation of the modal logic of ordered trees introduced informally in Chapter 1. In the
first instance, we have defined the semantics of OTL by directly appealing to features of
ordered trees such as children, ancestors, and left or right siblings. Each one of these has
been associated with a modal operator of our language. We have also given definitions
of important semantic concepts such as satisfiability and validity.

Later we have seen how we can describe the same logic as a special case of a more
general multi-modal logic. Under this view, suitable conditions on the accessibility rela-
tions are required to ensure that models will still be based on frames that are ordered
trees.

Model transformations. The introduction of this general notion of a model allowed
us to study transformations between models that are satisfiability preserving. These
transformations have been described by means of p-morphisms. We have also introduced
the notion of a loosely ordered tree and showed that satisfiability with respect to models
based on loosely ordered trees is an equivalent concept to that of satisfiability with
respect to models based on ordered trees introduced before.

3.7 Summary 95

Expressiveness. We have demonstrated the expressive power and applicability of
OTL in a number of ways. For instance, powerful concepts such as the universal modality
or the difference operator are definable directly within our logic. We have also seen how
we can incorporate notions from planning in artificial intelligence, such as the distinction
of properties and events, into our framework.

Under the heading of correspondences we have shown how specific classes of ordered
trees, such as discretely ordered trees or finite trees can be characterised syntactically,
that is, by means of simple OTL formulas. This directly links in with the next chapter
where we shall attempt not only to describe certain aspects of models by means of such
axioms, but to provide an axiomatic characterisation of our logic itself.

Chapter 4

Axiomatic Characterisation

The aim of this chapter is to give an axiomatic presentation of the modal logic of ordered
trees complementing the semantic view taken in the previous chapter, and to show that
(or to what extent) semantic and axiomatic characterisation coincide.

We start by presenting the axioms and rules of our proof system. The main part of this
chapter is devoted to a completeness proof for a fragment of our modal logic of ordered
trees which excludes the two descendant modalities. The difficulty in axiomatising these
two operators stems from the fact that their semantics is defined with respect to the
transitive closure of the basic child relation R.

4.1 Axioms and Rules

Finding an axiomatisation of a semantically defined logic is one of the great big tasks
in modal logic research. We can draw upon an abundance of results in this area and
several of our axioms below are in fact variations of well-known formulas characterising
certain frame properties that can be found all over the literature. Goldblatt [35] lists
many of them. The work of Blackburn and Meyer-Viol [9] on the axiomatisation of a
modal logic of finite binary trees is particularly relevant to ours. Naturally, there are
a number of similarities between the two axiom systems, but they also differ in crucial
points pertaining to, for instance, the order declared over sibling nodes.

We are now going to present our axiomatisation, starting with the axioms and later
moving on to the rules of inference. A derivation (or a proof) is a finite sequence of
formulas where every formula is either an axiom or the result of applying an inference
rule to a finite number (either one or two, in fact) of formulas derived earlier. Our aim is
to give an axiomatisation that corresponds to our logic OTL, which has been defined in
terms of its model-theoretic semantics before. This means, we want only those formulas
to be derivable in our axiomatic system that are valid with respect to the given semantics.
In particular, this means that any axiom should in fact be a valid formula. Furthermore,
inference rules should preserve validity, that is, it should not be possible to derive a
non-valid formula (using a rule of the system) provided the premises are valid. Where

97

98 Chapter 4. Axiomatic Characterisation

appropriate, we are going to give intuitive justifications for the various axioms and rules
along the way. A formal proof of the soundness of our system is sketched towards the
end of this section.

Axiomatising propositional logic. Our modal logic extends classical propositional
logic. Consequently, this axiomatisation will build on an axiomatisation of propositional
logic. This could be any axiomatisation covering the propositional connectives we have
used (like that given in [40], for instance). To emphasise that our interests lie in those
aspects of OTL that go beyond propositional logic we are not going to adopt any specific
axiomatisation of propositional logic here, but rather assume that our system contains all
substitution instances of the classical tautologies. Also, in our axiomatic derivations later
on, we are not going to explicitly justify proof steps that amount to purely propositional
reasoning.

Duality axioms. We sometimes refer to a box-operator, such as 2, as the dual of the
corresponding diamond-operator, in this case 3. Our first set of truly modal axioms is
aimed at reflecting this relationship between box- and diamond-operators. The following
five axioms mirror the syntactic definitions of the box-operators of our language given in
Definition 3.7:

(D1) 2A↔ ¬3¬A
(D2) 2A↔ ¬3¬A
(D3) 2A↔ ¬3¬A
(D4) 2A↔ ¬3¬A
(D5) 2+A↔ ¬3+¬A

Distribution axioms. The following axioms have the same structure as the (K) axiom
familiar from the basic modal language. We call them distribution axioms, because they
define box-operators as being distributive with respect to implication.

(K1) 2(A→ B) → (2A→ 2B)
(K2) 2(A→ B) → (2A→ 2B)
(K3) 2(A→ B) → (2A→ 2B)
(K4) 2(A→ B) → (2A→ 2B)
(K5) 2+(A→ B) → (2+A→ 2+B)

In fact, box-operators are not the only modalities that are distributive with respect to
implication. Our next-operators exhibit the same behaviour. Suppose, for instance,e(A→ B) is true at a given node t, that is, A→ B holds at the parent of t. If we also
have eA being true at t, we get A at the parent node. As A → B and A imply B, we
can conclude that B must also be true at the parent. That is, we get eB at t. Similar
arguments apply to the case of the left and right neighbour modalities. Hence, all of the
following are valid formulas:

4.1 Axioms and Rules 99

(K6) e(A→ B) → (eA→ eB)
(K7) e(A→ B) → (eA→ eB)
(K8) e(A→ B) → (eA→ eB)

Axioms pertaining to inverse operators. The next set of axioms are intended to
capture the relationship between pairs of modal operators the semantics of which have
been defined with respect to two relations that are inverse to each other. An example
would be the operators 3 and 3, which correspond to the order S declared over sibling
nodes and its inverse S−1, respectively. The first four of these inverse axioms look very
similar to the standard axiom schema (B) characterising symmetric accessibility relations
(hence the names).

(B1) A→ 23A

(B2) A→ 23A

(B3) A→ 23+A

(B4) A→ 2+3A

Axiom (B1), for instance, expresses that whenever a formula A is true at a given node,
then for every node to the left there exists a node to the right (namely the original node
itself) where A is true. Axioms (B3) and (B4) have similar effects with respect to the
ancestor and descendant modalities.

The next four axioms characterise the inverses of next-operators. Here the situation
is a little more complex than in the case of the transitive operators above, because (un-
like box-operators) our next-operators have existential (rather than universal) character.
This is why in the antecedent of, say, axiom (B5) below we have to explicitly check that
a lefthand neighbour actually exists. Axioms (B7) and (B8) relate the next-operator
referring to the parent of a node and the (non-transitive) child modality. The former, for
instance, expresses that whenever a formula A is true at a node and that node has got
a parent then that parent will have a child (namely the original node) where A is true.

(B5) (A ∧ e>) → e eA
(B6) (A ∧ e>) → e eA
(B7) (A ∧ e>) → e3A
(B8) A→ 2 eA

Functionality axioms. Next-operators have a functional interpretation. For example,
if a node has got a parent node then it must have exactly one parent node, not more.
Functionality of the three next-operators in our language can be characterised by means
of the following axioms:

(F1) eA↔ (¬ e¬A ∧ e>)
(F2) eA↔ (¬ e¬A ∧ e>)
(F3) eA↔ (¬ e¬A ∧ e>)

100 Chapter 4. Axiomatic Characterisation

Axiom (F1), for instance, expresses that a node has got a left neighbour at which A is
true iff that node has got a left neighbour but it is not the case that it has got a left
neighbour at which A is false.

Mixing next-operators and diamonds. The following set of axioms expresses cer-
tain relationships between modal operators referring to basic accessibility relations (such
as the parent relation) and operators pertaining to the transitive closure (or a relation
subsuming the transitive closure) of these basic relations. Consider, for instance, axiom
(M3) below. The parent modality e, which is a next-operator, refers to the parent re-
lation R−1 and the corresponding diamond-operator 3 refers to the transitive closure
of R−1, that is, it refers to the ancestor relation. Axiom (M3) shows how we can ‘mix’
these two operators. It expresses that A is true at an ancestor of a given node t iff A

holds either at the immediate parent of t or at an ancestor of the parent of t. In the
case of the child and descendant modalities, which is covered by axiom (M4), the two
operators concerned are in fact not a next-operator and a diamond, but a non-transitive
and a transitive diamond-operator.

For the horizontal modalities the situation is a little more complicated, because the
left (right) sibling relation is in fact not (just) the transitive closure of the left (right)
neighbour relation, but is a relation including that transitive closure. This is reflected
by the additional condition on the lefthand side of axioms (M1) and (M2), respectively.

(M1) (3A ∧ e>) ↔ (eA ∨ e3A)
(M2) (3A ∧ e>) ↔ (eA ∨ e3A)
(M3) 3A↔ (eA ∨ e3A)
(M4) 3+A↔ (3A ∨33+A)

Induction axioms. At this point, readers familiar with axiomatisations of proposi-
tional dynamic logic (PDL) or linear temporal logic (over discrete flows of time) may
miss the so-called induction axioms [35]. In the case of the child and descendant modal-
ities, such an axiom would have the following form:

2+(A→ 2A) → (2A→ 2+A)

Together with the mixing axioms from above, such axioms can help to axiomatise modal
operators pertaining to the transitive closure of an accessibility relation. The reasons
why we do in fact not include any axioms of this kind into our proof system are as
follows. In the case of the horizontal modalities, they would simply not be valid, because
(in the general case) the sibling relation is not the transitive closure of the neighbour
relation. Axiomatising the relationship between the parent modality eand the universal
ancestor modality 2 in this manner turns out to be redundant. (It would also be a little
more complex than in our example for an induction axiom above, because e is not a
universal modality.) Finally, as will become clear in the course of this chapter, including
the induction axiom for the child and descendant modalities as stated above seems not
to suffice to allow us to prove completeness for the full modal logic of ordered trees.

4.1 Axioms and Rules 101

Axiomatising the (horizontal) flow of time. The next few axioms characterise
different properties of the order declared over the children of a particular node in a tree.
In our extended temporal logic interpretation of OTL this horizontal order corresponds
to the temporal dimension of a system; so the following axioms may be regarded as
describing properties of the flow of time we assume. The first such property is that time,
or more precisely the sibling order, is transitive. The following is the standard axiom
schema for transitivity, here with respect to the universal right sibling modality.

(H1) 2A→ 22A

The following axiom (H2) expresses that whenever a proposition A is true at every
righthand sibling we can reach in two steps, then A must hold at all righthand siblings,
unless the current node has a direct righthand neighbour.

(H2) 22A→ (2A ∨ e>)

This axiom bears some similarity to the formula usually given in the temporal logic
literature to axiomatise a dense flow of time. For the modality 2, that formula would
be 22A → 2A (see [35] and others). In our logic, the accessibility relation underlying
2 may be dense in some points and discrete in others. In fact, what axiom (H2) says is
that the order is dense whenever there is no direct successor.

Recall that in Section 3.3 of the previous chapter we have identified ordered trees
where the order declared over children is dense as those trees that validate the formula
¬ e>. Under the assumption that ¬ e> is valid, i.e. that e> can never be true, the
disjunction 2A ∨ e> reduces to 2A. In other words, in that case axiom (H2) can be
simplified to the standard axiom for density 22A→ 2A.

The next axiom (H3) expresses another relationship between the concepts of being
siblings as opposed to being direct neighbours. It expresses that whenever A is true at
all righthand siblings of a particular node then for every righthand sibling of a righthand
sibling of that first node it cannot be the case that there is a lefthand neighbour at which
A does not hold. This must be so, because any lefthand neighbour of a righthand sibling
of a righthand sibling must itself be a righthand sibling.

(H3) 2A→ 22¬ e¬A
So, in addition to the mixing axioms (M1)–(M4) from before, this last axiom also tells
us something about we may mix next-operators with box- and diamond-operators. More
concretely, it specifies how we can mix the lefthand next-operator with the righthand
box-operator. Axiom (H3) also expresses an aspect of linearity of the horizontal flow
of time. If we step to the right (to a righthand sibling) and then again to the left (a
lefthand neighbour), we are still in the scope of the right sibling relation (or possibly
back at the node where we started). In other words, time is not branching (to the left).
We are going to refer to (H3) as the axiom of mixed linearity.

102 Chapter 4. Axiomatic Characterisation

Interaction of horizontal and vertical operators. The following two axioms are
probably those that are most characteristic for OTL and that clearly distinguish it from
other multi-modal logics. They describe the interaction between horizontal and vertical
modalities.

(X1) 3A→ e3A
(X2) e3A→ (A ∨3A ∨3A)

The first of these two axioms expresses that whenever a node has got a righthand sibling
at which A is true, then its parent must have a child at which A is true. The second
axiom expresses that whenever a node’s parent has got a child at which A is true, then
A must either be true at that node itself or at one of its left or right siblings. Axioms
(X1) and (X2) are the only axioms in our system featuring both horizontal and vertical
modalities.

Rootedness. Our final axiom characterises another distinctive property of a tree,
namely that every node in a tree is accessible from the root node. It expresses that
whenever A is true at a node that has ancestors (i.e. that is not the root) then that node
has got an ancestor which does not have any ancestors itself (i.e. which is the root) and
which has got a descendant (namely the original node) where A is true.

(R1) (A ∧3>) → 3(3+A ∧2⊥)

This concludes the presentation of the axioms of our calculus.

Inference rules. The rules of our system are modus ponens, uniform substitution, and
eight different incarnations of the generalisation rule. We start with modus ponens:

A, A→ B

B

This rule states that given two formulas A and A→ B we can derive B. Here A and B
may stand for any well-formed formulas in our language. The second inference rule is the
rule of uniform substitution. It states that given a formula A we may derive any formula
that we can obtain by uniformly substituting the propositional letters appearing in A by
arbitrary well-formed formulas. For instance, A→ (B → A) is derivable in our calculus,
because it is a classical tautology. If we replace every occurrence of A by, say, eϕ and
every occurrence of B by, say, ¬2ϕ we obtain the formula eϕ → (¬2ϕ → eϕ), which
is thus derivable by application of the uniform substitution rule. Both modus ponens
and uniform substitution are familiar from axiomatic presentations of standard normal
modal logics (and indeed propositional logic).

Another standard inference rule is the rule of generalisation (or necessitation). Our
system includes a generalisation rule for each one of the five box-operators in the lan-
guage. Such a rule states that given a formula A we may derive 2A as well (and anal-
ogously for the other box-operators). The intuition behind this rule is that whenever A

4.1 Axioms and Rules 103

is known to be valid, i.e. whenever A is true at every node (in every model), then surely
A also has to be true at every node that is a left sibling of some node. Hence, 2A will
be valid as well.

This kind of rule is valid for any universal operator, i.e. for any operator that does
not postulate the existence of any other nodes. Box-operators are duals of (existential)
diamond-operators. Some authors also define modalities that are dual to next-operators.1

We have not introduced extra symbols for the duals of next-operators here, but shall
instead refer to a ‘combined’ modality such as ¬ e¬ as the dual of e, and analogously
for the other two next-operators. Our axiomatic system also includes generalisation rules
with respect to the duals of each of the three next-operators of our modal language.
Again, it is not difficult to see that validity of A entails validity of ¬ e¬A and similarly
for the other two next-operators. Here are our eight generalisation rules:

A

2A

A

2A

A

2A

A

2A

A

2+A

A

¬ e¬A A

¬ e¬A A

¬ e¬A
This concludes our presentation of the axiomatic proof system for OTL. The axioms and
rules of the system are summarised in Table 4.1. We should stress that we do not make
any claims as to the independence of axioms. That is, we cannot exclude the possibility
that some of the given axioms could be derived from others.

The fragment excluding the descendant modalities. For reasons that will be
discussed in Section 4.3 we are mostly going to work with the fragment of our logic
excluding the two descendant modalities 3+ and 2+. In this context we think of our
axiomatic proof system as the system excluding any of the axioms involving either 3+

or 2+ as well as the generalisation rule with respect to the latter.

Theorems and consistent formulas. The logic induced by our axiomatic system
is the smallest set of well-formed formulas that contains all propositional tautologies
and the axioms given in Table 4.1 and that is closed under modus ponens, uniform
substitution, and the eight generalisation rules that are also listed in Table 4.1. In other
words, this logic is the set of formulas that can be derived in our axiomatic proof system.
Derivable formulas are also called theorems.

Definition 4.1 (Derived theorems) A formula ϕ is called a (derived) theorem iff ϕ

belongs to the smallest set of well-formed formulas that contains all classical tautologies
and the axioms of our calculus, and that is closed under application of modus ponens,
uniform substitution, and the eight generalisation rules. We write ` ϕ.

Intuitively, this syntactic concept of theoremhood corresponds to the semantic notion of
validity. Similarly, the semantic notion of satisfiability has its syntactic counterpart in
the notion of consistency defined next.

1Clarke and Schlingloff [18], for instance, distinguish a next-operator (‘ϕ is true at the next state’)

and a weak next-operator (‘it is not the case that ϕ is false at the next state’).

104 Chapter 4. Axiomatic Characterisation

Axioms

Distribution

(K1) 2(A→ B) → (2A→ 2B)
(K2) 2(A→ B) → (2A→ 2B)
(K3) 2(A→ B) → (2A→ 2B)
(K4) 2(A→ B) → (2A→ 2B)
(K5) 2+(A→ B) → (2+A→ 2+B)
(K6) e(A→ B) → (eA→ eB)
(K7) e(A→ B) → (eA→ eB)
(K8) e(A→ B) → (eA→ eB)

Inverse

(B1) A→ 23A

(B2) A→ 23A

(B3) A→ 23+A

(B4) A→ 2+3A

(B5) (A ∧ e>) → e eA
(B6) (A ∧ e>) → e eA
(B7) (A ∧ e>) → e3A
(B8) A→ 2 eA

Interaction

(X1) 3A→ e3A
(X2) e3A→ (A ∨3A ∨3A)

Rootedness

(R1) (A ∧3>) → 3(3+A ∧2⊥)

Duality

(D1) 2A↔ ¬3¬A
(D2) 2A↔ ¬3¬A
(D3) 2A↔ ¬3¬A
(D4) 2A↔ ¬3¬A
(D5) 2+A↔ ¬3+¬A

Functionality

(F1) eA↔ (¬ e¬A ∧ e>)
(F2) eA↔ (¬ e¬A ∧ e>)
(F3) eA↔ (¬ e¬A ∧ e>)

Mixing

(M1) (3A ∧ e>) ↔ (eA ∨ e3A)
(M2) (3A ∧ e>) ↔ (eA ∨ e3A)
(M3) 3A↔ (eA ∨ e3A)
(M4) 3+A↔ (3A ∨33+A)

Transitivity

(H1) 2A→ 22A

Weak Density

(H2) 22A→ (2A ∨ e>)

Mixed Linearity

(H3) 2A→ 22¬ e¬A
Rules

Modus Ponens

A, A→ B

B

+ propositional tautologies

+ all substitution instances

Generalisation

A

2A

A

2A

A

2+A

A

¬ e¬A
A

2A

A

2A

A

¬ e¬A A

¬ e¬A
Table 4.1: Axioms and rules

4.1 Axioms and Rules 105

Definition 4.2 (Consistency) A set of formulas ∆ is called inconsistent iff there are
formulas ϕ1, . . . , ϕn ∈ ∆ such that ¬(ϕ1 ∧ · · · ∧ ϕn) is a theorem. Otherwise ∆ is called
a consistent set of formulas.

The notion of consistency also applies to single formulas. We call a formula ϕ consistent
iff the set {ϕ} is consistent and we call it inconsistent if this is not the case.

An example. As an example for how to work with our axiomatic system, we give a
derivation for the formula 33A→ 3A. This formula is interesting, because it illustrates
very well the interaction of horizontal and vertical modalities. It essentially expresses that
the righthand siblings of children of a given node are children of that node themselves.
We first present the derivation itself. This is followed by a number of comments. (Note
that the derived theorem 33A→ 3A is stated in the final line.)

(1) 3A→ e3A from (X1)
(2) e3A→ ¬ e¬3A from (F3)
(3) 3A→ ¬ e¬3A from (1) and (2)
(4) e¬3A→ ¬3A from (3)
(5) 2(e¬3A→ ¬3A) from (4) by generalisation
(6) 2 e¬3A→ 2¬3A from (5) and (K4)
(7) 33A→ 3¬ e¬3A from (6) and (D4)
(8) ¬3A→ 2 e¬3A from (B8)
(9) 3¬ e¬3A→ 3A from (8) and (D4)
(10) 33A→ 3A from (7) and (9)

In line (1) of this proof we simply reproduce axiom (X1). Line (2) is the first example of
a case where we represent more than just one atomic proof step within a single derivation
line. It can be justified as follows. If we substitute the letter A in axiom (F3) with the
formula 3A we obtain e3A ↔ (¬ e¬3A ∧ e>). The formula given in line (2) is a
propositional consequence of the former. We generally do not spell out meta proof steps
of this kind in detail, as it would only distract from the essence of what we intend to
demonstrate. This does not pose a problem in view of our formal results, as it would
always be possible to translate such a meta derivation into a detailed formal axiomatic
proof. Line (3) combines the formulas in lines (1) and (2) by exploiting the transitive
character of the implication operator. Again, this is not as such an inference rule of our
system, but its validity follows from properties of the propositional calculus.

The next few steps, culminating in line (7), are aimed at putting a diamond-operator
3 in front of the two principal subformulas of the implication in line (3). This is achieved
by first applying the generalisation rule (with respect to 2) to the contrapositive of
line (3). The resulting formula is shown in line (5). This formula has the structure of the
antecedent of the distribution axiom (K4). We could have written down that particular
instantiation of (K4) and then applied modus ponens explicitly to obtain the formula
in line (6). Again, these two reasoning steps have been merged into a single meta step.

106 Chapter 4. Axiomatic Characterisation

In fact, we are hardly ever going to explicitly mention the application of modus ponens.
Instead, abusing terminology to a certain degree, we will sometimes refer to a proof step
like that from line (5) to (6) as an ‘application’ of axiom (K4). Line (7) is essentially the
contrapositive of line (6), but we have also rewritten the two box-operators as diamonds
using the duality axiom (D4).

We now have derived an implication the antecedent of which is already the antecedent
of the implication we set out to prove. We still need to show that we can eliminate
the ‘prefix’ 3¬ e¬ from the consequent. This has been achieved in lines (8) and (9)
by transforming a suitable instance of the inverse axiom (B8). Line (10), our desired
conclusion, is again a combination of the two implicational formulas in lines (7) and (9).
(More sample derivations may be found in Appendix B.)

Soundness and completeness. Broadly speaking, the objective of axiomatising a
semantically defined logic (or analogously, of providing a semantics for a given axiomatic
system) is to show that the notions of satisfiability and consistency coincide (or equiva-
lently, that the notions of validity and theoremhood coincide).

A calculus such as our axiomatic proof system is called sound with respect to a se-
mantically defined logic iff satisfiability (of a formula) entails consistency (or equivalently,
iff theoremhood entails validity). The notion dual to soundness is (weak) completeness.
We call a calculus (weakly) complete iff every consistent formula is satisfiable (or equiva-
lently, iff every valid formula is a theorem). If it can also be shown that any consistent set
of formulas is satisfiable, then we call that logic strongly complete.2 Proving soundness
is generally much easier than proving completeness. It essentially amounts to demon-
strating that all axioms of the system are valid with respect to the chosen semantics.
Formal proofs of soundness are often omitted in the literature, and we will also restrict
ourselves to a brief proof sketch here.

Proposition 4.3 (Soundness) Every satisfiable formula is consistent.

Proof. We have to show that every theorem is a valid formula.3 This involves firstly
showing that every axiom of our system is a valid formula and secondly that all our
inference rules preserve validity. That is, a rule applied to a valid formula (or two
valid formulas, in the case of modus ponens) will always yield another valid formula.
Essentially, this amounts to formalising the intuitive justifications given for the various
axioms and rules when we first introduced them. We are only going to sketch a proof
here for one of the axioms and one of the rules.

2This includes in particular infinite sets of formulas. Observe that any finite set can be identified with

the conjunction of its elements, so the case of finite sets can be reduced to the case of simple formulas.
3Observe that ‘every satisfiable formula is consistent’ and ‘every theorem is a valid formula’ are

equivalent claims. To see this, consider firstly that whenever every satisfiable formula is consistent, then

satisfiability of ¬ϕ implies consistency of ¬ϕ, i.e. ϕ not being valid implies ϕ not being a theorem, which

is the contrapositive of the second claim. For the other direction consider that whenever theoremhood

implies validity, then ¬ϕ being a theorem implies validity of ¬ϕ, i.e. inconsistency of ϕ implies that ϕ

cannot be satisfiable. The latter again means that satisfiability of ϕ implies consistency of ϕ.

4.1 Axioms and Rules 107

Here is how we can prove validity of the interaction axiom (X1): 3A → e3A. Let
M = (T,R, S, V) be an arbitrary ordered tree model and let t ∈ T be an arbitrary node
in the underlying tree. We need to show that M, t |= 3ϕ implies M, t |= e3ϕ for any
given formula ϕ. By Definition 3.6 (of the semantics of our operators), M, t |= 3ϕ holds
iff t has got a right sibling t′ with M, t′ |= ϕ. This means, in particular, that we have
(t, t′) ∈ S. By Definition 3.4 (of ordered trees), we have S ⊆ R−1◦ R, i.e. there exists a
node t′′ ∈ T with (t, t′′) ∈ R−1 and (t′′, t′) ∈ R. The latter means that t′ is a child of the
node t′′. As we also have M, t′ |= ϕ, by definition of the semantics of the operator 3,
we can now infer that M, t′′ |= 3ϕ must be the case. But t′′ is the parent of t, so finally,
by definition of the semantics of e, we get M, t |= e3ϕ as required.

As an example for proving the soundness of our proof rules, we shall show that
applying the generalisation rule with respect to the dual of the next-operator e to a
valid formula will always yield another valid formula. So let ϕ be a valid (but otherwise
arbitrary) formula, i.e. ϕ is true at every node in every model. We need to show that this
entails that ¬ e¬ϕ must be valid as well. So, for the sake of contradiction, assume this
is not the case, i.e. there exist a model and a node t in that model such that ¬ e¬ϕ does
not hold at t. Then e¬ϕ must be true at t, i.e. t must have a righthand neighbour at
which ¬ϕ is true. But this contradicts our original assumption of ϕ being true at every
node in every model. Hence, generalisation with respect to ¬ e¬ is indeed a validity
preserving inference rule.

Soundness of the remaining axioms and rules can be established in a similar manner
as for the two examples given here. 2

Compactness and completeness. We say that a logic has the compactness property
iff a set of formulas is satisfiable whenever all of its finite subsets are. This is directly
relevant to the kind of completeness result we can expect. Given that the derivation rules
in our proof system are finitary (and that a proof is a finite sequence of proof steps),
strong completeness implies compactness.

Proposition 4.4 (Compactness failure) The modal logic of ordered trees lacks the
compactness property.

Proof. It suffices to find an example of an infinite set of formulas that, as a whole, is not
satisfiable, but for which every finite subset does have a model. Consider the following
infinite set of formulas:

∆ = { e>, e e>, e e e>, e e e e>, . . .}
The nth formula in ∆ is true at a node t iff there are at least n nodes above t in the
tree. We can easily construct a model for any given finite subset of ∆. If n is the length
of the longest formula in the subset then any model based on a tree with a branch of (at
least) length n will be a model for that subset.

108 Chapter 4. Axiomatic Characterisation

For ∆ itself, on the other hand, there can be no model. Assume otherwise, that
is, assume there is a node t where all formulas in ∆ are satisfied. If the distance from
the root of the tree down to t is n, then any formula (in ∆) longer than n will not be
satisfied at t, which contradicts our assumption. Hence, our logic does not have the
compactness property. 2

In fact, our proof shows that any fragment of OTL that contains at least the parent
modality e lacks the compactness property. As discussed above, this compactness failure
rules out a general strong completeness result for our logic.

We shall return to the issue of completeness in Section 4.3. Before that we are going
to derive a number of useful theorems from our axioms.

4.2 Some Derived Theorems

In this section we are going to establish a number of theorems that can be derived in our
axiomatic proof system.

Distribution. Axioms (K1)–(K8), together with modus ponens, allow us to distribute
the modality in question with respect to implication, at least in one direction. For
example, given 2(A→ B) we may infer 2A→ 2B using axiom (K3) and modus ponens.
(But the opposite direction would not constitute a valid inference.) When deriving
interesting theorems, we need to draw inferences of this kind all the time. Therefore, the
first three lemmas in this section are devoted to extending the range of such distribution
laws available to us, both in terms of the modal operator and the propositional connective
involved. The first one of these lemmas states that theorems of the same structure as
the (K) axioms hold for duals of next-operators.

Lemma 4.5 (K for duals of next-operators) Let Ω be a next-operator and let A and
B be formulas. Then ¬Ω¬(A→ B) → (¬Ω¬A→ ¬Ω¬B) is a theorem.

Proof. For better readability, we are first going to provide a derivation of the supposed
theorem for the particular next-operator e, rather than directly giving a general proof.

(1) e> ∨ ¬ e> propositional tautology
(2) ¬ e¬(A→ B) ∧ e> → e(A→ B) from (F3)
(3) ¬ e¬A ∧ e> → eA from (F3)
(4) ¬ e¬(A→ B) ∧ ¬ e¬A ∧ e> → eB from (2), (3) and (K8)
(5) eB → ¬ e¬B from (F3)
(6) e> → (¬ e¬(A→ B) → (¬ e¬A→ ¬ e¬B)) from (4) and (5)
(7) e¬B → e> from (F3)
(8) ¬ e> → ¬ e¬B from (7)
(9) ¬ e¬(A→ B) → (¬ e¬A→ ¬ e¬B) from (1), (6) and (8)

4.2 Some Derived Theorems 109

As we have corresponding axioms and rules available for e and e as well, the derivation
can easily be adapted for the other two cases. 2

The next lemma shows that for all those modal operators for which we have either an
axiom of the (K) variety or a derived theorem of the same structure, the same types of
formulas with iterated modalities are also theorems.

Lemma 4.6 (K for iterated modalities) Let Ω be a box-operator, a next-operator,
or the dual of a next-operator, let A and B be formulas, and let n ∈ N. Then the formula
Ωn(A→ B) → (ΩnA→ ΩnB) is a theorem.

Proof. Again, for better readability, we are first going to give proofs of the different parts
of the claim for particular operators rather than using a general notation. The results
will immediately generalise to all box- and next-operators, respectively, as we have the
same types of axioms and rules available to us for all of them.

As an example for an iterated box-operator, we are going to show that the formula
2n(A → B) → (2nA → 2nB) is a theorem for all formulas A and B and all natural
numbers n ∈ N. The proof proceeds by induction over n. For the base case of n = 1 the
claim simply reduces to axiom (K3): 2(A→ B) → (2A→ 2B).

In the induction step, we need to show how we may derive 2n+1(A → B) →
(2n+1A → 2n+1B) under the assumption that 2n(A → B) → (2nA → 2nB) has
already be shown to be a theorem. Here is such a derivation:

(1) 2n(A→ B) → (2nA→ 2nB) induction hypothesis
(2) 2(2n(A→ B) → (2nA→ 2nB)) from (1) by generalisation
(3) 22n(A→ B) → 2(2nA→ 2nB) from (2) and (K3)
(4) 2(2nA→ 2nB) → (22nA→ 22nB) from (K3)
(5) 22n(A→ B) → (22nA→ 22nB) from (3) and (4)
(6) 2n+1(A→ B) → (2n+1A→ 2n+1B) from (5)

This concludes our proof for the case of the box-operator 2. The same argument also
applies to the other box-operators of our language, as the required axiom as well as the
generalisation rule are equally available for all of them. In fact, the proof given also
covers the case of the duals of the three next-operators, because Lemma 4.5 provides
the theorems for the base cases and we have generalisation rules with respect to duals of
next-operators in our system.

It remains to show that the claim also holds for next-operators themselves. As an
example for a next-operator we are going to use e. Our inductive proof is similar to the
previous one. The base case immediately reduces to axiom (K7): e(A→ B) → (eA→eB). The derivation for the induction step differs a little, because the generalisation
rule for next-operators applies to the dual of the operator rather than the operator itself.
This can be compensated for by the corresponding functionality axiom, which in the case
of e is (F2): eA↔ (¬ e¬A ∧ e>). Here is our derivation for the induction step:

110 Chapter 4. Axiomatic Characterisation

(1) en(A→ B) → (enA→ enB) induction hypothesis
(2) ¬ e¬(en(A→ B) → (enA→ enB)) from (1) by generalisation
(3) ¬ e¬ en(A→ B) → ¬ e¬(enA→ enB) from (2) and Lemma 4.5
(4) e en(A→ B) → ¬ e¬ en(A→ B) ∧ e> from (F2)
(5) ¬ e¬(enA→ enB) ∧ e> → e(enA→ enB) from (F2)
(6) e en(A→ B) → e(enA→ enB) from (3), (4) and (5)
(7) e(enA→ enB) → (e enA→ e enB) from (K7)
(8) en+1(A→ B) → (en+1A→ en+1B) from (6) and (7)

This concludes our inductive proof for en(A→ B) → (enA→ enB). Again, the same
type of argument applies to all next-operators, so we are done. 2

Next we establish what kind of (possibly iterated) modalities may be distributed with
respect to conjunctions and disjunctions, respectively.

Lemma 4.7 (Distribution) Let A and B be formulas and let n ∈ N.

(1) If Ω is a box-operator or the dual of a next-operator, then Ωn(A∧B) ↔ (ΩnA∧ΩnB)
is a theorem.

(2) If Ω is a diamond-operator or a next-operator, then Ωn(A∨B) ↔ (ΩnA∨ΩnB) is
a theorem.

Proof. In this proof, we are again going to exploit the fact that, that we have the
same kinds of rules, axioms, and derived theorems available to us for the different modal
operators of each type. For instance, if Ω is a box-operator or the dual of a next-operator
then, by Lemma 4.6, the formula Ωn(A→ B) → (ΩnA→ ΩnB), which has the structure
of a (K) axiom, will be a theorem for any natural number n. Furthermore, as we may
repeat the application of a generalisation rule as often as we wish, generalisation with
respect to an iterated box-operator Ωn is a valid rule in our proof system. The same
applies to iterated applications of the generalisation rule with respect to the dual of a
next-operator. Therefore, as long as we only make use of (K) axioms (or their derived
counterparts) and generalisation rules, we can deal with all box-operators and the duals
of all next-operator of our language in one go. The following derivation proves the first
claim for the particular case of the box-operator 2.

(1) (A ∧B) → A propositional tautology
(2) 2((A ∧B) → A) from (1) by generalisation
(3) 2(A ∧B) → 2A from (2) and (K1)
(4) 2(A ∧B) → 2B in analogy to (1)–(3)
(5) A→ (B → (A ∧B)) propositional tautology
(6) 2(A→ (B → (A ∧B))) from (5) by generalisation
(7) 2A→ 2(B → (A ∧B)) from (6) and (K1)
(8) 2(B → (A ∧B)) → (2B → 2(A ∧B)) from (K1)
(9) (2A ∧2B) → 2(A ∧B) from (7) and (8)
(10) 2(A ∧B) ↔ (2A ∧2B) from (3), (4) and (9)

4.2 Some Derived Theorems 111

As argued before, this shows that Ωn(A∧B) ↔ (ΩnA∧ΩnB) must be a theorem for all
n ∈ N whenever Ω is either a box-operator or the dual of a next-operator.

Part (2) concerns diamond-operators and next-operators. The two groups could also
be treated under a single heading, but the proof may be clearer if we separate the two. So
let us begin with the case of diamond-operators. We can easily derive iterated versions
of the duality axioms (D1)–(D5), like for example 2nA ↔ ¬3n¬A. The following
derivation only makes use of such a duality axiom and the result proved in part (1):

(1) 2(¬A ∧ ¬B) ↔ (2¬A ∨2¬B) from Part (1) of this lemma
(2) ¬3¬(¬A ∧ ¬B) ↔ (¬3A ∨ ¬3B) from (1) and (D1)
(3) 3(A ∨B) ↔ (3A ∨3B) from (2)

This shows that the formula Ωn(A ∨ B) ↔ (ΩnA ∨ ΩnB) will be a theorem for any
diamond-operator Ω.

Finally, we turn to the case of next-operators. Here all that is required is a simple
propositional transformation of the result proved in part (1). As an example, we give
the derivation for the case of the operator e:

(1) ¬ e¬(¬A ∧ ¬B) ↔ (¬ e¬¬A ∧ ¬ e¬¬B) form Part (1) of this lemma
(2) e(A ∨B) ↔ (eA ∨ eB) from (1)

Hence, Ωn(A ∨ B) ↔ (ΩnA ∨ ΩnB) will also be a theorem whenever Ω is one of the
next-operators of our modal language. 2

From now on, when referring to Lemma 4.7,we will usually simply say that the respective
conclusion follows ‘by distribution’. While in the above lemma, the distribution laws have
been formulated for the case of only two propositions A and B, it can easily be generalised
to any number of propositions. For example, if A1, . . . , An are any finite number of
formulas then 2(A1 ∧ · · · ∧An) ↔ (2A1 ∧ · · · ∧ 2An) will be a theorem. To obtain this
result we require n− 1 instances of the derived theorem 2(A ∧B) ↔ (2A ∧2B).

More theorems. We are going to require the derived theorems listed in the following
lemma at various stages throughout our completeness proof later on.

Lemma 4.8 (Derived theorems) The following formulas are theorems:

(1) ` ¬(2⊥ ∧ eA)

(2) ` 3 eA→ A

(3) ` 32A→ A

(4) ` 2A→ 22A

(5) ` (2A ∧ e>) → eA
(6) ` e2A→ 22A

112 Chapter 4. Axiomatic Characterisation

(7) ` e(A ∧2A) → 2A

Proof. The derivations may be found in Appendix B. 2

In the following lemma we prove generalisations of the mixing axioms (M3) and (M4).
These will allow us, in certain cases, to rewrite a formula with a transitive diamond-
operator as a disjunction of formulas with iterated next-operators (or intransitive
diamond-operators, respectively).

For the case of n = 4, for instance, the first part of Lemma 4.9 asserts that the
following formula is a theorem:

3A↔ (eA ∨ e2A ∨ e3A ∨ e4A ∨ e43A)

So if we can somehow eliminate the disjunct e43A, then we can rewrite the formula
3A as the disjunction eA ∨ e2A ∨ e3A ∨ e4A. In other words, we can eliminate the
diamond-operator 3, which refers to the transitive closure of the parent relation, and
use instead the simpler next-operator e, which only refers to the parent relation itself.
As we shall see in the sequel, axiomatising the semantics of modalities defined in terms
of a transitive closure is particularly difficult, so this kind of construction can be very
useful.

Lemma 4.9 (Mixing iterated modalities) The following formulas are theorems for
all natural numbers n ∈ N:

(1) ` 3A↔ (eA ∨ · · · ∨ enA ∨ en3A)

(2) ` 3+A↔ (3A ∨ · · · ∨3nA ∨3n3+A)

Proof. Part (1) of the claim can be proved by induction over the maximal index n.
For the base case, that is for n = 1, the theorem to be shown reduces to our axiom
(M3): 3A ↔ (eA ∨ e3A). For the induction step, we need to show that, under the
assumption that the formula 3A↔ (eA∨ · · · ∨ enA∨ en3A) is known to be a theorem
for a particular n, we can derive the corresponding formula for the case of n + 1. The
following derivation does the job:

(1) 3A↔ (eA ∨ · · · ∨ enA ∨ en3A) induction hypothesis
(2) en3A↔ en(eA ∨ e3A) from (M3)
(3) en3A↔ (en+1A ∨ en+13A) from (2) by distribution
(4) 3A↔ (eA ∨ · · · ∨ en+1A ∨ en+13A) from (1) and (3)

Hence, our generic formula must be a theorem for all n ∈ N as claimed.
Part (2) of Lemma 4.9 can be proved analogously, this time using axiom (M4) in

place of (M3). 2

4.3 Completeness without Descendant Modalities 113

4.3 Completeness without Descendant Modalities

The aim of this section is to prove completeness of our axiom system with respect to
the model-theoretic semantics of ordered tree logics. In fact, we are only going to show
completeness for the fragment of our logic excluding formulas involving the transitive
descendant modality 3+ and its dual 2+.4 We shall also try to give an explanation
why taming this operator is considerably more difficult than axiomatising the rest of the
language. There is also a second restriction to our completeness result (that is in fact
related to the problem of axiomatising the descendant operators), which we are going to
explain once the necessary terminology has been introduced.5

Completeness via canonical models. To prove our Completeness Theorem we are
going to use a variant of a powerful method that involves building a so-called canonical
model.6 The earliest accounts of completeness results for modal logics via a canonical
model argument are probably the works of Lemmon and Scott [48] and Makinson [50].

The basic idea underlying this method is relatively simple and may be informally
described as follows. Recall that the objective of proving completeness is to show that
any given formula ϕ that is known to be consistent (with respect to the axiom system
in question) must also be satisfiable, that is, there must be a model in which ϕ is true.
One way of proving satisfiability is to actually construct a model for ϕ. The first step in
building a model is to decide on a suitable set of worlds (or nodes in the case of our logic).
In the canonical model approach, we construct a world for every combination of formulas
that could possibly be true ‘at the same time’. More precisely, each world is a consistent
set of formulas that is maximal in the sense that adding any more formulas would render
it inconsistent. Clearly, if ϕ is a consistent formula then it must be ‘true’ at some of
these worlds, that is, ϕ must be an element of some of these maximally consistent sets of
formulas. The first part of our proof will be devoted to a formal definition of maximally
consistent sets of formulas and to proving a number of useful properties they enjoy (see
Definition 4.10 on page 115 and the following two lemmas).

Next we have to define suitable accessibility relations over our set of worlds. These
need to be arranged in such a way that modal operators ‘work’ as intended. For instance,
if 2ϕ is an element of the set ∆ associated with a particular world, then we only want
to make those worlds accessible from ∆ where ϕ is an element of the associated set of
formulas. In fact, this is precisely how we are going to define our relations (see, for
instance, Definition 4.13 on page 118). This ensures that the semantic truth conditions
for formulas starting with a box-operator coincide with the set-membership relation

4Consequently, we are not going to use any of the axioms (or the generalisation rule) proposed earlier

that involve either 3+ or 2+. These axioms have been included into our presentation in Section 4.1 only

in order to provide a tentative outline of what a complete axiomatisation for the full logic might look

like. For further discussion of this point we refer to Section 4.4.
5See, in particular, our discussion on page 138, just before the main theorem of this section.
6This method is sometimes also referred to as a Henkin-construction, because of its similarity to

Henkin’s completeness proof for first-order logic [39].

114 Chapter 4. Axiomatic Characterisation

between formulas and maximally consistent sets by definition, as it were. One of the
central tasks in a canonical model based completeness proof is to show that this is also
the case for the other modalities (as well as the propositional connectives). The difficult
part is usually to prove that in the case of an existential modality (that is, a diamond-
or a next-operator) there actually exists a maximally consistent set of formulas, which
is related to the first set and which contains a suitable witness formula. We have to
prove a so-called Existence Lemma for each one of our diamond- and next-operators (see
Lemma 4.19 on page 121 for an example). At the end of the day, we need to show that
a formula ϕ belongs to a given maximally consistent set of formulas iff ϕ is satisfied at
the corresponding world in our canonical model. This important intermediate result is
often stated in the form of a so-called Truth Lemma. (Our Truth Lemma is Lemma 4.46
on page 136.)

Besides showing that modal operators work as intended in a canonical model, we
also need to show that the frame underlying the model has in fact the right structure.
As the structure imposed on the worlds of our canonical model depends on the kinds
of formulas found in the maximally consistent sets associated with these worlds, in the
first instance, there is no guarantee that this structure has the properties postulated for
frames in the model-theoretic semantics given for the logic under investigation. In our
case, we would like this frame to be an ordered tree. In some cases, it is possible to
prove that the canonical frame has all the required properties directly; in the case of our
logic the situation is a little more difficult. In fact, given the result at the end of the
previous chapter, namely that the logic of ordered trees would actually be described more
accurately as a logic of loosely ordered trees,7 we cannot expect to be able to uniquely
axiomatise ordered trees. That is, we cannot expect our canonical frame (the structure
of which is a direct consequence of the characteristics of our axiomatic system) to be an
ordered tree. However, as we shall see, we can prove that it (or rather part of it, to be
precise) is a loosely ordered tree. Given that any formula that is satisfiable in a model
based on a loosely ordered tree must also be satisfiable in a model based on an ordered
tree, this is just as good a result. (Lemma 4.42 on page 134 states that our canonical
frame is a loosely ordered tree and much of the work before that is devoted to proving
specific properties of the canonical accessibility relations.)

A final twist to our completeness proof is that we do in fact not use the full canonical
model (over all maximally consistent sets of formulas) described before. The reason
is that we cannot expect the full canonical frame to be irreflexive with respect to the
vertical accessibility relation (the canonical child relation). As is well known, giving an
axiomatic characterisation of a modal operator pertaining to an irreflexive accessibility
relation is not possible in the general case. In our case, the fact that the intended frame
(a tree) has got a first node with respect to the canonical child relation, namely the root
node, allows us to overcome this problem by means of the following ‘trick’. In a tree,

7Loosely ordered trees have been defined in Definition 3.33 and the quoted result has been discussed

after Theorem 3.41 on page 93.

4.3 Completeness without Descendant Modalities 115

every node has got a particular distance from the root which, for this purpose, we are
going to refer to as the level of that node. If certain maximally consistent sets and the
vertical accessibility relation declared over them really do give rise to a tree as claimed,
then each one of these sets will contain a formula reflecting the level of the corresponding
node. For instance, a node on level 2 (i.e. a ‘grandchild’ of the root node) must satisfy
the formula e e2⊥ (or e22⊥ in short). In general, any node on level n will satisfyen2⊥, but not em2⊥ for any number m 6= n. Furthermore, as will be shown formally
in Lemma 4.17, whenever a maximally consistent set ∆ has got level n (satisfies en2⊥)
then any set accessible from ∆ via the canonical child relation will have level n+ 1, that
is, it will satisfy en+12⊥. Hence, if we discard any maximally consistent sets of formulas
not containing a formula of this form, we automatically guarantee the irreflexivity of the
remaining frame.

Finally, the actual completeness result itself will be stated as Theorem 4.47 on
page 139. While most of this section is rather technical in nature, in particular in
those parts where we establish the various structural properties of our canonical frame
through a sequence of lemmas, we are also going to provide further explanations on the
details of our construction as we go along.

Maximally consistent sets. Let us first make the idea of maximally consistent sets
precise. By an extension of a set of formulas ∆ we mean a superset of ∆ that is itself a
set of formulas.

Definition 4.10 (Maximally consistent sets) A consistent set of formulas ∆ is
called maximally consistent iff every proper extension of ∆ is inconsistent.

It should be pointed out that this is not the only way of defining maximally consistent
sets of formulas. Hughes and Cresswell [42], for instance, define maximally consistent
sets8 as consistent sets containing either ϕ of ¬ϕ for every formula ϕ in the language.
This characterisation will in fact emerge as a consequence of the one chosen here (see
Lemma 4.11).

The following two lemmas, both of which concern maximally consistent sets, are
standard results in modal logic.

Lemma 4.11 (Basic properties of maximally consistent sets) Let ∆ be a maxi-
mally consistent set and let ϕ, ϕ1 and ϕ2 be formulas. Then the following statements
are true:

(1) If ` ϕ then ϕ ∈ ∆.

(2) ¬ϕ ∈ ∆ iff ϕ 6∈ ∆.

(3) If ϕ1 ∈ ∆ and ϕ1 → ϕ2 ∈ ∆ then also ϕ2 ∈ ∆.
8When speaking about ‘maximally consistent sets’, we always mean maximally consistent sets of

formulas, even when this is not stated explicitly.

116 Chapter 4. Axiomatic Characterisation

(4) ϕ1 ∧ ϕ2 ∈ ∆ iff ϕ1 ∈ ∆ and ϕ2 ∈ ∆.

(5) ϕ1 ∨ ϕ2 ∈ ∆ iff ϕ1 ∈ ∆ or ϕ2 ∈ ∆.

Proof. Throughout this proof, let ∆ be a maximally consistent set of formulas and let
ϕ, ϕ1 and ϕ2 be formulas.

(1) Theorems. Suppose we have ` ϕ, that is, ϕ is a theorem. We are going to show
that the assumption ϕ 6∈ ∆ will lead to a contradiction. Given that ∆ is maximally
consistent, ∆ itself is a consistent set, but every proper extension of ∆, in particular
the set ∆∪{ϕ}, will be inconsistent. So ∆ has no finite subset that is inconsistent,
but ∆∪{ϕ} does. Hence, any such inconsistent subset of the latter must contain ϕ.
In other words, there exist formulas ψ1, . . . , ψn ∈ ∆ such that ` ¬(ψ1∧· · ·∧ψn∧ϕ)
holds, but at the same time we do not have ` ¬(ψ1∧· · ·∧ψn). Using propositional
reasoning, we can see that the former implies that either ` ¬(ψ1∧· · ·∧ψn) or ` ¬ϕ
must be true. In either case we obtain a direct contradiction.

(2) Negation. The formula ¬(ϕ ∧ ¬ϕ) is a tautology, whatever the truth value of ϕ.
So, by Definition 4.2, any set of formulas containing both ϕ and ¬ϕ is bound to be
inconsistent. Hence, ¬ϕ ∈ ∆ certainly implies ϕ 6∈ ∆.

For the opposite direction, assume ϕ 6∈ ∆. We have to prove that this implies
¬ϕ ∈ ∆. In eager anticipation of a contradiction, let us assume ∆ contains neither
ϕ nor ¬ϕ. Then both ∆∪{ϕ} and ∆∪{¬ϕ} would have to be inconsistent (but ∆ on
its own would still be consistent). So there exist formulas χ1, . . . , χm ∈ ∆ as well as
formulas ψ1, . . . , ψn ∈ ∆ such that ` ¬(χ1∧· · ·∧χm∧ϕ) and ` ¬(ψ1∧· · ·∧ψn∧¬ϕ).
But these propositionally entail ` ¬(χ1∧· · ·∧χm∧ψ1∧· · ·∧ψn), which contradicts
our assumption of ∆ being a consistent set.

(3) Modus ponens. Claiming that ϕ1 ∈ ∆ and ϕ1 → ϕ2 ∈ ∆ imply ϕ2 ∈ ∆ means
claiming that ∆ is closed under modus ponens. Suppose we have ϕ1 ∈ ∆ and
ϕ1 → ϕ2 ∈ ∆. By the previous case, assuming ϕ2 6∈ ∆ would imply ¬ϕ2 ∈ ∆. But
` ¬(ϕ1 ∧ (ϕ1 → ϕ2) ∧ ¬ϕ2) by propositional reasoning, i.e. such an assumption
would render ∆ inconsistent.

(4) Conjunction. The formula ϕ1 ∧ ϕ2 → ϕ1 is a propositional tautology and thereby
also theorem. Hence, by case (1), ϕ1 ∧ ϕ2 → ϕ1 is an element of ∆ and then, by
case (3), ϕ1 ∧ ϕ2 ∈ ∆ implies ϕ1 ∈ ∆. That ϕ2 ∈ ∆ also follows from ϕ1 ∧ ϕ2 ∈ ∆
can be shown by the same type of argument.

For the other direction, assume we have both ϕ1 ∈ ∆2 and ϕ2 ∈ ∆. As ϕ1 →
(ϕ2 → (ϕ1 ∧ ϕ2)) is a theorem, the former entails ϕ2 → (ϕ1 ∧ ϕ2) ∈ ∆ and then
the latter allows us to infer ϕ1 ∧ ϕ2 ∈ ∆.

(5) Disjunction. ϕ1 ∨ ϕ2 ∈ ∆ iff ϕ1 ∈ ∆ or ϕ2 ∈ ∆ can be shown to hold by an
argument similar to the previous case.

4.3 Completeness without Descendant Modalities 117

This completes our proof of Lemma 4.11. 2

We are going to exploit these properties of maximally consistent sets throughout, usually
without specific reference to Lemma 4.11.

The following result is known as Lindenbaum’s Lemma (see, for instance, [8]) It
establishes that for every consistent set of formulas we have a maximally consistent set
containing that set. As this includes the case of singleton consistent sets, it also shows
that every consistent formula must belong to a (at least one) maximally consistent set.
Last but not least, this lemma shows that maximally consistent sets actually exist. This
must be so, because we know that consistent formulas do exist (> for instance).

Lemma 4.12 (Existence of maximally consistent supersets) Every consistent
set of formulas can be extended to a maximally consistent set.

Proof. Let ∆ be a consistent set of formulas. We are going to show how we can construct
a maximally consistent set ∆∗ with ∆ ⊆ ∆∗. The basic idea is to decide for every well-
formed formula whether to add either that formula or its negation to the set. This is
possible, because the set of all well-formed formulas in our language is countable. That
is, there exists an enumeration ϕ1, ϕ2, ϕ3, . . . of these formulas. We define an infinite
sequence (∆n) of supersets of ∆ as follows:

∆0 = ∆

∆n+1 =

{
∆n ∪ {ϕn+1} if that set is consistent
∆n ∪ {¬ϕn+1} otherwise

By induction over n we can show that every element in this sequence must be a consistent
set. To start with, ∆0 is consistent by our original assumption of ∆ being a consistent
set. For the induction step, we need to show that consistency of ∆n entails consistency
of ∆n+1. By construction of our sequence, ∆n+1 will only be inconsistent if there are
formulas χ1, . . . , χk ∈ ∆n as well as ψ1, . . . , ψm ∈ ∆n such that both ` ¬(χ1 ∧ · · · ∧ χk ∧
ϕn+1) and ` ¬(ψ1 ∧ · · · ∧ψm ∧¬ϕn+1) hold. It then follows (by propositional reasoning)
that also ` ¬(χ1∧ · · ·∧χk ∧ψ1∧ · · ·∧ψm) must be the case. But then already ∆n would
have to be inconsistent. Hence, consistency of ∆n indeed implies consistency of ∆n+1,
which means that all elements of (∆n) must be consistent sets of formulas.

We can now define ∆∗ as the union of all sets in the sequence (∆n). Then ∆∗ must
be consistent, because any inconsistent finite subset would also be a subset of some ∆n,
which would contradict the consistency of ∆n. Furthermore, ∆∗ is maximal, as every
formula ϕn in our enumeration will either be an element of ∆n, and thereby also of ∆∗,
or adding ϕn to ∆∗ would render the set inconsistent. And finally, we have ∆ ⊆ ∆∗ by
construction. 2

The proofs of Lemma 4.11 and Lemma 4.12 do not make reference to any of our modal
axioms. In the case of the former, we have only used basic propositional reasoning (that

118 Chapter 4. Axiomatic Characterisation

is, we have implicitly referred to axioms of propositional logic). For the latter, besides
propositional reasoning, we have also made use of the fact that the set of well-formed
formulas is countable. Therefore, these results hold not only for our full modal language,
but also for fragments, where we drop one or more of our modal operators.

Building the canonical model. As far as possible, we are going to separate the
presentation of intermediate results into those pertaining to vertical modalities and those
pertaining to horizontal modalities. We start with the vertical dimension, and are first
going to define a vertical accessibility relation over maximally consistent sets, the worlds
of our canonical model in spe. Following this definition (and a brief discussion of some of
its properties), we are going to prove ‘vertical’ Existence Lemmas for the child operator
3, the parent operator e, and the ancestor operator 3. To be able to prove the latter,
we are going to require the notion of a level of a maximally consistent set, which has
already been discussed informally in the introduction to this section. We are also going
to show that our vertical accessibility relation imposes a tree structure on the set of those
maximally consistent sets that have a level.

We shall refer to our vertical accessibility relation over maximally consistent sets
of formulas as the canonical child relation. Our aim later on will be to show that it
corresponds to the child relation R in a loosely ordered tree.

Definition 4.13 (Canonical child relation) Let ∆1 and ∆2 be maximally consistent
sets. We define the canonical child relation ≺ over maximally consistent sets as follows:

∆1 ≺ ∆2 iff 2ϕ ∈ ∆1 implies ϕ ∈ ∆2 for all formulas ϕ

The non-reflexive transitive closure of the relation ≺ will be denoted as ≺+ and the
reflexive transitive closure as ≺∗ (see also Definition A.3 in Appendix A).

In the next lemma we state some simple consequences of this definition of the relation
≺. They concern what, for lack of a better name, we shall call awareness. For instance,
if we have ∆1 ≺ ∆2 and some formula ϕ is an element of ∆2, then ∆1 will be ‘aware’ of
this characteristic of one of its ≺-successors and contain the formula 3ϕ.

Lemma 4.14 (Vertical awareness) Let ∆1 and ∆2 be maximally consistent sets and
let ϕ be a formula. Then the following statements are true:

(1) ϕ ∈ ∆1 and ∆1 ≺ ∆2 imply eϕ ∈ ∆2.

(2) ϕ ∈ ∆2 and ∆1 ≺ ∆2 imply 3ϕ ∈ ∆1.

(3) ϕ ∈ ∆1 and ∆1 ≺+ ∆2 imply 3ϕ ∈ ∆2.

(4) ϕ ∈ ∆2 and ∆1 ≺+ ∆2 imply 3+ϕ ∈ ∆1.9

9We are not actually going to use Part (4) of this lemma later on. It is included here only to show

that awareness is not the problem when we are dealing with the transitive descendant operator 3+.

4.3 Completeness without Descendant Modalities 119

Proof. These claims all follow almost directly from the definition of the canonical child
relation ≺ (see Definition 4.13).

(1) Parent awareness. Let ϕ ∈ ∆1 and ∆1 ≺ ∆2. Using axiom (B8) together with the
former, we can infer 2 eϕ ∈ ∆1. By definition of ≺ we then obtain eϕ ∈ ∆2 as
required.

(2) Child awareness. Let ϕ ∈ ∆2 and ∆1 ≺ ∆2. As ∆2 is maximally consistent, the
former is equivalent to ¬ϕ 6∈ ∆2. Now we can apply the contrapositive of the
formulation used to define ≺ and infer that 2¬ϕ 6∈ ∆1 must be the case. Because
∆1 is a maximally consistent set as well, we get ¬2¬ϕ ∈ ∆1. By axiom (D4), this
is equivalent to 3ϕ ∈ ∆1, the desired result.

(3) Ancestor awareness. Let ϕ ∈ ∆1 and ∆1 ≺+ ∆2, i.e there exists an n ∈ N such
that ∆1 ≺n ∆2. Hence, by case (1) of this lemma, we have enϕ ∈ ∆2. We can
now use the derived theorem 3A ↔ (eA ∨ · · · ∨ enA ∨ en3A) from Lemma 4.9
to infer that we must also have 3ϕ ∈ ∆2.

(4) Descendent awareness. Let ϕ ∈ ∆2 and ∆1 ≺+ ∆2. Hence, there exists an n ∈ N
such that ∆1 ≺n ∆2 and we can use case (2) n times to derive 3nϕ ∈ ∆1. The
latter together with theorem 3+A↔ (3A∨ · · · ∨3nA∨3n3+A) from Lemma 4.9
yields the desired 3+ϕ ∈ ∆1.

This completes our proof of Lemma 4.14. 2

Levels. Next we are going to formalise the notion of a set of formulas having a certain
level. Recall that our goal is to show that (some) maximally consistent sets of formulas
correspond to nodes in a (loosely ordered) tree. Every node in an ordered tree model
satisfies a particular type of formula which reflects the distance of that node from the
root. The formula 2⊥ for instance, is only true at the root itself. The formula e2⊥ again
will only be satisfied at nodes on the first level beneath the root. Generally speaking,
the formula en2⊥ for n ∈ N0 is true at t iff t is a node of level n in the tree, that is, iff
the distance from t to the root is n.

The following definition ‘blindly’ applies this intuition to the case of sets of formulas.
Showing that, in fact, this definition makes sense and that maximally consistent sets
‘with level n’ will end up being nodes of level n is the objective of the sequence of
lemmas following the definition.

Definition 4.15 (Levels) Let ∆ be a maximally consistent set and let n ∈ N0. We say
that ∆ has level n iff en2⊥ ∈ ∆.

If we simply wish to express that there exists some number n ∈ N0 such that en2⊥ ∈ ∆
holds, we shall say that the set ∆ has a level. We say that a formula has got a level iff it
is a conjunction of the form ϕ ∧ en2⊥ (with n ∈ N0). The following lemma shows that
levels are unique: a consistent set cannot have more than one level.

120 Chapter 4. Axiomatic Characterisation

Lemma 4.16 (Uniqueness of levels) Let ∆ be a maximally consistent set and let
n1, n2 ∈ N0. Then en12⊥ ∈ ∆ and en22⊥ ∈ ∆ imply n1 = n2.

Proof. Let en12⊥ ∈ ∆ and en22⊥ ∈ ∆. For any natural numbers n1 and n2 we must
have either n1 < n2 or n2 < n1 or n1 = n2. We are first going to exclude the case
of n1 < n2. If n1 < n2 then there is an m ∈ N such that n2 = n1 + m, i.e. we haveen1 em2⊥ ∈ ∆. Using the distribution law for conjunction with respect to the iterated
modality en1 (see Lemma 4.7) we obtain en1(2⊥∧ em2⊥) ∈ ∆. But en1(2⊥∧ em2⊥)
can be shown to be an inconsistent formula as follows.

In Lemma 4.8 we have provided a derivation for formulas of the form ¬(2⊥ ∧ eA).
Hence, ¬(2⊥∧ em2⊥) must be a theorem, as we have m ≥ 1. If we apply the generali-
sation rule with respect to the dual of the next-operator e for n1 times to this theorem
we obtain (¬ e¬)n1¬(2⊥∧ em2⊥). So ¬ en1(2⊥∧ em2⊥) must be a theorem as well.

Hence, en1(2⊥∧ em2⊥) is indeed inconsistent and en1(2⊥∧ em2⊥) ∈ ∆ contra-
dicts our premise of ∆ being a maximally consistent set. Therefore, it is not possible
that n1 < n2 holds. By an analogous argument, we can also exclude the case of n2 < n1.
Hence, n1 = n2 must indeed be true as claimed. 2

Levels in the canonical model. So far our discussion of levels has applied to max-
imally consistent sets of formulas in general. Now we are going to relate the notion
of level of a maximally consistent set with the canonical child relation ≺ declared over
these sets. The following lemma establishes how the level of one maximally consistent
set influences the levels of those it is related to via ≺ and vice versa.

Lemma 4.17 (Levels of accessible sets) Let ∆1 and ∆2 be maximally consistent sets
with ∆1 ≺ ∆2. Then the following statements are true:

(1) en2⊥ ∈ ∆1 implies en+12⊥ ∈ ∆2 for all n ∈ N0.

(2) en2⊥ ∈ ∆2 implies en−12⊥ ∈ ∆1 for all n ∈ N.

Proof. Let ∆1 and ∆2 be maximally consistent sets with ∆1 ≺ ∆2. We prove the two
statements in turn.

(1) We are going to use axiom (B8): A → 2 eA. Suppose we have en2⊥ ∈ ∆1 for
some n ∈ N0. Using modus ponens and (B8) we can infer 2 en+12⊥ ∈ ∆1. Now
by definition of ≺, we obtain en+12⊥ ∈ ∆2 as claimed.

(2) Suppose en2⊥ ∈ ∆2 for some n ∈ N, that is, we have ¬ en2⊥ 6∈ ∆2. Then by
definition of ≺, we must also have 2¬ en2⊥ 6∈ ∆1. Using (D4) this can be seen to
be equivalent to 3 e en−12⊥ ∈ ∆1. Application of modus ponens with the derived
theorem 3 eA→ A (Lemma 4.8) now yields the desired en−12⊥ ∈ ∆1.

This completes our proof of Lemma 4.17. 2

4.3 Completeness without Descendant Modalities 121

Just as a node in a tree with level 0 (i.e. the root of that tree) cannot have any nodes
above it, we can show that a maximally consistent set containing the minimal level
formula 2⊥ must be the first set with respect to the relation ≺, that is, there cannot be
any other sets before it.

Lemma 4.18 (First level) Let ∆r be a maximally consistent set with 2⊥ ∈ ∆r. Then
there exists no maximally consistent set ∆ with ∆ ≺ ∆r.

Proof. Assume 2⊥ ∈ ∆r and assume there exists a maximally consistent set ∆ with
∆ ≺ ∆r. We are going to derive a contradiction. Our assumption 2⊥ ∈ ∆r is equivalent
to ¬2⊥ 6∈ ∆r. Then ∆ ≺ ∆r yields 2¬2⊥ 6∈ ∆ by definition of ≺. Using axiom (D4),
this can be seen to imply 32⊥ ∈ ∆. Now we can use the derived theorem 32A → A

(Lemma 4.8) to infer ⊥ ∈ ∆, which contradicts our assumption of ∆ being a consistent
set. 2

Vertical existence lemmas. Let ∆1 and ∆2 be two maximally consistent sets with
∆1 ≺ ∆2. In Lemma 4.14 we have seen that for every formula ϕ ∈ ∆2 there must be the
corresponding 3ϕ ∈ ∆1 and analogously for the other three existential operators per-
taining to the child relation in a tree. These results followed almost immediately from the
definition of ≺. Our next objective is to show that the ‘converse’ holds as well: whenever
we have 3ϕ ∈ ∆1 then there exists a maximally consistent set of formulas ∆2 containing
the witness formula ϕ. These kinds of results are often called Existence Lemmas. In the
sequel we are going to prove a Child Existence Lemma, a Parent Existence Lemma, and
an Ancestor Existence Lemma for our vertical modalities 3, e and 3, respectively.

Following this, we are briefly going to discuss why we cannot prove a Descendant
Existence Lemma for the transitive modality 3+ in a similar manner. (Recall that we
have mentioned earlier that the completeness result to be formulated at the end this
section only applies to the fragment of OTL excluding 3+ and its dual 2+.)

Lemma 4.19 (Child existence) For any maximally consistent set ∆1, if 3ϕ ∈ ∆1

then there exists a maximally consistent set ∆2 such that ∆1 ≺ ∆2 and ϕ ∈ ∆2.

Proof. Let 3ϕ ∈ ∆1. We first define a set ∆′
2 that contains all those formulas that

are bound to be part of any maximally consistent set meeting the requirements of the
lemma:

∆′
2 = {ϕ} ∪ {ψ | 2ψ ∈ ∆1}

The formula ϕ must certainly be contained in any such set, because our aim is to find a
set ∆2 with ϕ ∈ ∆2. Furthermore, whenever we have 2ψ ∈ ∆1, our set ∆2 will have to
contain ψ if we wish to get ∆1 ≺ ∆2.

The set ∆′
2 can be shown to be consistent as follows. For the sake of contradiction,

let us assume that ∆′
2 is not consistent, i.e. there exist formulas ψ1, . . . , ψn such that

2ψi ∈ ∆1 for all i ∈ {1, . . . , n} and ` ¬(ψ1 ∧ · · · ∧ ψn ∧ ϕ). The latter is equivalent to

122 Chapter 4. Axiomatic Characterisation

` (ψ1 ∧ · · · ∧ψn) → ¬ϕ. Generalisation yields ` 2((ψ1 ∧ · · · ∧ψn) → ¬ϕ) and using (K4)
we obtain ` 2(ψ1∧· · ·∧ψn) → 2¬ϕ. By Lemma 4.7, we also have ` (2ψ1∧· · ·∧2ψn) →
2(ψ1 ∧ · · · ∧ ψn), that is, ` (2ψ1 ∧ · · · ∧ 2ψn) → 2¬ϕ must hold. Hence, 2¬ϕ ∈ ∆1,
which using (D4) can be seen to be equivalent to 3ϕ 6∈ ∆1. But this contradicts our
original assumption 3ϕ ∈ ∆1, i.e. ∆′

2 must indeed be a consistent set of formulas.
Given the consistency of ∆′

2, we can extend ∆′
2 to a maximally consistent set ∆2, that

is, ∆′
2 ⊆ ∆2. (This is an application of Lemma 4.12.) This set fulfils our requirements

by construction: we have both ϕ ∈ ∆1 and ∆1 ≺ ∆2. 2

Lemma 4.20 (Parent existence) For any maximally consistent set ∆2, if eϕ ∈ ∆2

then there exists a maximally consistent set ∆1 such that ∆1 ≺ ∆2 and ϕ ∈ ∆1.

Proof. Let eϕ ∈ ∆2. We are going to follow a similar strategy as for the proof of the
Child Existence Lemma and start with the definition of a suitable base set:

∆′
1 = {ψ | eψ ∈ ∆2}

First observe that this definition implies, in particular, that ϕ will be an element of ∆′
1.

We are going to show that ∆′
1 is consistent. Assume this is not the case, that is, assume

there are formulas ψ1, . . . , ψn such that eψ1, . . . , eψn ∈ ∆2 and ` ¬(ψ1 ∧ · · · ∧ψn). The
former entails e(ψ1∧· · ·∧ψn) ∈ ∆2 (by Lemma 4.7). On the other hand, generalisation of
` ¬(ψ1∧· · ·∧ψn) with respect to the dual of the parent operator eyields ` ¬ e¬¬(ψ1∧
· · · ∧ ψn), which is equivalent to ` ¬ e(ψ1 ∧ · · · ∧ ψn), i.e. we obtain a contradiction,
because the consistent set ∆2 cannot contain the complement of a theorem.

Now let ∆1 be a maximally consistent set with ∆′
1 ⊆ ∆1. We have already seen that

we have ϕ ∈ ∆1 by construction. It remains to be shown that ∆1 ≺ ∆2 holds as well.
For the sake of contradiction, assume ∆1 6≺ ∆2, that is, there exists a formula χ such
that 2χ ∈ ∆1 but χ 6∈ ∆2. As ∆2 is maximally consistent, the latter implies ¬χ ∈ ∆2.
Furthermore, observe that we certainly have e> ∈ ∆2 (by Lemma 4.14). Axiom (B7)
now allows us to deduce e3¬χ ∈ ∆2. By construction of ∆′

1, we get 3¬χ ∈ ∆′
1 and

therefore also 3¬χ ∈ ∆1. But using (D4), this can be seen to imply 2χ 6∈ ∆1, which
contradicts 2χ ∈ ∆1. Hence, the set ∆1 really has all the required properties. 2

There is an important difference between the following lemma on the one hand and both
the Child Existence Lemma and the Parent Existence Lemma on the other hand. To
be able to prove our following Ancestor Existence Lemma, we will have to make the
assumption that the set containing the existential formula has got a level. (We have
made no such assumption for either one of the previous two lemmas.) The level of
the maximally consistent set in question gives us an upper limit for how far away the
witness formula could possibly be (it needs to be somewhere between the current node
and the root). This allows us to explicitly unfold the ancestor operator (pertaining to
the transitive closure of the inverse of the canonical child relation) and replace it with a
disjunction of iterated parent modalities.

4.3 Completeness without Descendant Modalities 123

Lemma 4.21 (Ancestor existence) For any maximally consistent set ∆2 that has a
level, if 3ϕ ∈ ∆2 then there exists a maximally consistent set ∆1 such that ∆1 ≺+ ∆2

and ϕ ∈ ∆1.

Proof. Let ∆2 be a maximally consistent set of level n, i.e. we have en2⊥ ∈ ∆2

with n ∈ N0, and let 3ϕ ∈ ∆2. In fact, we may assume that n ≥ 1, because we
cannot have both 2⊥ ∈ ∆2 and 3ϕ ∈ ∆2. So we can make use of the derived theorem
3A ↔ (eA ∨ · · · ∨ enA ∨ en3A) proved in Lemma 4.9. By that theorem, we must
have either eϕ ∨ · · · ∨ enϕ ∈ ∆2 or en3ϕ ∈ ∆2. We are going to show that the latter
is not possible. Assume we have en3ϕ ∈ ∆2. As we also have en2⊥ ∈ ∆2, we geten(3ϕ∧2⊥) ∈ ∆2, but the negation of that formula can easily be seen to be a theorem.
Clearly, 3ϕ∧2⊥ is inconsistent, i.e. ¬(3ϕ∧2⊥) must be a theorem. Now n consecutive
applications of the generalisation rule with respect to the dual of e yield the theorem
¬ en(3ϕ ∧2⊥).

Hence, we must have eϕ ∨ · · · ∨ enϕ ∈ ∆2, that is, there exists an m ∈ {1, . . . , n}
such that emϕ ∈ ∆2. Now by the Parent Existence Lemma, there exist maximally
consistent sets ∆′

1, . . . ,∆
′
m with ∆′

m ≺ · · · ≺ ∆′
1 ≺ ∆2 and em−iϕ ∈ ∆′

i for all
i ∈ {1, . . . ,m}. The latter means, in particular, that we have ϕ ∈ ∆′

m. If we define
∆1 = ∆′

m then this set meets our requirements: we have ∆1 ≺m ∆2, i.e. also ∆1 ≺+ ∆2,
as well as ϕ ∈ ∆1. 2

To be able to prove completeness for the full language of OTL, at this stage, we would
also have to prove a Descendant Existence Lemma along the lines of the previous three
lemmas. However, this seems not to be possible, at least not with the approach we have
taken here. The heart of the problem lies in the fact that the descendant operator 3+ is
supposed to end up as an existential modality over the transitive closure of the canon-
ical child relation ≺. In the case of the ancestor operator 3 we managed to overcome
this problem and showed that 3 relates to the transitive closure of the inverse of ≺ as
intended. This has been possible, because for a formula of the form 3ϕ there is always
a last possible node where the witness ϕ could possibly hold, namely the root. As long
as maximally consistent sets are equipped with a level this insight allows us to unfold
the transitive ancestor modality into a disjunction of iterated parent operators using the
iterated version of one of the mixing axioms established in Lemma 4.9. In the case of
a formula of the form 3+ϕ, on the other hand, we have no means of ‘cutting off’ the
corresponding disjunction of iterated non-transitive operators. In other words, we cannot
assume any maximal depth in the tree where the witness formula has to be satisfied at
the latest. We are going to return to the discussion of this problem in Section 4.4.

Generated canonical trees. As indicated already in the introduction to this section,
in our completeness proof we are not going to refer to the full canonical model over the
whole set of maximally consistent sets of formulas, but we will restrict the set of worlds
to maximally consistent sets with a level. In addition to that, we are also going to

124 Chapter 4. Axiomatic Characterisation

discard any sets that are not connected to some first set via an iteration of the canonical
child relation and its inverse. This first set is said to generate the model. The following
definition makes precise the notion of a set of maximally consistent sets generated by a
given set ∆∗. In our Completeness Theorem at the end of this section, this set ∆∗ will
be the set containing the consistent formula in question and the corresponding world in
the (generated) canonical will be the world at which it will be shown to be satisfied.

Definition 4.22 (Generated set of maximally consistent sets) Let ∆∗ be a max-
imally consistent set. We define T∆∗ as the set of maximally consistent sets ∆ for which
there exist maximally consistent sets ∆1, . . . ,∆n with ∆1 = ∆∗ and ∆n = ∆ such that
either ∆i ≺ ∆i+1 or ∆i+1 ≺ ∆i for all natural numbers i < n.

In other words, T∆∗ is the set of worlds in the subframe generated by ∆∗ with respect to
the accessibility relation that is the union of ≺ and its inverse [13].

In Lemma 4.24 further below we are going to establish the first important result
about the structure of the frame underlying our canonical model. The claim is that
T∆∗ , the set of maximally consistent sets generated by some maximally consistent set
∆∗ (which will be required to have a level) and the canonical accessibility relation ≺
from Definition 4.13 form a tree according to Definition 3.2. Amongst other things, this
involves proving that the canonical child relation ≺ is conversely functional, that is, any
given maximally consistent set can have at most a single predecessor with respect to ≺.
As this result does not depend on a restriction to maximally consistent sets with a level,
we state it here as a lemma in its own right.

Lemma 4.23 (Converse functionality of canonical child relation) Let ∆, ∆1

and ∆2 be maximally consistent sets. Then ∆1 ≺ ∆ and ∆2 ≺ ∆ imply ∆1 = ∆2.

Proof. We are going to use the inverse axiom (B8): A → 2 eA and the functionality
axiom (F3): eA ↔ (¬ e¬A ∧ e>). Let ∆, ∆1 and ∆2 be maximally consistent sets
with ∆1 ≺ ∆ and ∆2 ≺ ∆. For the sake of contradiction, assume that ∆1 6= ∆2, i.e.
there is a formula ϕ such that ϕ ∈ ∆1 and ¬ϕ ∈ ∆2. Application of modus ponens in
combination with (B8) yields 2 eϕ ∈ ∆1 and 2 e¬ϕ ∈ ∆2. By definition of the relation
≺, we get both eϕ ∈ ∆ and e¬ϕ ∈ ∆. From the former and the functionality axiom
(F3) we can derive ¬ e¬ϕ ∈ ∆, i.e. we obtain a contradiction. Therefore, ∆1 and ∆2

must indeed be identical sets of formulas. 2

We are now ready to show that the order imposed by the canonical child relation over
a set of maximally consistent sets generated by a given maximally consistent set with a
level must be a tree.

Lemma 4.24 (Generated canonical tree) Let ∆∗ be a maximally consistent set with
a level. Then (T∆∗ ,≺) is a tree.

4.3 Completeness without Descendant Modalities 125

Proof. We need to show that ≺ is irreflexive and conversely functional over T∆∗ , and
that (T∆∗ ,≺) is rooted.

(1) Irreflexivity. ∆∗ is required to have a level. Hence, by Lemma 4.17 and the
definition of T∆∗ , every set in T∆∗ must have a level, too. Irreflexivity of ≺ over
T∆∗ can now be proved by contradiction. Assume there is a reflexive point, that
is, assume there exists a maximally consistent set ∆ ∈ T∆∗ with ∆ ≺ ∆. Because
∆ must have a level, there exists an n ∈ N0 such that en2⊥ ∈ ∆. Furthermore,
because we have ∆ ≺ ∆, Lemma 4.17 applies and we can infer en+12⊥ ∈ ∆ as
well. Now Lemma 4.16 on the uniqueness of levels yields n = n + 1, which is an
obvious contradiction.

(2) Converse functionality. In Lemma 4.23 the relation ≺ has been shown to be con-
versely functional over all maximally consistent sets, so it is certainly conversely
functional over T∆∗ .

(3) Rootedness. The set ∆∗ is required to have a level, so there exists an m ∈ N such
that em2⊥ ∈ ∆∗. Applying the Parent Existence Lemma m times proves that
there must be a maximally consistent set ∆r with ∆r ≺m ∆∗ and 2⊥ ∈ ∆r. This
set must be an element of T∆∗ . We are going to show that, in fact, ∆r is the
(unique) root of (T∆∗ ,≺).

Recall that, according to Definition 4.22, for every ∆ ∈ T∆∗ there exist ∆1, . . . ,∆n

with ∆1 = ∆∗ and ∆n = ∆ such that either ∆i ≺ ∆i+1 or ∆i+1 ≺ ∆i for all i < n.
This n provides us with a notion of ‘distance’ of a set ∆ from the generating set
∆∗. We are going to prove, by induction over n, that for every ∆ ∈ T∆∗ we have
∆r ≺∗ ∆. For the base case (n = 1), ∆ can only be ∆∗. Clearly, ∆r ≺∗ ∆∗ does
hold, because we have ∆r ≺m ∆∗. For the induction step, suppose the claim has
been shown to hold for all cases up to some natural number n. We have to show that
∆r ≺∗ ∆ also holds for sets ∆ whose distance from ∆∗ is n+1. For such a ∆ there
must be a ∆n with either ∆n ≺ ∆ or ∆ ≺ ∆n for which the induction hypothesis
holds, i.e. we have ∆r ≺∗ ∆n. In the case where ∆n ≺ ∆ holds, we immediately
get ∆r ≺∗ ∆ as well and are done. So suppose ∆ ≺ ∆n. As we have ∆r ≺∗ ∆n,
we have either ∆r ≺+ ∆n or ∆r = ∆n. But the latter would entail that ∆ ≺ ∆r,
which would contradict Lemma 4.18. Hence, ∆r ≺+ ∆n will hold, which means
we immediately get ∆r ≺∗ ∆ and are done. This concludes our inductive proof
for T∆∗ ⊆ {∆ | ∆r ≺∗ ∆}. The other direction, namely {∆ | ∆r ≺∗ ∆} ⊆ T∆∗ ,
is an immediate consequence of the definition of T∆∗ and the fact that ∆r ∈ T∆∗ .
Hence, we have T∆∗ = {∆ | ∆r ≺∗ ∆}, which means that ∆r is a root of (T∆∗ ,≺).

We still have to show that ∆r is a unique root element. As we have 2⊥ ∈ ∆r, by
Lemma 4.18, there can be no maximally consistent set ∆ with ∆ ≺ ∆r. So there
is certainly no maximally consistent set in T∆∗ different from ∆r from which ∆r

itself is accessible via the transitive closure of ≺. But this would be a necessary
requirement for any root node of (T∆∗ ,≺), so the root ∆r is indeed unique.

126 Chapter 4. Axiomatic Characterisation

This concludes our proof of Lemma 4.24 as we have verified all conditions set out in
Definition 3.2 for an arbitrary relation to be a tree. 2

We note that we have not made any reference to the proposed rootedness axiom (R1),
which involves the descendant operator 3+, in this proof. In fact, we are only going to
use (R1) in the next section where we are going to analyse the problems related to the
axiomatisation of the descendant operator in some more detail.

Horizontal accessibility relations. We now turn to the horizontal dimension of
our canonical model. In the following definition we introduce two horizontal accessibility
relation over maximally consistent sets of formulas in a similar manner as we have defined
the canonical child relation ≺. Or aim later on will be to show that these two new
relations correspond to the pseudo sibling relation S and the pseudo neighbour relation
N of a loosely ordered tree, respectively.

Definition 4.25 (Canonical sibling and neighbour relations) Let ∆1 and ∆2 be
maximally consistent sets. We define the canonical sibling relation < and the canonical
neighbour relation <◦ over maximally consistent sets as follows:

∆1 < ∆2 iff 2ϕ ∈ ∆1 implies ϕ ∈ ∆2 for all formulas ϕ
∆1 <◦ ∆2 iff e> ∈ ∆1 and eϕ ∈ ∆1 implies ϕ ∈ ∆2 for all formulas ϕ

Transitive closures of < and <◦ will be denoted in accordance with Definition A.3 from
Appendix A. The relation <+

◦ , for instance, is the non-reflexive transitive closure of
<◦. The following lemma is the horizontal counterpart to Lemma 4.14. It states that
maximally consistent sets are ‘aware’ of their predecessors and successors with respect
to the canonical sibling and neighbour relations.

Lemma 4.26 (Horizontal awareness) Let ∆1 and ∆2 be maximally consistent sets
and let ϕ be a formula. Then the following statements are true:

(1) ϕ ∈ ∆1 and ∆1 < ∆2 imply 3ϕ ∈ ∆2.

(2) ϕ ∈ ∆2 and ∆1 < ∆2 imply 3ϕ ∈ ∆1.

(3) ϕ ∈ ∆1 and ∆1 <◦ ∆2 imply eϕ ∈ ∆2.

(4) ϕ ∈ ∆2 and ∆1 <◦ ∆2 imply eϕ ∈ ∆1.

Proof. The four claims follow almost immediately from the definitions of < and <◦,
respectively, together with some of the basic inverse, duality, and functionality axioms.

(1) Left sibling awareness. Let ϕ ∈ ∆1 and ∆1 < ∆2. Using the inverse axiom (B2),
we can infer 23ϕ ∈ ∆1 and hence, by definition of <, we have 3ϕ ∈ ∆2.

4.3 Completeness without Descendant Modalities 127

(2) Right sibling awareness. Let ϕ ∈ ∆2 and ∆1 < ∆2. For the sake of contradiction,
assume 3ϕ 6∈ ∆1, which by (D2) is equivalent to 2¬ϕ ∈ ∆1. By definition of
<, the latter entails ¬ϕ ∈ ∆2, the contradiction we have been looking for. Thus
3ϕ ∈ ∆1 as claimed.

(3) Left neighbour awareness. Let ϕ ∈ ∆1 and ∆1 <◦ ∆2. The latter implies in
particular e> ∈ ∆1. Hence, axiom (B6) is applicable and we can infer e eϕ ∈ ∆1.
Then eϕ ∈ ∆2 follows by definition of <◦.

(4) Right neighbour awareness. Let ϕ ∈ ∆2 and ∆1 <◦ ∆2. For the sake of contradic-
tion, assume eϕ ∈ ∆1 is not the case. Then ¬ e¬¬ϕ ∈ ∆1 must be true. Because
of ∆1 <◦ ∆2, we also have e> ∈ ∆1 and thus may use the functionality axiom
(F2) in order to obtain e¬ϕ ∈ ∆1. By definition of <◦, this implies ¬ϕ ∈ ∆2,
which contradicts our original assumption ϕ ∈ ∆2. Hence, eϕ ∈ ∆1 must be the
case.

This completes our proof of Lemma 4.26. 2

Horizontal existence lemmas. In analogy to our vertical Existence Lemmas proved
earlier, we now have to show that also for the existential operators pertaining to the
canonical sibling and the canonical neighbour relation, there will always be a related set
containing an appropriate witness formula.

Lemma 4.27 (Right sibling existence) For any maximally consistent set ∆1, if
3ϕ ∈ ∆1 then there exists a maximally consistent set ∆2 such that ∆1 < ∆2 and ϕ ∈ ∆2.

Proof. Let 3ϕ ∈ ∆1. We start by constructing a set ∆′
2 containing all those formulas

that are ‘forced’ to belong to any <-successor of ∆1:

∆′
2 = {ϕ} ∪ {ψ | 2ψ ∈ ∆1}

The consistency of ∆′
2 can be proved by contradiction. If it is not consistent, then

there must be formulas ψ1, . . . , ψn such that 2ψi ∈ ∆1 for all i ∈ {1, . . . , n} and `
¬(ψ1 ∧ · · · ∧ ψn ∧ ϕ). The former implies 2(ψ1 ∧ · · · ∧ ψn) ∈ ∆1 (by Lemma 4.7). The
latter is equivalent to ` (ψ1 ∧ · · · ∧ ψn) → ¬ϕ. If we apply the generalisation rule, we
get ` 2((ψ1 ∧ · · · ∧ ψn) → ¬ϕ) and then, using axiom (K2), ` 2(ψ1 ∧ · · · ∧ ψn) → 2¬ϕ.
Hence, 2¬ϕ ∈ ∆1. But an application of axiom (D2) shows that this is equivalent to
3ϕ 6∈ ∆1, that is, we have derived a contradiction and ∆′

2 must be a consistent set of
formulas.

Therefore, by Lemma 4.12, we can extend ∆′
2 to a maximally consistent set ∆2. We

have ϕ ∈ ∆2 by construction and also ∆1 < ∆2, because for every formula of the form
2ψ in ∆1 its principal subformula ψ will be in ∆′

2, and thereby also in ∆2. 2

Lemma 4.28 (Left sibling existence) For any maximally consistent set ∆2, if 3ϕ ∈
∆2 then there exists a maximally consistent set ∆1 such that ∆1 < ∆2 and ϕ ∈ ∆1.

128 Chapter 4. Axiomatic Characterisation

Proof. This can be shown in direct analogy to the proof of Lemma 4.27. 2

Lemma 4.29 (Right neighbour existence) For any maximally consistent set ∆1, ifeϕ ∈ ∆1 then there exists a maximally consistent set ∆2 such that ∆1 <◦ ∆2 and
ϕ ∈ ∆2.

Proof. Let eϕ ∈ ∆1. As before, our first step is to construct a (consistent) set ∆′
2 of

formulas that are forced to belong to any set ∆2 that could fulfil the conditions of the
claim, i.e. that could act as a righthand neighbour for the set ∆1.

∆′
2 = {ψ | eψ ∈ ∆1}

We prove that ∆′
2 is consistent. For ∆′

2 to be inconsistent there would have to be formulas
ψ1, . . . , ψn with eψ1, . . . , eψ ∈ ∆1 and ` ¬(ψ1∧· · ·∧ψn). If we apply the generalisation
rule with respect to ¬ e¬ to the latter, we obtain ` ¬ e¬¬(ψ1 ∧ · · · ∧ψn). On the other
hand, as we can distribute the right neighbour operator, the formula e(ψ1 ∧ · · · ∧ ψn)
must belong to ∆1, which is a contradiction. Hence, ∆′

2 must be a consistent set of
formulas and can be extended to a maximally consistent set ∆2.

We have ϕ ∈ ∆2 by construction. Furthermore, ∆1 <◦ ∆2 must hold as well, because
we have ψ ∈ ∆2 for every eψ ∈ ∆1, and e> ∈ ∆1, which follows from eϕ ∈ ∆1 and
axiom (F2). 2

Lemma 4.30 (Left neighbour existence) For any maximally consistent set ∆2, ifeϕ ∈ ∆2 then there exists a maximally consistent set ∆1 such that ∆1 <◦ ∆2 and
ϕ ∈ ∆1.

Proof. This can be proved in the same way as Lemma 4.29. 2

Properties of the canonical frame. In the following sequence of lemmas we shall
establish a number of properties of the relations ≺, < and <◦ declared over maximally
consistent sets of formulas. As will be made precise later on, (most of) these properties
correspond to the properties of loosely ordered trees listed in Definition 3.33. In order
to emphasise the correspondences between the semantic and the axiomatic level, at the
beginning of each of the proofs, we shall quote the central axiom(s) used to prove the
respective property.

In the proof of Lemma 4.42 (on page 134) we are going to summarise these results
and show that the frame which our canonical accessibility relations give rise to must be
a loosely ordered tree.

Lemma 4.31 (Transitivity of canonical sibling relation) The relation < declared
over maximally consistent sets is transitive.

Proof. We are going to use axiom (H1): 2A → 22A. Suppose ∆1, ∆2 and ∆3 are
maximally consistent sets such that ∆1 < ∆2 and ∆2 < ∆3. We need to show that

4.3 Completeness without Descendant Modalities 129

∆1 < ∆3 holds as well, that is, we need to show that 2ϕ ∈ ∆1 implies ϕ ∈ ∆3 for any
given formula ϕ. So let 2ϕ ∈ ∆1. By axiom (H1), this implies 22ϕ ∈ ∆1. Now, using
∆1 < ∆2, we obtain 2ϕ ∈ ∆2, and then, using ∆2 < ∆3, we get the required result
ϕ ∈ ∆3. 2

Lemma 4.32 (Common parents of siblings) Let ∆1 and ∆2 be maximally consis-
tent sets with ∆1 < ∆2. Then there exists a maximally consistent set ∆ such that
∆ ≺ ∆1 and ∆ ≺ ∆2.

Proof. We are going to use the interaction axiom (X1): 3A → e3A. Let ∆1 and ∆2

be maximally consistent sets such that ∆1 < ∆2. According to Lemma 4.26, the set ∆1

will be ‘aware’ of its successor, that is, we must have 3> ∈ ∆1. By axiom (X1), we then
also have e3> ∈ ∆1. Hence, by the Parent Existence Lemma, there exists a maximally
consistent set ∆ with ∆ ≺ ∆1 (and 3> ∈ ∆, but this second conclusion is not of interest
here).

To show that ∆ ≺ ∆2 holds as well, we are going to use theorem 2A→ 22A, which
has been proved correct in Lemma 4.8.10 Let ϕ be a formula with 2ϕ ∈ ∆. Using
2A→ 22A yields 22ϕ ∈ ∆. This implies 2ϕ ∈ ∆1, because we have ∆ ≺ ∆1. This in
turn implies ϕ ∈ ∆2, because we have ∆1 < ∆2. Thus ∆ ≺ ∆2, because we have shown
that 2ϕ ∈ ∆ implies ϕ ∈ ∆2 for all formulas ϕ. 2

Lemma 4.33 (Connectedness of children) Let ∆, ∆1 and ∆2 be maximally consis-
tent sets with ∆ ≺ ∆1 and ∆ ≺ ∆2. Then we must have either ∆1 = ∆2 or ∆1 < ∆2 or
∆2 < ∆1.

Proof. The central axiom for this proof will be the second interaction axiom (X2):e3A → (A ∨ 3A ∨ 3A). Let ∆ ≺ ∆1 and ∆ ≺ ∆2. For the sake of contradiction,
assume that neither ∆1 = ∆2 nor ∆1 < ∆2 nor ∆2 < ∆1 holds. Then there must be
formulas ϕ, χ and ψ such that ϕ ∈ ∆1 but ϕ 6∈ ∆2 (otherwise ∆1 = ∆2), 2χ ∈ ∆1 but
χ 6∈ ∆2 (otherwise ∆1 < ∆2), and 2ψ ∈ ∆2 but ψ 6∈ ∆1 (otherwise ∆2 < ∆1).

Because ∆2 is maximally consistent, we also have ¬ϕ ∧ ¬χ ∧2ψ ∈ ∆2. We can now
apply Lemma 4.14, first to deduce 3(¬ϕ ∧ ¬χ ∧ 2ψ) ∈ ∆ (using ∆ ≺ ∆2) and then to
obtain e3(¬ϕ ∧ ¬χ ∧2ψ) ∈ ∆1 (using ∆ ≺ ∆1). Now axiom (X2) can be used to infer
that we must have either (1) ¬ϕ ∧ ¬χ ∧ 2ψ ∈ ∆1 or (2) 3(¬ϕ ∧ ¬χ ∧ 2ψ) ∈ ∆1 or (3)
3(¬ϕ∧¬χ∧2ψ) ∈ ∆1. But as we shall see, each one of these three options will lead to
a contradiction.

(1) ¬ϕ ∧ ¬χ ∧2ψ ∈ ∆1 directly contradicts our assumption ϕ ∈ ∆1.

(2) If 3(¬ϕ ∧ ¬χ ∧2ψ) ∈ ∆1 is the case, then by the Left Sibling Lemma there must
be a maximally consistent set ∆′ such that ∆′ < ∆1 and ¬ϕ∧¬χ∧2ψ ∈ ∆′. This
implies in particular 2ψ ∈ ∆′. Hence, by definition of <, we get ψ ∈ ∆1, which
contradicts our earlier assumption ψ 6∈ ∆1.

10In fact, the proof given in Lemma 4.8 shows that 2A→ 22A essentially follows from (X1). So (X1)

really is the central axiom here.

130 Chapter 4. Axiomatic Characterisation

(3) Now the only remaining option is 3(¬ϕ ∧ ¬χ ∧ 2ψ) ∈ ∆1. By the Right Sibling
Existence Lemma there exists a maximally consistent set ∆′ with ∆1 < ∆′ and
¬ϕ ∧ ¬χ ∧ 2ψ ∈ ∆′, which implies in particular ¬χ ∈ ∆′. But we also have
2χ ∈ ∆1 and therefore χ ∈ ∆′, that is, we have again encountered a contradiction.

Hence, our assumption that neither ∆1 = ∆2 nor ∆1 < ∆2 nor ∆2 < ∆1 holds is indeed
contradictory and we are done. 2

The following two lemmas do not themselves correspond to properties of loosely ordered
trees specifically postulated by Definition 3.33, but are simple consequences of those
conditions. We explicitly state them here in order to simplify the presentation of the
proofs of some of our later lemmas.

Lemma 4.34 (No branching to the right) Let ∆, ∆1 and ∆2 be maximally consis-
tent sets such that ∆ < ∆1 and ∆ < ∆2. Then we have either ∆1 = ∆2 or ∆1 < ∆2 or
∆2 < ∆1.

Proof. Let ∆, ∆1 and ∆2 be maximally consistent sets such that ∆ < ∆1 and ∆ < ∆2.
Because of the former, by Lemma 4.32, there must be a maximally consistent set ∆p

such that ∆p ≺ ∆ and ∆p ≺ ∆1. We can apply Lemma 4.32 a second time and infer
that there must also be a maximally consistent set ∆′

p with ∆′
p ≺ ∆ and ∆′

p ≺ ∆2. But
≺ has been shown to be a conversely functional relation in Lemma 4.23, so we must have
∆p = ∆′

p, as these sets are both predecessors of the same set ∆. We can now see that
there exists a maximally consistent set, namely ∆p, that is a predecessor (with respect to
≺) to both ∆1 and ∆2. In other words, we have both ∆p ≺ ∆1 and ∆p ≺ ∆2. Therefore,
Lemma 4.33 is applicable, that is, we must have either ∆1 = ∆2 or ∆1 < ∆2 or ∆2 < ∆1

as claimed. 2

Lemma 4.35 (No branching to the left) Let ∆, ∆1 and ∆2 be maximally consistent
sets such that ∆1 < ∆ and ∆2 < ∆. Then we have either ∆1 = ∆2 or ∆1 < ∆2 or
∆2 < ∆1.

Proof. Omitted. The proof would be almost identical to that of Lemma 4.34. 2

Lemma 4.36 (Functionality of canonical neighbour relations) Both <◦ and its
inverse as declared over maximally consistent sets are functional relations.

Proof. For the two parts of this proof, we are going to make use of axioms (F2): eA↔
(¬ e¬A ∧ e>) and (F1): eA↔ (¬ e¬A ∧ e>), respectively.

We first show that <◦ is a functional relation. Let ∆, ∆1 and ∆2 be maximally
consistent sets of formulas with ∆ <◦ ∆1 and ∆ <◦ ∆2. Functionality of <◦ would
then imply ∆1 = ∆2. So for the sake of contradiction, assume this is not the case, i.e.
there exists a formula ϕ with ϕ ∈ ∆1 and ¬ϕ ∈ ∆2. By Lemma 4.26, the former entails

4.3 Completeness without Descendant Modalities 131

eϕ ∈ ∆, while the latter implies e¬ϕ ∈ ∆. But from (F2) and eϕ ∈ ∆ we can infer
¬ e¬ϕ ∈ ∆, that is, we have derived a contradiction.

Let us now turn to the second part of the claim. Suppose ∆, ∆1 and ∆2 are maximally
consistent sets such that ∆1 <◦ ∆ and ∆2 <◦ ∆. To prove that the inverse of <◦ is
a functional relation, we are going to show that the assumption ∆1 6= ∆2 leads to a
contradiction. By this assumption, there must be a formula ϕ with ϕ ∈ ∆1 and ¬ϕ ∈ ∆2.
We apply again Lemma 4.26 and get eϕ ∈ ∆ and e¬ϕ ∈ ∆. The former together with
(F1) gives us ¬ e¬ϕ ∈ ∆, which contradicts e¬ϕ ∈ ∆. 2

Lemma 4.37 (Neighbours and siblings) Let ∆1 and ∆2 be maximally consistent
sets. Then ∆1 <◦ ∆2 implies ∆1 < ∆2.

Proof. We are going to use theorem (2A ∧ e>) → eA from Lemma 4.8, whose
derivation crucially depended on axiom (M2). Let ∆1 and ∆2 be maximally consistent
sets such that ∆1 <◦ ∆2 holds. To show that ∆1 < ∆2 must be true as well, we have
to show that 2ϕ ∈ ∆1 implies ϕ ∈ ∆2 for all formulas ϕ. So let 2ϕ ∈ ∆1. Because of
∆1 <◦ ∆2, we also have e> ∈ ∆1. That means we can apply theorem (2A∧ e>) → eA
and get eϕ ∈ ∆1. Now ∆1 <◦ ∆2 entails ϕ ∈ ∆2 by definition of <◦. 2

The following is another auxiliary lemma.

Lemma 4.38 (Composed canonical sibling relation) Let ∆1 and ∆2 be maximally
consistent sets. Then ∆1 <

2 ∆2 holds iff 22ϕ ∈ ∆1 implies ϕ ∈ ∆2 for all formulas ϕ.

Proof. ‘⇒’: This is the easy part. Let ∆1 and ∆2 be maximally consistent sets with
∆1 <

2 ∆2, that is, there exists a maximally consistent set ∆ such that ∆1 < ∆ and
∆ < ∆2. Now assume 22ϕ ∈ ∆1. By definition of < we first get 2ϕ ∈ ∆ and then
ϕ ∈ ∆2 as claimed.

‘⇐’: Now let ∆1 and ∆2 be such that 22ϕ ∈ ∆1 implies ϕ ∈ ∆2 for all formulas ϕ.
To prove that this implies ∆1 <

2 ∆2 we are going to show that there exists a maximally
consistent set ∆ such that ∆1 < ∆ and ∆ < ∆2 are true. We first construct a base set
∆′ containing all the formulas that can immediately be seen to be required to be part of
any such set ‘between’ ∆1 and ∆2:

∆′ = {χ | 2χ ∈ ∆1} ∪ {3ψ | ψ ∈ ∆2}

We claim that ∆′ is a consistent set of formulas. Otherwise there would have to be
formulas χ1, . . . , χn with 2χi ∈ ∆1 for all i ∈ {1, . . . , n} and formulas ψ1, . . . , ψm ∈ ∆2

such that ` ¬(χ1 ∧ · · · ∧ χn ∧ 3ψ1 ∧ · · · ∧ 3ψm) holds. This can be seen to lead to a
contradiction as follows. We can transform the previous statement into ` (χ1∧· · ·∧χn) →
(¬3ψ1 ∨ · · · ∨ ¬3ψm) and then use the generalisation rule and axiom (K2) to obtain
` 2(χ1 ∧ · · · ∧ χn) → 2(¬3ψ1 ∨ · · · ∨ ¬3ψm). Hence, as we have 2(χ1 ∧ · · · ∧ χn) ∈ ∆1

(by distribution), we must also have 2(¬3ψ1 ∨ · · · ∨ ¬3ψm) ∈ ∆1. By axiom (D2)

132 Chapter 4. Axiomatic Characterisation

this is equivalent to 2(2¬ψ1 ∨ · · · ∨ 2¬ψm) ∈ ∆1, which in turn is easily seen to imply
22(¬ψ1 ∨ · · · ∨¬ψm) ∈ ∆1.11 Together with our original assumption of 22ϕ ∈ ∆1

implying ϕ ∈ ∆2 for all formulas ϕ, this entails ¬ψ1 ∨ · · · ∨¬ψm ∈ ∆2. But this
contradicts ψ1, . . . , ψm ∈ ∆2.

Thus ∆′ must be consistent and, by Lemma 4.12, we can extend it to a maximally
consistent set ∆. We have ∆1 < ∆ by construction and ∆ < ∆2 must hold as well,
because ¬ϕ ∈ ∆2 implies 3¬ϕ ∈ ∆ (which is equivalent to ¬2ϕ ∈ ∆), again, by
construction. Hence, ∆1 <

2 ∆2 holds as claimed. 2

Lemma 4.39 (Direct siblings and neighbours) Let ∆1 and ∆2 be maximally con-
sistent sets with ∆1 < ∆2 and suppose there exists no maximally consistent set ∆ such
that both ∆1 < ∆ and ∆ < ∆2 hold. Then we must have ∆1 <◦ ∆2.

Proof. The proof will employ axiom (H2): 22A→ (2A∨ e>). Suppose ∆1 and ∆2 are
maximally consistent sets as specified in the claim, that is, we have ∆1 < ∆2 and there
is no maximally consistent set ∆ such that ∆1 < ∆ and ∆ < ∆2. We are first going
to show that there exists a maximally consistent set ∆′

2 such that ∆1 <◦ ∆′
2 holds and

then that, in fact, we must have ∆′
2 = ∆2 for any such set.

For the sake of contradiction, assume there exists no ∆′
2 such that ∆1 <◦ ∆′

2. By
the Right Neighbour Existence Lemma, this implies e> 6∈ ∆1. We are going to derive
our contradiction by showing that under these conditions there will be a ∆ such that
∆1 < ∆ < ∆2. According to Lemma 4.38, this is the case iff 22ϕ ∈ ∆1 implies ϕ ∈ ∆2

for every formula ϕ. So let 22ϕ ∈ ∆1. Now axiom (H2) applies and we can conclude
that the disjunction 2ϕ ∨ e> must also be an element of ∆1. Together with e> 6∈ ∆1

this entails 2ϕ ∈ ∆1. But then ∆1 < ∆2 entails ϕ ∈ ∆2, that is, we have indeed found
a contradiction.

Hence, there exists a maximally consistent set ∆′
2 with ∆1 <◦ ∆′

2. By Lemma 4.37,
<◦ is a subrelation to <, that is, we also have ∆1 < ∆′

2. Applying Lemma 4.34 to the
latter and ∆1 < ∆2 allows us to infer that either ∆2 = ∆′

2 or ∆2 < ∆′
2 or ∆′

2 < ∆2 must
be true. We have to exclude the latter two cases. In fact, ∆′

2 < ∆2 is immediately seen
to be contradictory, as in that case we would have a maximally consistent set ∆, namely
∆′

2, such that ∆1 < ∆ < ∆2 (and this possibility is explicitly excluded in the claim).
So it remains to be shown that the assumption ∆2 < ∆′

2 also leads to a contradiction.
We are again going to make use of the original assumption that there is no maximally
consistent set ∆ such that ∆1 < ∆ < ∆2. Again, by Lemma 4.38, this is the same as
to say that there exists a formula ϕ such that 22ϕ ∈ ∆1 but ϕ 6∈ ∆2. The former
together with ∆1 < ∆2 < ∆′

2 yields ϕ ∈ ∆′
2. Furthermore, ϕ 6∈ ∆2 and ∆1 < ∆2 entail

3¬ϕ ∈ ∆1. We also have e> ∈ ∆1 because of ∆1 <◦ ∆′
2. Now we can apply axiom (M2):

11Here is a sketch for a formal derivation: ¬ψ1 implies the disjunction ¬ψ1 ∨ · · · ∨¬ψm. Using the

generalisation rule and axiom (K2) we can see that therefore also 2¬ψ1 implies 2(¬ψ1 ∨ · · · ∨¬ψm). By

the same argument, 2¬ψi implies 2(¬ψ1 ∨ · · · ∨¬ψm) for all i ∈ {1, . . . ,m}. Hence, 2¬ψ1 ∨ · · · ∨2¬ψm

implies 2(¬ψ1 ∨ · · · ∨¬ψm). Applying the generalisation rule and axiom (K2) once more then yields the

desired result.

4.3 Completeness without Descendant Modalities 133

•∆1

(2) e2ϕ from (1)
(3) 22ϕ from (2)
(7) e(ϕ ∧2ϕ) from (6)
(8) 2ϕ from (7)

• ∆2

(1) 2ϕ assumption
(5) ϕ from (4)
(6) ϕ ∧2ϕ from (1) and (5)

•
∆3

(4) 2ϕ from (3)
(9) ϕ from (8)

Given: ∆1 <◦ ∆2 and ∆1 < ∆3

Furthermore, assume: ∆3 < ∆2

Show: 2ϕ ∈ ∆2 implies ϕ ∈ ∆3,
that is, show: ∆2 < ∆3

<◦

99

<
11

<

##

Z W U R O L
H

Figure 4.1: Proof detail for Lemma 4.40

(3A∧ e>) ↔ (eA∨ e3A), that is, we must have either e¬ϕ ∈ ∆1 or e3¬ϕ ∈ ∆1. By
the Right Neighbour Existence Lemma and the fact that <◦ is known to be a functional
relation (Lemma 4.36), the former contradicts ϕ ∈ ∆′

2. By the same argument, the latter
implies 3¬ϕ ∈ ∆′

2. But then, because of ∆1 < ∆′
2, we have 33¬ϕ ∈ ∆1. This can be

seen to contradict 22ϕ ∈ ∆1 using axiom (D2). In summary, this means we have shown
that ∆2 = ∆′

2 is the only remaining case, that is, ∆1 <◦ ∆2 must hold as claimed. 2

Lemma 4.40 (Right siblings of left neighbours) Let ∆1, ∆2 and ∆3 be maximally
consistent sets such that ∆1 <◦ ∆2 and ∆1 < ∆3. Then we must have either ∆2 = ∆3

or ∆2 < ∆3.

Proof. We are going to use the derived theorems e2A → 22A and e(A ∧ 2A) → 2A

from Lemma 4.8, the derivation of which particularly relied on axioms (M2) and (F2).
Let ∆1, ∆2 and ∆3 be maximally consistent sets such that ∆1 <◦ ∆2 and ∆1 < ∆3. By
Lemma 4.37, the former implies ∆1 < ∆2. Hence, we can apply Lemma 4.34 to infer
that ∆2 = ∆3 or ∆2 < ∆3 or ∆3 < ∆2. If either ∆2 = ∆3 or ∆2 < ∆3 is the case we are
done, so let us assume ∆3 < ∆2. We are going to prove that ∆2 < ∆3 must be true as
well, by showing that 2ϕ ∈ ∆2 implies ϕ ∈ ∆3 for any formula ϕ. So let 2ϕ ∈ ∆2. The
reader may find it helpful to refer to Figure 4.1 when following this part of the argument.

By Lemma 4.26, we have e2ϕ ∈ ∆1 (because of ∆1 <◦ ∆2) and we can use theoreme2A → 22A to obtain 22ϕ ∈ ∆1. Thus we also get 2ϕ ∈ ∆3 and then ϕ ∈ ∆2

(because of ∆1 < ∆3 < ∆2). Now we have e(ϕ ∧ 2ϕ) ∈ ∆1 and can apply theoreme(A ∧2A) → 2A to obtain 2ϕ ∈ ∆1. Hence, ϕ ∈ ∆3 must hold (because of ∆1 < ∆3),
which is what we intended to derive. So at least one of ∆2 = ∆3 and ∆2 < ∆3 will be
true in any case. 2

Lemma 4.41 (Left siblings of right neighbours) Let ∆1, ∆2 and ∆3 be maximally
consistent sets such that ∆1 < ∆3 and ∆2 <◦ ∆3. Then we must have either ∆1 = ∆2

or ∆1 < ∆2.

134 Chapter 4. Axiomatic Characterisation

•∆2

(4) e2¬ e¬ϕ from (3)
(5) 22¬ e¬ϕ from (4)
(9) ϕ from (8)

• ∆3

(3) 2¬ e¬ϕ from (2)
(7) ¬ e¬ϕ from (6)
(8) eϕ from (7)

•
∆1

(1) 2ϕ assumption
(2) 22¬ e¬ϕ from (1)
(6) 2¬ eϕ from (5)

Given: ∆2 <◦ ∆3 and ∆1 < ∆3

Furthermore, assume: ∆2 < ∆1

Show: 2ϕ ∈ ∆1 implies ϕ ∈ ∆2,
that is, show: ∆1 < ∆2

<◦

99

<

##

<
11

v
r

o l i g d

Figure 4.2: Proof detail for Lemma 4.41

Proof. The structure of this proof is similar to that of the previous lemma. This time we
are going to use axiom (H3): 2A → 22¬ e¬A and the derived theorem e2A → 22A

from before. Let ∆1, ∆2 and ∆3 be maximally consistent sets with ∆1 < ∆3 and
∆2 <◦ ∆3. The latter implies ∆2 < ∆3 and we can apply Lemma 4.35 to see that either
∆1 = ∆2 or ∆1 < ∆2 or ∆2 < ∆1. We are done if we can prove that ∆2 < ∆1 implies
∆1 < ∆2. So assume ∆2 < ∆1 and 2ϕ ∈ ∆1. (We need to show ϕ ∈ ∆2.) The following
argument is also summarised in Figure 4.2.

Axiom (H3) together with 2ϕ ∈ ∆1 entails 22¬ e¬ϕ ∈ ∆1. Now we obtain
first 2¬ e¬ϕ ∈ ∆3 (because of ∆1 < ∆3) and then e2¬ e¬ϕ ∈ ∆2 (because of
∆2 <◦ ∆3). At this point theorem e2A → 22A applies and we get 22¬ e¬ϕ ∈ ∆2

as well. Because of ∆2 < ∆1 < ∆3 we then get ¬ e¬ϕ ∈ ∆3. As we certainly havee> ∈ ∆3 (from ∆2 <◦ ∆3 and Lemma 4.26), the functionality axiom (F1) allows
us to infer eϕ ∈ ∆3. Hence, by the Left Neighbour Existence Lemma and the fact
that the inverse of<◦ is a functional relation (Lemma 4.36) we get ϕ ∈ ∆2 as required. 2

We are now ready to put together our results on properties of the structure imposed
on the set of maximally consistent sets with a level by the three canonical accessibility
relations ≺, < and <◦.

Lemma 4.42 (Generated canonical loosely ordered trees) Let ∆∗ be a maxi-
mally consistent set with a level. Then (T∆∗ ,≺, <,<◦) is a loosely ordered tree.

Proof. Let ∆∗ be a maximally consistent set with a level, that is, ∆∗ contains a formula
of the form en2⊥. Then T∆∗ is the set of maximally consistent sets generated by ∆∗.
That is, any maximally consistent set that can be reached from ∆∗ via a composition (of
arbitrary length) of the relation ≺ and its inverse will belong to T∆∗ (see Definition 4.22).
Part of the claim of this lemma is that the sets in T∆∗ are in fact nodes in a loosely ordered
tree and that ≺ is the child relation for that tree. Furthermore, < is claimed to be the

4.3 Completeness without Descendant Modalities 135

corresponding pseudo sibling relation and <◦ is claimed to be the pseudo neighbour
relation.

To prove this, we have to check the nine conditions from Definition 3.33. These have
all been shown to hold in earlier lemmas; we merely need to summarise:

(1) By Lemma 4.24, (T∆∗ ,≺) is a tree.

(2) By Lemma 4.31, < is a transitive relation.

(3) By Lemma 4.32, any two nodes related via< will also be related via the composition
of the inverse of ≺ and ≺ itself.

(4) By Lemma 4.33, any two nodes related via the composition of the inverse of ≺ and
≺ itself will also be related via either the reflexive closure or the inverse of <.

(5) By Lemma 4.36, both <◦ and its inverse are functional relations.

(6) By Lemma 4.37, any two nodes related via <◦ will also be related via <.

(7) By Lemma 4.39, any two nodes related via < but not via the composition of <
with itself will also be related via <◦.

(8) By Lemma 4.40, any two nodes related via the composition of the inverse of <◦
and < will also be related via the reflexive closure of <.

(9) By Lemma 4.41, any two nodes related via the composition of < and the inverse
of <◦ will also be related via the reflexive closure of <.

This concludes our proof of Lemma 4.42 2

Generated canonical models. The canonical relations ≺, < and <◦ from Defini-
tions 4.13 and 4.25 are all binary relations over the full set of maximally consistent sets.
So they are also relations over the set of maximally consistent sets T∆∗ generated by
some set ∆∗ (see Definition 4.22) and we may speak about a frame (T∆∗ ,≺, <,<◦) in
the sense of Definition 3.16.

Definition 4.43 (Generated canonical frames) Let ∆∗ be a maximally consistent
set with a level. Then the general frame F∆∗ = (T∆∗ ,≺, <,<◦) is called the canonical
frame generated by ∆∗.

Next we define a canonical valuation to go with our generated canonical frames. This
is going to be a function mapping propositional letters to sets of maximally consistent
sets of formulas (the ‘worlds’ in our canonical model to be). A propositional letter P is
intended to be true at a world represented by a maximally consistent set ∆ iff P is an
element of ∆. Our valuation function is defined accordingly.

136 Chapter 4. Axiomatic Characterisation

Definition 4.44 (Generated canonical valuations) Let ∆∗ be a maximally consis-
tent set with a level. The function V∆∗ from the set of propositional letters to the gen-
erated set of maximally consistent sets T∆∗, with V∆∗(P) = {∆ ∈ T∆∗ | P ∈ ∆} for
propositional letters P , is called the valuation function generated by ∆∗.

Finally, we can give a formal definition of our canonical models.

Definition 4.45 (Generated canonical models) Let ∆∗ be a maximally consistent
set with a level. Then the general model M∆∗ = (F∆∗ , V∆∗), is called the canonical
model generated by ∆∗.

Truth in canonical models. After having established that our canonical frames have
all the required properties (i.e. they are loosely ordered trees) and after having proved
Existence Lemmas for the various existential modalities in our language, the last im-
portant step to take before we can formulate our completeness result is to prove an
appropriate Truth Lemma. We have to show that the notion of truth in a generated
canonical model (in the sense of Definition 3.18) coincides with our intended notion of
truth, which simply reduces to membership in the respective maximally consistent set.
In other words, a formula should be true at a world in a generated canonical model iff
that formula is an element of the maximally consistent set of formulas associated with
that world.

The following lemma is the first instance where we explicitly have to exclude the
transitive descendant modalities 3+ and 2+ in order to be able to successfully prove the
desired result. (Before we could formulate a Truth Lemma covering also the descendant
modalities we would first have to prove a Descendant Existence Lemma.) The restriction
to this fragment of the logic will be indicated by referring to formulas in the language
without 3+ and 2+.

Lemma 4.46 (Truth in a generated canonical model) Let ∆∗ be a maximally
consistent set with a level. Then the following holds for all maximally consistent sets
∆ ∈ T∆∗ and all formulas ϕ in the language without 3+ and 2+:

M∆∗ ,∆ |= ϕ iff ϕ ∈ ∆

Proof. By induction over the structure of formulas ϕ. For the base case we have to
consider propositional letter and the special symbols> and⊥. In the case of propositional
letters P , the claim follows immediately from the definition of the generated canonical
valuation function V∆∗ . We have M∆∗ ,∆ |= P iff ∆ ∈ V∆∗(P) (by Definition 3.18) iff
P ∈ ∆ (by Definition 4.44). For the case of >, simply observe that, on the one hand,
we will have M∆∗ ,∆ |= > in any model and for any world ∆, and that, on the other
hand, we will have > ∈ ∆ for any maximally consistent set ∆, because > is a theorem
(see Lemma 4.11). Furthermore, given that any axiomatisation of propositional logic will
allow us to rewrite ⊥ as ¬>, we can treat ⊥ as a definable proposition.

4.3 Completeness without Descendant Modalities 137

For the induction step, we have to consider each one of the operators of our language in
turn (apart from 3+ and 2+, which have explicitly been excluded from the claim). In fact,
we only need to consider the core operators of the language. By core operators, we mean
the operators for which we have explicitly given a semantics in Definitions 3.6 and 3.18.
These are negation and conjunction as well as diamond- and next-operators. Other
propositional connectives and box-operators have been treated as definable operators
in our semantic characterisation of ordered tree logics in the previous chapter (see also
Definition 3.7). We can follow the same route here. Using axiom (D3), for instance,
we can rewrite any formula of the form 2ϕ as ¬3¬ϕ. Similarly, any axiomatisation
of propositional logic will allow us to rewrite a disjunction in terms of negation and
conjunction, etc.

The following list shows for each core operator how the claim for a formula where that
operator is principal operator can be reduced to a case (or cases) where the induction
hypothesis is applicable.

(1) Negation. By Definition 3.18 (of truth in a general model), we have M∆∗ ,∆ |= ¬ϕ
iff M∆∗ ,∆ 6|= ϕ. The latter is covered by the induction hypothesis, that is, we
have M∆∗ ,∆ |= ϕ iff ϕ ∈ ∆, which we may rewrite as M∆∗ ,∆ 6|= ϕ iff ϕ 6∈ ∆.
Furthermore, by Lemma 4.11, ϕ 6∈ ∆ iff ¬ϕ ∈ ∆, because ∆ is a maximally
consistent set. Putting them all together, we get M∆∗ ,∆ |= ¬ϕ iff ¬ϕ ∈ ∆ as
required.

(2) Conjunction. By Definition 3.18, M∆∗ ,∆ |= ϕ1 ∧ ϕ2 iff both M∆∗ ,∆ |= ϕ1 and
M∆∗ ,∆ |= ϕ2. The subformulas fall under the induction hypothesis, i.e. we have
M∆∗ ,∆ |= ϕ1 iff ϕ1 ∈ ∆ as well as M∆∗ ,∆ |= ϕ2 iff ϕ2 ∈ ∆. By Lemma 4.11, we
also have ϕ1 ∈ ∆ and ϕ2 ∈ ∆ iff ϕ1∧ϕ2 ∈ ∆. In summary, we getM∆∗ ,∆ |= ϕ1∧ϕ2

iff ϕ1 ∧ ϕ2 ∈ ∆.

(3) Child modality. By Definition 3.18, we have M∆∗ ,∆ |= 3ϕ iff there exists a
∆′ ∈ T∆∗ such that ∆ ≺ ∆′ and M∆∗ ,∆′ |= ϕ hold. By the induction hypothesis,
the latter is equivalent to ϕ ∈ ∆′ (because ∆′ must be a member of T∆∗ as well).
Furthermore, by Lemma 4.14, ϕ ∈ ∆′ together with ∆ ≺ ∆′ implies 3ϕ ∈ ∆ (for
any maximally consistent set ∆′). For the opposite direction we use the Child
Existence Lemma, by which 3ϕ ∈ ∆ implies the existence of some maximally
consistent set ∆′ with ∆ ≺ ∆′ and ϕ ∈ ∆′. That this set ∆′ will be a member of
T∆∗ follows immediately from ∆ ≺ ∆′ and the fact that ∆ ∈ T∆∗ . Altogether, this
shows M∆∗ ,∆ |= 3ϕ iff 3ϕ ∈ ∆ as required.

(4) Parent modality. M∆∗ ,∆ |= eϕ iff eϕ ∈ ∆ can be shown in a manner analogous
to the previous case, using again Lemma 4.14 and the Parent Existence Lemma.

(5) Ancestor modality. Again by Definition 3.18, M∆∗ ,∆ |= 3ϕ implies the existence
of some ∆′ with ∆′ ≺+ ∆ and M∆∗ ,∆′ |= ϕ. By the induction hypothesis the
latter is equivalent to ϕ ∈ ∆′. Now an application of Lemma 4.14 proves 3ϕ ∈ ∆.

138 Chapter 4. Axiomatic Characterisation

For the opposite direction we have to use the Ancestor Existence Lemma. Recall
that this lemma requires an additional side condition to be fulfilled. We first have
to show that the set ∆ has got a level. But this follows immediately from the fact
that ∆∗ has got a level and that, by Lemma 4.17, every maximally consistent set
that is accessible from a set with a level by either ≺ or its inverse must have a
level, too. Given the definition of T∆∗ , every set in T∆∗ (including ∆) must have a
level. Now we can apply the Ancestor Existence Lemma and infer that there must
be a maximally consistent set ∆′ with ∆′ ≺+ ∆ and ϕ ∈ ∆′. By definition, ∆′ will
be a member of T∆∗ and we are done.

(6) Right sibling modality. M∆∗ ,∆ |= 3ϕ iff 3ϕ ∈ ∆ essentially follows from
Lemma 4.26 and the Right Sibling Existence Lemma. We also need to use the
fact that whenever two maximally consistent sets ∆ and ∆′ are related via the
canonical sibling relation and one of them is known to belong to T∆∗ , then the
other must also belong to T∆∗ . This follows from Lemma 4.32 and the definition
of T∆∗ .

(7) Left sibling modality. M∆∗ ,∆ |= 3ϕ iff 3ϕ ∈ ∆ follows from Lemma 4.26 and the
Left Sibling Existence Lemma.

(8) Right neighbour modality. M∆∗ ,∆ |= eϕ iff eϕ ∈ ∆ follows from Lemma 4.26 and
the Right Neighbour Existence Lemma. (Observe that by Lemmas 4.37 and 4.32,
∆ ∈ T∆∗ and ∆ <◦ ∆′ implies ∆′ ∈ T∆∗ .)

(9) Left neighbour modality. M∆∗ ,∆ |= eϕ iff eϕ ∈ ∆ follows from Lemma 4.26 and
the Left Neighbour Existence Lemma.

This concludes our inductive proof of Lemma 4.46 2

Completeness. We are now ready to state our Completeness Theorem. The objec-
tive of showing completeness for an axiomatic system with respect to a given semantic
characterisation of a logic is to show that every formula (or possibly even every set of
formulas) that is consistent (a notion defined in terms of axioms and rules) is also sat-
isfiable (a notion defined in terms of the given model-theoretic semantics). In our case
the result is not that general; there are two restrictions.

First of all, our Completeness Theorem only applies to formulas in the language
without the transitive descendant modalities 3+ and 2+.12 While this is certainly an
important restriction, the fragment of our logic excluding these modalities is still an
interesting and useful system. In particular, the child modality 3 is still available to
explicitly relate a system to its (immediate) subsystems.

The second restriction is that the following Completeness Theorem only applies to
formulas that have a level, that is, to formulas of the form ϕ ∧ en2⊥ for some number

12Consequently, our proof has not taken into account any of the axioms involving either 3+ or 2+.

4.3 Completeness without Descendant Modalities 139

n ∈ N0.13 Again, this restriction cannot be overlooked as far as our theoretical study
is concerned, but it may be of lesser importance with respect to actual applications.
It seems natural to describe a particular system from the viewpoint of the root node
or possibly from the viewpoint of some ‘first’ node on the first level of nodes beneath
the root. In either case, we can simply add the conjunct 2⊥ or e2⊥, respectively,
to the formula representing the specification and our Completeness Theorem becomes
applicable.

Theorem 4.47 (Completeness without descendant modalities) Every consis-
tent formula in the language without 3+ and 2+ that has got a level is satisfiable.

Proof. Let ϕ∧ en2⊥ (with n ∈ N0) be a consistent formula in the language without the
descendant modalities 3+ and 2+. By Lemma 4.12, there exists a maximally consistent
set ∆∗ with ϕ ∧ en2⊥ ∈ ∆∗. Lemma 4.12 holds independently of a particular modal
language. That is, there exists a set ∆∗ that is maximally consistent with respect to
the axiom system for the fragment excluding the two descendant modalities such that
ϕ ∧ en2⊥ ∈ ∆∗ and the formulas in ∆∗ do not contain the operators 3+ or 2+. As
we have en2⊥ ∈ ∆∗, the set ∆∗ must have a level as well, namely the very same
n. Thus, by Lemma 4.42, the canonical frame F∆∗ = (T∆∗ ,≺, <,<◦) generated by
∆∗ is a loosely ordered tree. So the canonical model M∆∗ = (F∆∗ , V∆∗) is in fact a
model based on a loosely ordered tree. By Lemma 4.46 (our Truth Lemma), we have
M∆∗ ,∆∗ |= ϕ∧ en2⊥, that is, our input formula is satisfiable in the generated canonical
model. But by Theorem 3.41, any formula satisfiable in a model based on a loosely
ordered tree is also satisfiable in a model based on an ordered tree, that is, any such
formula is a satisfiable formula in the original sense of the word (that is, in the sense of
Definition 3.8). Hence, ϕ ∧ en2⊥ must be a satisfiable formula as claimed. 2

Validity implies theoremhood. In general, we may phrase a (weak) Completeness
Theorem in two ways. By the first formulation, every consistent formula is claimed to
be also a satisfiable formula. By the second formulation, every valid formula is claimed
to be a derivable theorem.14 For our Completeness Theorem above, we have chosen the
former variant. In the general case, the two formulations would be equivalent, but for
our restricted setting where we only deal with certain kinds of formulas, namely those
that have a level, we need to be a little more careful. The appropriate formulation for
the second variant is given by the following corollary to Theorem 4.47.

Corollary 4.48 (Completeness without descendant modalities) Every valid for-
mula of the form en2⊥ → ϕ with n ∈ N0 in the language without 3+ and 2+ is a
theorem.

13At the beginning of the next section, we are going to take a closer look at the connections between

these two restrictions.
14The first formulation is sometimes referred to as the Consistency Lemma.

140 Chapter 4. Axiomatic Characterisation

Proof. Let en2⊥ → ϕ with some n ∈ N0 be a valid formula. For the sake of con-
tradiction, assume en2⊥ → ϕ is not a theorem, that is, assume ¬(en2⊥ → ϕ) is
consistent. This formula is equivalent to ¬ϕ ∧ en2⊥, i.e. Theorem 4.47 is applicable
and ¬(en2⊥ → ϕ) must be satisfiable. But then en2⊥ → ϕ cannot be a valid formula,
which contradicts our original assumption. Hence, en2⊥ → ϕ must be a theorem as
claimed. 2

Strong completeness. Theorem 4.47 is a weak completeness result. It applies to
formulas rather than to (possibly infinite) sets of formulas. However, we could easily
reformulate it to apply to sets of formulas as well.15

This seems to contradict what we have said earlier about strong and weak com-
pleteness and their connection to the compactness property, which we have disproved in
Proposition 4.4. The reason that there is in fact no contradiction is that we have proved
completeness only with respect to a certain class of formulas, namely those that have
a level. That is, in a corresponding strong Completeness Theorem a consistent set of
formulas would only be claimed to be satisfiable if it contained a formula of the formen2⊥. An inspection of the proof of Proposition 4.4 reveals that the particular infinite
set given there as a counterexample for compactness does in fact not have a level. It is
also easily seen that, if we add a formula of the form en2⊥ to that set, the proof of
Proposition 4.4 will not go through anymore. In fact, the basic idea behind disproving
compactness has been precisely the fact that any satisfiable set of formulas that is fi-
nite can always be augmented with a level formula, whereas an infinite set allows us to
explicitly contradict every possible level formula.

Remark on the interaction of vertical and horizontal operators. In the first
section of Chapter 3 we have briefly remarked on the subtle interaction between vertical
and horizontal operators in OTL and compared it to the interaction of modal operators
in product logics (see page 46). Recall that (X1) and (X2) are the only axioms that
involve both vertical and horizontal operators. Our Completeness Theorem thus shows
that the interaction of the vertical and the horizontal component in our modal logic of
ordered trees is characterised by these two axioms.

15To be precise, this would also require Theorem 3.41 to be reformulated accordingly so as to apply to

sets of formulas rather than just plain formulas. To see that such an extension would be straightforward,

observe that Theorem 3.24 (which is used in the proof of Theorem 3.41) not only states that a formula

which is satisfiable in one frame is also satisfiable in any p-morphic image of that frame (and vice versa),

but it also implies that any two formulas true at the same world in the first model will also be true at

the same world in the second one. Hence, Theorem 3.24, and therefore also Theorem 3.41, apply to sets

of formulas as well as to single formulas.

4.4 Alternatives 141

4.4 Alternatives

Our completeness result is not entirely satisfactory. It only applies to formulas with a
level in the fragment of OTL that excludes the two descendant modalities. However, we
still consider this result a valid contribution to our understanding of ordered trees.

In this section, we are going to discuss the two restriction to our completeness result
as well as their connection again in some more detail. We are also going to review a
number of alternative approaches to proving completeness that we have considered in
our attempts to improve on the present result. Unfortunately, to date, these attempts
have not been blessed with success. Whether there is a finite axiomatisation of full OTL
remains an open question.16

What is missing? Let us recapitulate why we had to restrict our Completeness The-
orem to the language excluding the descendant modalities 3+ and 2+. The problem can
be traced down to the fact that we were not able to prove a Descendant Existence Lemma
in analogy to the Ancestor Existence Lemma and the Existence Lemmas for the other
compound accessibility relations. A Descendant Existence Lemma would have stated
that for any maximally consistent set ∆1 with 3+ϕ ∈ ∆1 (for some formula ϕ) we may
infer that there exists a maximally consistent set ∆2 such that ∆1 ≺+ ∆2 and ϕ ∈ ∆2

hold. The proofs for the other Existence Lemmas were constructive: we first composed
a set ∆′

2 containing ϕ and any formula ψ that the set ∆1 would ‘force’ into a set meet-
ing the requirements of the lemma (through boxed formulas in ∆1), then extended ∆′

2

to a maximally consistent set ∆2 (by appealing to Lindenbaum’s Lemma), and finally
showed that the required relationship between ∆1 and ∆2 followed by construction. In
the case of the various canonical accessibility relations, this last step in the argument has
always been a simple consequence of the definition of the respective relation in terms of
the corresponding box-operator. However, such an argument does not apply for modal
operators pertaining to the transitive closure of a basic accessibility relation. In the case
of the Ancestor Existence Lemma, which also makes reference to ≺+, we were able to
circumvent this problem by adding a condition requiring the first maximally consistent
set to have a level. This allowed us, essentially, to conclude that for any formula of the
form 3ϕ in our maximally consistent set there must be a number n ∈ N such that enϕ

must also be in that set. In fact, this number n could not be greater than the level of
the maximally consistent set in question. At this point, the Ancestor Existence Lemma
reduced to an n-fold iteration of the uncritical Parent Existence Lemma.

A similar reduction of a Descendant Existence Lemma to an iteration of the Child
Existence Lemma has not been possible, because when moving down along the branches
of a tree we cannot use the root of the tree to provide a bound for the iteration in the
same way as we could when moving up the tree. To be able to reduce the Descendant
Existence Lemma to the Child Existence Lemma we would have to be able to infer that

16In case a finite axiomatisation of the full logic does exists, we would expect the induction axiom

2+(A→ 2A) → (2A→ 2+A) to be part of that system (see page 100).

142 Chapter 4. Axiomatic Characterisation

there exists an n ∈ N such that 3nϕ ∈ ∆ holds whenever we have 3+ϕ ∈ ∆ (for any
formula ϕ and any maximally consistent set ∆).

Levels and descendant modalities. At the beginning of the previous section we
have already hinted at the fact that the two restrictions to our Completeness Theorem
are interdependent. We are going to substantiate this claim by showing that (and how),
once we have — somehow — mastered the transitive descendant modality 3+, we can
do away with the restriction to formulas that have a level as well.17

We are first going to show that, whenever ϕ is a consistent formula, then either ϕ∧2⊥
or 3+ϕ ∧ 2⊥ will be consistent, too. We are going to use the rootedness axiom (R1):
(A∧3>) → 3(3+A∧2⊥). Let ϕ be a consistent formula. For the sake of contradiction,
assume that both ϕ ∧ 2⊥ and 3+ϕ ∧ 2⊥ are inconsistent formulas. This means that
¬(ϕ ∧ 2⊥) and ¬(3+ϕ ∧ 2⊥) are theorems. As the following derivation shows, this
implies that ¬ϕ will be a theorem as well:

(1) ¬(ϕ ∧2⊥) assumption
(2) ¬(3+ϕ ∧2⊥) assumption
(3) 2¬(3+ϕ ∧2⊥) from (2) by generalisation
(4) ¬3(3+ϕ ∧2⊥) form (3) and (D3)
(5) ¬(ϕ ∧3>) from (4) and (R1)
(6) ¬ϕ ∨2⊥ from (5) and (D3)
(7) ¬ϕ ∨ ¬2⊥ from (1)
(8) ¬ϕ from (6) and (7)

But this contradicts our original assumption of ϕ being consistent. Hence, at least one
of the two formulas ϕ ∧2⊥ and 3+ϕ ∧2⊥ must be consistent as claimed.

To see how this observation can help us to prove a Completeness Theorem without
restrictions, suppose — for the moment — we have managed to prove completeness with
respect to the full language of OTL, but have yet to eliminate the restriction to formulas
with a level. We have to show that every consistent formula ϕ is satisfiable. Given that
ϕ is consistent, so is either ϕ ∧ 2⊥ or 3+ϕ ∧ 2⊥. Both these formulas have got a
level. Hence, by our imaginary Completeness Theorem, at least one of them (namely the
consistent one) will also be satisfiable. In case of the former, this immediately implies
satisfiability of ϕ and we are done. Now suppose 3+ϕ ∧ 2⊥ is the consistent (and
thereby also satisfiable) formula. This means that there exists a model such that 3+ϕ

is true at the root of the underlying tree. But then, by definition of the semantics of
the 3+-operator, the root must have a descendant node at which ϕ holds, i.e. ϕ will be
satisfiable in any case.

In short, the rootedness axiom (R1), which we have used in the above derivation,
provides a ‘syntactical connection’ between the problems pertaining to the descendant
modalities and the problems pertaining to formulas that cannot be associated with a

17Of course, this is only a hypothetical argument. Our aim is to make the connection between the two

restrictions more apparent.

4.4 Alternatives 143

specific level in a tree. From a semantic point of view, the problems surrounding our
completeness result also seem to be connected to our restriction of frames to well-founded
trees, that is, to trees of order type N, where any descendant of a given node can always
be reached by a finite iteration of the child relation. Nodes in trees that are not well-
founded need not have a level (in the sense in which we have used this term here) and
the descendant relation would not be the transitive closure of the child relation anymore
either.

Finitary methods. We have mentioned the problem of axiomatising the semantics of
a modal operator defined with respect to the transitive closure of a basic accessibility re-
lation, specifically in the case of the transitive descendent modality 3+, a few times now.
The reader familiar with completeness proofs for propositional dynamic logic (PDL) may
wonder why we have not followed the standard route and built a canonical model out
of sets of formulas that are Fischer-Ladner closed. PDL is an example for a logic that
includes a transitive closure operator. In standard completeness proofs for this kind of
logics, rather than working with (infinite) maximally consistent sets of formulas, we build
a canonical model out of finite sets of subformulas of the consistent formula for which we
intend to show satisfiability. Additionally, these sets are required to be closed under a
number of simple operations aimed at reflecting the semantics of the critical operators.
For instance, if such a set contains the formula 3+ϕ then it should also contain either
3ϕ or 33+ϕ. In other words, sets have to be closed under ‘application’ of the mixing
axiom (M4). This type of closure operation is known as the Fischer-Ladner closure.18

A basic canonical accessibility relation can be declared over these sets of formulas in
a similar fashion as we have seen it in our completeness proof. Provided the calculus
includes an induction axiom like the one discussed on page 100, it is possible to prove
completeness of the modal operator in question with respect to the transitive closure of
the basic accessibility relation. A crucial aspect of this method is that the number of
Fischer-Ladner closed sets of formulas is finite.

At first sight, this framework may appear to be applicable also to our logic. However,
there is an important difference between OTL and logics such as PDL. In the class of
frames characterising PDL the basic accessibility relation is not required to be irreflexive,
but the child relation in an ordered tree is.19 In a standard PDL-style canonical model
construction, we cannot guarantee the basic accessibility relation to be irreflexive. If
we attempt to overcome this problem by combining the approach based on the Fischer-
Ladner closure with our idea of identifying sets of formulas with a level, we lose the aspect
of finiteness, simply because there are infinitely many level formulas to choose from.
Unfortunately, once there are infinitely many different sets of formulas that need to be
considered for the construction of a canonical model, the usual argument for the transitive

18It would be beyond the scope of this brief reflection on alternative methods to give a detailed account

on completeness proofs for PDL and related logics. Instead, we refer to [8] for further information.
19Another difference is that, typically, the transitive closure operators defined for logics such as PDL

pertain to reflexive transitive closures, but this in itself would not constitute a serious problem.

144 Chapter 4. Axiomatic Characterisation

closure operator does not go through anymore. This combination of irreflexivity and
transitive closure appears to be the central problem in giving a finite axiomatisation of
OTL. This is not to say that it is definitely impossible to prove completeness of OTL
using an approach based on Fischer-Ladner closed sets of formulas, or some variant of it,
but it is certainly not the case that the standard method would be immediately applicable
to our setting.

Blackburn and Meyer-Viol [9] use a variant of this method to prove completeness
of an axiomatisation for their modal logic of finite binary trees. In this logic the child
relation is, of course, irreflexive and they successfully axiomatise the transitive closure
of this child relation. Still, this does not contradict what has just been said about the
difficulties of characterising the transitive closure of an irreflexive relation. Blackburn
and Meyer-Viol’s proof crucially depends on the fact that their logic is defined as a
logic of finite frames. This allows for an inductive construction of the canonical model
which, due to the (axiom encoding the) finiteness condition, is guaranteed to terminate
eventually. This path is not open to us as OTL explicitly admits infinite trees.

Axiomatisations with an irreflexivity rule. The problem of giving an axiomatic
characterisation of the descendant operator concerns the vertical dimension of an ordered
tree. As for the horizontal dimension, we have succeeded in giving a complete axiomati-
sation of the operators concerned, but the technical apparatus required may seem overly
powerful. In particular, we required Theorem 3.41 (the proof of which stretches over
large parts of the second half of Chapter 3) to show that it was sufficient to prove com-
pleteness of our axiomatisation with respect to the class of loosely ordered trees (rather
than just ordered trees). Essentially, these difficulties are due to the fact that it is not
possible to give axioms that directly characterise the irreflexivity of the horizontal sibling
relation in an ordered tree.

A similar problem occurs in standard temporal logics, where we cannot directly ax-
iomatise the irreflexive nature of the underlying flow of time. Proving completeness of
such logics can often be simplified by adopting a so-called irreflexivity rule, also known
as Gabbay-style rule, to characterise the irreflexivity of the accessibility relation underly-
ing a particular modal operator [29, 30]. In the case of the horizontal modalities in the
language of OTL, a suitable irreflexivity rule may have the following form:

¬Q ∧2Q ∧2Q→ A

A

Here, Q represents a propositional atom that does not occur in the formula A. Intuitively,
this rule states that whenever A is a theorem under the assumption that the sibling order
(i.e. the relation associated with the box-operators 2 and 2) is irreflexive, then A is in
fact a theorem. For more information on the axiomatisation of temporal logics with an
irreflexivity rule we refer to Gabbay et al. [30].

Recall that proving irreflexivity of the canonical child relation ≺ (over generated sets
of maximally consistent sets) has not been a problematic issue, because we have only

4.5 Summary 145

considered maximally consistent sets with a level (see Lemma 4.24). We are therefore
doubtful whether an irreflexivity rule for the vertical dimension could contribute towards
a completeness proof for a system including also the problematic (vertical) descendant
modalities.

Axiomatisations with a transitive closure rule. Another option that may be
worthwhile exploring would be to add an inference rule to our axiomatic system that
explicitly captures the fact that the descendant relation is the transitive closure of the
child relation. Such a rule may have the following form:

A→ 2nB for all n ∈ N
A→ 2+B

This rule is similar to both the rule of infinitary convergence given by Harel et al. [38]
and to Goldblatt’s omega-iteration rule [35], which form part of their respective axioma-
tisations of first-order dynamic logic.

This inference rule is not a ‘standard’ rule and the resulting system cannot be called
a finite axiomatisation anymore. Such an approach is somewhat controversial. Some
people may argue that only a finite axiomatisation is a good axiomatisation. While this
is certainly a valid point of view, a non-standard axiomatisation can still provide valuable
insights into the mechanics of the logic under consideration. If anything, at least it makes
precise what the ‘missing piece’ is in view of a complete finite axiomatisation.

4.5 Summary

In this chapter we have presented a sound axiomatisation for our modal logic of ordered
trees that is complete for formulas that have a level (i.e. for formulas that are of the form
ϕ ∧ en2⊥) and that belong to the fragment of the language excluding the transitive
descendant modalities.

Axiomatisation. The axioms and rules of our system are summarised in Table 4.1 on
page 104. (The list of axioms also includes a set of tentative axioms that we would expect
to be part of any axiomatisation of full OTL, including the descendant operators.) Many
of the axioms are variations of well-known formulas that have been used to axiomatise
a variety of other modal and temporal logics. The two interaction axioms (X1) and
(X2), which embody the relationship between the modal operators pertaining to the
horizontal and the vertical accessibility relations, respectively, may be regarded as being
particularly characteristic to our logic.

Completeness proof. Let us briefly summarise the main ideas underlying our com-
pleteness proof. We started out with the definition of a canonical model, where worlds
are maximally consistent sets of formulas and the accessibility relations are defined in
terms of the formulas contained in these sets. Every consistent formula with a level can

146 Chapter 4. Axiomatic Characterisation

be extended to a maximally consistent set with a level. To show that consistent formulas
are satisfiable, we have used these maximally consistent sets to generate a submodel of
the canonical model and have shown that it satisfies the formula in question. We have
also shown that the frame underlying such a generated submodel must be a loosely or-
dered tree. By our results obtained in the previous chapter, satisfiability with respect to
loosely ordered trees is equivalent to satisfiability with respect to ordered trees.

The restriction to formulas with a level has served two main purposes. Firstly, the
vertical accessibility relation restricted to any submodel of the canonical model gener-
ated by a maximally consistent set with a level could easily be shown to be irreflexive.
Secondly, the concept of a maximally consistent set with a level allowed us to prove
the Ancestor Existence Lemma, i.e. it allowed us to show that the transitive ancestor
modalities work as intended within the model used to show completeness. A similar
construction for the descendant modalities is not possible, which explains the restriction
of our result to the fragment of OTL excluding the operators 3+ and 2+.

Alternatives. Towards the end of the chapter, we have discussed a number of potential
alternatives to our axiomatisation as well as to the method chosen to prove complete-
ness. The standard approach to proving completeness for logics that include an operator
pertaining to the transitive closure of the accessibility relation of another operator is to
work with finite sets of formulas that are Fischer-Ladner closed, rather than building up
an infinite canonical model. While we cannot conclusively exclude the possibility of such
an approach being successful also in the case of OTL, we have discussed some of the
difficulties that we have encountered.

An interesting alternative to our axiomatisation, which we have mentioned only
briefly, would be a system that includes one or more irreflexivity rules to characterise the
irreflexivity of accessibility relations directly. We would expect the completeness proof
for such a system to be simpler than ours, but we do not necessarily expect to solve the
problems regarding the transitive descendant modalities in this manner.

Chapter 5

Decidability

Our aim for this chapter is to show that the modal logic of ordered trees is a decidable
logic. We are going to prove decidability by showing how our logic can be embedded
into another logic that is very expressive but still known to be decidable. This logic is
the monadic second-order theory of two successor functions.

In the first section of this chapter we are going to introduce this logic and quote
Rabin’s famous decidability result. Following that, we are going to approach our decid-
ability proof for ordered tree logics through the study of two special cases. To begin
with, we are going to show that OTL is decidable, if we restrict the class of admissible
frames to finite binary trees.1 Then we are going to prove that OTL restricted to the
class of all discretely ordered trees is also a decidable logic. Finally, we are going to prove
decidability for the full logic.

5.1 Monadic Second-order Logic

The objective of this first section is to introduce monadic second-order logic over the
theory of n successor functions. Our exposition is not intended to be complete and is
essentially guided by our needs for proving decidability of ordered tree logics in the later
sections. For further information on monadic second-order theories we therefore refer to
Rabin [61] and Thomas [67].

Second-order theories. First-order logic (as opposed to propositional logic) allows
for quantification over variables. On top of that, second-order logic also allows for quan-
tification over predicates. In monadic second-order logic, only unary predicate symbols
are admitted and consequently, besides simple variables, quantification is restricted to
those unary predicates. Semantically, unary predicate symbols represent sets (of objects
with a certain property), so another way of characterising monadic second-order logic
would be to say that it allows for quantification over both simple variables and sets.

1The resulting logic has previously been studied (and, amongst other things, shown to be decidable)

by Blackburn and Meyer-Viol [9].

147

148 Chapter 5. Decidability

The following formula, which we may read as ‘Napoleon had all the qualities of a great
general’, would be an example for a monadic second-order formula (taken from [71]):

(∀Q)[(∀x)[GG(x) → Q(x)] → Q(n)]

Given that classical first-order logic is undecidable, we could not possibly hope for decid-
ability of second-order logic, at least not in the general case. The situation may change
if we restrict the domain of interpretation to very specific structures. An example for
such a structure would be the set of all words over a given alphabet.

Words, trees and successor functions. An alphabet Σ is simply a countable non-
empty set and the elements of such an alphabet are called letters. A word over an
alphabet Σ is a finite sequence of letters in Σ. The set of all words over the alphabet Σ
will be denoted by Σ∗. The empty word Λ (i.e. the sequence of length 0) is understood
to be part of Σ∗ for any alphabet Σ. If x is a word and i is a letter, then we write x.i
for the word we get by appending i to the end of x.

Take, for instance, the alphabet {0, 1}. Then the set of all words over this alphabet
would be {0, 1}∗ = {Λ, 0, 1, 00, 01, 10, 11, 000, 001, . . .}, and so on. This set of words
can also be interpreted as a (or rather the) infinite binary tree: Λ represents the root
and for any node x, the word x.0 represents its lefthand child, while x.1 stands for its
righthand child. Yet another way of thinking of {0, 1}∗ would be as the set generated by
two successor functions, say, succ0 and succ1: the set of all terms we can construct from
these two function symbols and a single constant (corresponding to Λ) is isomorphic to
{0, 1}∗. The word 011, for instance, corresponds to the term succ1(succ1(succ0(Λ))),
which in turn corresponds to the righthand child of the righthand child of the lefthand
child of the root node of the infinite binary tree. When working with this kind of
structure, at times, we are going to refer to all three of these interpretations (i.e. the
set of all words over a two-letter alphabet, the infinite binary tree, and the structure
generated by two successor functions).

In fact, {0, 1}∗ is the most important structure we are going to work with in this chap-
ter. The monadic second-order logic over this structure is known as S2S, the monadic
second-order theory of two successor functions. Below, we are going to formally in-
troduce SnS, the monadic second-order theory of n successor functions, for any given
natural number n ∈ N. Formulas of SnS will be interpreted with respect to the structure
{i ∈ N0 | i < n}∗, i.e. the infinite tree with the fixed branching factor n. A special case
is SωS, the monadic second-order theory of ω successor functions. Here the underlying
structure is the infinite tree where each node has exactly one child for every natural
number (including 0). Alternatively, we may characterise this structure as the set of all
words over N0 (taken as an alphabet), which will be denoted as ω∗.

Syntax of terms. We are now going to define the syntax of terms and formulas for
the generic logic SnS, where n may either stand for a particular natural number or for ω.

5.1 Monadic Second-order Logic 149

We start with the definition of terms. The language for terms builds on a fixed countable
set of variable names. To distinguish these variables from set variables, which we are
going to introduce later on, we shall also refer to the former as simple variables.

Definition 5.1 (SnS terms) Let either n ∈ N or n = ω. We inductively define the set
of terms in the language of the logic SnS as the smallest set such that:

(1) every (simple) variable is a term;

(2) if t is a term, so is succi(t) for all i ∈ N0 with i < n.

In the case of the logic SωS, condition (2) is supposed to express that there is a function
symbol succi for every number i ∈ N0. Later on, we are mostly going to write x.i as
a shorthand for succi(x); that is, we are going to use the same notation on both the
semantic and the syntactic level when describing the process of appending a single letter
to the end of a given word.

Syntax of formulas. We now turn to the definition of the syntax of formulas for the
generic logic SnS. Besides the set of simple variable names mentioned earlier we now
also require a countable set of unary predicate symbols. We use capitals such as P and
Q to denote predicate symbols and lowercase letters such as x and y for simple variable
names.

Definition 5.2 (SnS formulas) Let either n ∈ N or n = ω. We inductively define the
set of well-formed formulas of the logic SnS as the smallest set such that:

(1) if P is a unary predicate symbol and t is an SnS term then P (t) is a formula;

(2) > and ⊥ are formulas;

(3) if ϕ and ψ are formulas, so are (¬ϕ), (ϕ ∧ ψ), (ϕ ∨ ψ), (ϕ→ ψ), and (ϕ↔ ψ);

(4) if x is a variable and ϕ is a formula, then (∃x)ϕ and (∀x)ϕ are also formulas;

(5) if P is a unary predicate symbol and ϕ is a formula, then (∃P)ϕ and (∀P)ϕ are
also formulas.

We shall also refer to unary predicate symbols as set variables, particularly so in contexts
where we quantify over a unary predicate symbol P , as in (∃P)ϕ. When writing formu-
las, we are going to omit brackets whenever it is possible to do so without introducing
ambiguities.

150 Chapter 5. Decidability

Assignments. The structure over which we interpret formulas of a particular second-
order theory is fixed. This will always be the appropriate structure of n successor func-
tions. The only thing that can vary is the interpretation of particular variable names
and predicate symbols. This aspect of the semantics of SnS will be modelled by means
of so-called variable assignments.

Definition 5.3 (Assignments) An assignment α is a mapping from variable names to
words and from set variable names to sets of words.

In the case of a logic SnS for some n ∈ N, an assignment α is understood to map simple
variable names to words over {i ∈ N0 | i < n} and unary predicate symbols to subsets of
{i ∈ N0 | i < n}∗. In the case of SωS, an assignment α will be a mapping to elements
and subsets of ω∗, respectively.

We will often say things such as ‘the set P contains the word x’ when in fact we
should be a little more formal and say that the word assigned to the variable x under
some assignment α belongs to the set of words assigned to the set variable P under
assignment α. Occasionally, we are going to write xα rather than α(x) and Pα rather
than α(P) for simple variables x and set variables P , respectively.

Assignments extend from simple variables to terms in the obvious way. For every
i ∈ N0, the function symbol succi is interpreted as the function that appends the letter
i at the end of a given word.

Definition 5.4 (Interpretation of terms) Let α be an SnS assignment. The defini-
tion of α is inductively extended to SnS terms t as follows:

α(succi(t)) = α(t).i for i ∈ N0

The next definition provides us with a tool to speak about two assignments that only
differ in the interpretation of a single symbol (either a simple variable name or a predicate
symbol). This will be required later on to define the semantics of quantification.

Definition 5.5 (Assignment variants) Let α and α′ be assignments.

(1) Let x be a simple variable. Then α′ is called an x-variant of α iff α(y) = α′(y) for
all variables y with y 6= x.

(2) Let P be a set variable. Then α′ is called an P -variant of α iff α(Q) = α′(Q) for
all set variables Q with Q 6= P .

Truth with respect to an assignment. We are now ready to give a definition of
the notion of truth for formulas of SnS. For each n there is just a single model, namely
the tree generated by n successor functions; so truth of a formula only depends on the
assignment of its free variables to words and sets of words, respectively. We are going to
use the same symbol (|=) to denote the truth relation as we have used for OTL. Indeed,

5.1 Monadic Second-order Logic 151

we are going to use the same symbol for all the various second-order logics, such as S2S
and SωS, we are going to work with in this chapter. Which logic we are referring to will
always be clear from the context, however.

Definition 5.6 (Truth of SnS formulas) We inductively define the notion of an SnS
formula being true under an assignment α as follows:

(1) α |= P (t) iff α(t) ∈ α(P) for unary predicate symbols P and terms t;

(2) α |= >;

(3) α |= ¬ϕ iff α 6|= ϕ;

(4) α |= ϕ ∧ ψ iff α |= ϕ and α |= ψ;

(5) α |= (∃x)ϕ iff α′ |= ϕ for some x-variant α′ of α;

(6) α |= (∃P)ϕ iff α′ |= ϕ for some P -variant α′ of α.

Observe that for closed formulas ϕ (i.e. for formulas without free variables of either
kind) the assignment α does not matter. Such formulas will be either true under any
assignment or false under any assignment.

Definable operators. The operators not covered by Definition 5.6 are all definable in
terms of those for which we have provided a semantics.

Definition 5.7 (Definable SnS operators) The remaining operators of SnS are de-
fined as abbreviations on the syntactic level:

ϕ ∨ ψ = ¬(¬ϕ ∧ ¬ψ) ⊥ = ¬>
ϕ→ ψ = ¬ϕ ∨ ψ (∀x)ϕ = ¬(∃x)¬ϕ
ϕ↔ ψ = (ϕ→ ψ) ∧ (ψ → ϕ) (∀P)ϕ = ¬(∃P)¬ϕ

The semantics of these operators can now be inferred from Definitions 5.6 and 5.7. It is
easily observed that, for any assignment α, we get:

(1) α 6|= ⊥;

(2) α |= ϕ ∨ ψ iff α |= ϕ or α |= ψ;

(3) α |= ϕ→ ψ iff α |= ϕ implies α |= ψ;

(4) α |= ϕ↔ ψ iff either both α |= ϕ and α |= ψ or neither;

(5) α |= (∀x)ϕ iff α′ |= ϕ for all x-variants α′ of α;

(6) α |= (∀P)ϕ iff α′ |= ϕ for all P -variants α′ of α.

152 Chapter 5. Decidability

Validity. Let us now define the concept of validity in the context of monadic second-
order theories of n successor functions.

Definition 5.8 (Validity in SnS) An SnS formula ϕ is called valid iff α |= ϕ holds
for every assignment α mapping variables into the structure of n successor functions.

If there exists at least one SnS assignment α such that α |= ϕ holds, then the formula
ϕ is said to be satisfiable in the structure generated by n successor functions. Given
that the assignment is irrelevant for formulas without free variables (of either kind), the
notions of validity and satisfiability coincide in the case of closed formulas.

As we shall see towards the end of this section, the validity problem for the monadic
second-order theory of n successor functions may be reduced to that of the theory of two
successor functions, for any n ∈ N as well as for n = ω.

Decidability. The logic S2S was proved to be decidable by Rabin in 1969 [61]; that
is, there exists a procedure that, given a closed formula ϕ in the language of S2S, will
determine, within a finite amount of time, whether or not ϕ is valid. This important
result is known as Rabin’s Theorem:

Theorem 5.9 (Decidability of S2S) The monadic second-order theory of two succes-
sor functions is decidable.

We are not going to prove this theorem here. The original proof is widely regarded as
being particularly difficult. A more accessible proof may, for instance, be found in [67]
(see also references therein).

Our decidability proof for the modal logic of ordered trees (which we are going to
give in Section 5.4), essentially, amounts to a reduction to this result.

Some definable predicates. In Rabin’s original formulation, the logic S2S also in-
cludes two binary predicates, ≤ and �,2 with fixed semantics. For two variables x and y,
the formula x ≤ y is intended to be true iff the word assigned to x is a (not necessarily
proper) prefix of the word assigned to y, while the formula x � y holds iff the word
assigned to x precedes the word assigned to y in the lexicographic ordering declared over
{0, 1}∗, or the two words are the same. Alternatively, as is well known, these predicates
can also be defined within the slightly slimmer incarnation of S2S we have introduced
here. In order to demonstrate some of the features of this logic, in what follows, we are
going to show how to define these and a number of other useful predicates as abbrevia-
tions on the syntactic level.

2Our use of the symbols ≤ and � (and later on also < and ≺) in this chapter should not be confused

with the canonical accessibility relations from the previous chapter.

5.1 Monadic Second-order Logic 153

Equality. We start with a definition of a predicate to check whether two given terms
are associated with the same word. This is a simple example where we use the second-
order feature of S2S, i.e. quantification over sets of words (that is, over unary predicates).
Observe that two objects are equal iff every set that contains the former also contains
the latter and vice versa. Hence, we can give the following definition of equality for two
given terms t1 and t2:

(t1 = t2) = (∀P)[P (t1) ↔ P (t2)]

That is, we want the formula t1 = t2 to evaluate to true iff for every unary predicate
P the formula P (t1) holds iff P (t2) does. This is the case precisely when t1 and t2 are
being interpreted as the same word.

Subsets. Next we define a subset relation over set variables. This is easily expressible
in first-order logic alone:

(P ⊆ Q) = (∀x)[P (x) → Q(x)]

Given the subset relation, we can now also define the equality relation over sets:

(P = Q) = (P ⊆ Q) ∧ (Q ⊆ P)

Prefix ordering. Our next objective is to define the prefix relation ≤. We first give
a formula that is true iff the set variable P appearing in that formula is interpreted as
a set that is downward closed with respect to the prefix relation. That is, whenever a
particular word belongs to that set then every prefix of that word must belong to the set
as well. For any given set variable P the formula prefix-closed(P) defined as follows
is true iff P is assigned to a prefix-closed set of words:

prefix-closed(P) = (∀x)(∀y)[P (x) ∧ (y.0 = x ∨ y.1 = x) → P (y)]

Here, y stands for the immediate prefix of x (that is, we get from y to x by appending
either a single 0 or a single 1). So the formula prefix-closed(P) specifies that whenever
x belongs to P then so does x’s immediate prefix. Hence, by induction, every prefix of
x will be in P (possibly in addition to a number of other words, i.e. P is not necessarily
the smallest prefix-closed set for a particular word).

We can now define the (reflexive) prefix relation ≤ as follows:

(x ≤ y) = (∀P)[prefix-closed(P) ∧ P (y) → P (x)]

The formula on the righthand side is true iff it is the case that every prefix-closed set P
that contains y will also contain x. In particular, this will be the case for the smallest
prefix-closed set P containing y, which contains only the prefixes of y and no other words.
Hence, the word assigned to x will indeed be a prefix of the word associated with the
variable y.

Later on we are sometimes going to write x < y as an abbreviation for the proper
prefix relation (x ≤ y) ∧ ¬(x = y).

154 Chapter 5. Decidability

Identifying the root of the tree. A simple application of the prefix ordering ≤ is
the following definition of a predicate that allows us to identify the root of the infinite
binary tree, that is, the empty word Λ:

root(x) = (∀y)(x ≤ y)

The formula root(x) will be true under an assignment α iff α assigns the empty word
Λ to the variable x, because Λ is the only word that is a prefix of every word.

Lexicographic ordering. The next example shows that we can also treat the lexi-
cographic ordering � as a defined predicate. A word x precedes another word y in the
lexicographic ordering declared over {0, 1}∗ either if x is a prefix of y or x and y are
identical up to a certain letter and the next letter in x is 0 while there is a 1 at the
corresponding position in y. This notion is captured by the following definition:

(x � y) = (x ≤ y) ∨ (∃z)[z.0 ≤ x ∧ z.1 ≤ y]

For example, the word 011010 lexicographically precedes 01110, because the two have
the common prefix 011 which is followed by a 0 in the former case and by a 1 in the
latter. Again, we are going to write x ≺ y as an abbreviation for (x � y) ∧ ¬(x = y).

Finite sets. An interesting application of the lexicographic ordering is that we are
now in a position to write a formula that identifies a given set variable as referring to
a finite set of words. Observe that � induces a total order over the full set of words.
We know that a totally ordered set must be finite iff each of its non-empty subsets has
both a minimal and a maximal element with respect to the total order in question (see
Proposition A.9 in Appendix A). This condition is expressible in second-order logic.

We first define abbreviations for formulas that express that the word assigned to a
given variable x is minimal (maximal) within the set assigned to some unary predicate
Q with respect to the lexicographic ordering �.

min(x,Q) = Q(x) ∧ (∀y)[Q(y) → x � y]
max(x,Q) = Q(x) ∧ (∀y)[Q(y) → y � x]

Now we are in a position to give a formula that characterises a given unary predicate P as
denoting a finite set of words. The set assigned to P is finite iff for every set Q, whenever
Q is a subset of P that is not empty then there exists a word x that is minimal in Q and
there exists an(other) x that is maximal in Q with respect to the (total) lexicographic
ordering � over words. Here is the corresponding formula:

finite(P) = (∀Q)[Q ⊆ P ∧ (∃x)Q(x) → (∃x)min(x,Q) ∧ (∃x)max(x,Q)]

Having this ‘meta-predicate’ finite available to us, we can augment the language of S2S
to allow also for the quantification over finite sets of words. For instance, the formula

5.1 Monadic Second-order Logic 155

(∀Q)[finite(Q) → ϕ] is true iff ϕ is true whenever any free appearance of the variable
Q within the formula ϕ is interpreted as a finite set. We introduce the following two
abbreviations:

(∃finQ)ϕ = (∃Q)[finite(Q) ∧ ϕ]
(∀finQ)ϕ = (∀Q)[finite(Q) → ϕ]

Guarded quantification. We are sometimes going to have to restrict quantification
over simple variables to words belonging to a particular set and quantification over set
variables to sets that are subsets of particular sets of words. To this end, we introduce
the following shorthands for guarded quantification:

(∃x∈Q)ϕ = (∃x)[Q(x) ∧ ϕ] (∃P ⊆Q)ϕ = (∃P)[P ⊆ Q ∧ ϕ]
(∀x∈Q)ϕ = (∀x)[Q(x) → ϕ] (∀P ⊆Q)ϕ = (∀P)[P ⊆ Q→ ϕ]

Relations defined by formulas. It is important to keep in mind that our defined
‘predicates’ such as root or ≤ are in fact nothing but syntactic abbreviations of certain
S2S formulas. That is, even though, say, ≤ is (or has the appearance of being) a
binary predicate, we are still working in the same monadic logic as before. Each defined
predicate that does not involve any free set variables determines a relation over the
structure generated by two successor functions. As we have seen earlier, the predicate
≤, for example, determines the prefix relation over words in {0, 1}∗. We are now going
to introduce notation that will allow us to speak about these relations directly.

Let pred(x1, . . . , xk) be an S2S formula with k free variables x1, . . . , xk (and no free
set variables). On the semantic level, this predicate corresponds to a k-ary relation over
words in {0, 1}∗. This relation, which we are going to denote by JpredK, is defined as
follows:

JpredK = {(w1, . . . , wk) ∈ ({0, 1}∗)k | α |= pred(x1, . . . , xk) for all α
with α(x1) = w1, . . . , α(xk) = wk}

Here, α is understood to range over all S2S variable assignments. It follows from our
earlier discussion of the definition of the respective predicates that we have, for example,
JrootK = {Λ} and J<K = {(Λ, 0), (Λ, 1), (Λ, 00), (0, 00), (Λ, 01), (0, 01), . . .}.

We are going to use the same kind of notation for the semantics of defined predicates
also for SnS with n 6= 2 (simply substitute ({0, 1}∗)k by ({i ∈ N0 | i < n}∗)k or (ω∗)k,
respectively, and let α range over variable assignments for the logic in question).

Encoding theories with more than two successor functions. We shall conclude
our introduction to monadic second-order logic by showing how second-order theories
with more than two successor functions, and particularly SωS, can be embedded into
the logic S2S. This is important, because it shows that, by Rabin’s Theorem, all of these
logics are decidable and we can pick the one that seems most convenient for our own
decidability proofs later on. We start with an encoding of SωS into S2S. The result for
the other logics will then follow by adding a simple additional restriction.

156 Chapter 5. Decidability

•
Λ

• • • • • •

• • •• • • •

0

yyrrrrrrrrrrrrrrrrrrrrrrrrrrrr

��

 �� �� %%

((

1 // 1 // 1 // 1 // 1 // //_____

0

����
��
��
��
��
��
��
��

�� ��

1 // 1 // //____

0

����
��

��
��

��
��

��
��

��

�� �� ��

##

1 // 1 // 1 // //____

Figure 5.1: Encoding SωS in S2S

The basic idea underlying this embedding is to use one of the two successor functions
of S2S to represent arbitrary natural numbers in a unary format and to use the other
as a separator between these unary numbers. For instance, the word 01111101111011
(an element of {0, 1}∗) may be interpreted as encoding the word 542 (an element of ω∗);
0001111111 would stand for 007, and so on. If we think of {0, 1}∗ as the infinite binary
tree and of ω∗ as the infinite tree where every node has one child for every number in
N0, then this observation shows that we can identify the latter as a kind of substructure
of the former. Figure 5.1 shows how. To reach the nth child of a given node in the tree
ω∗, we first use succ0, the first successor function available in S2S, to go down to the
leftmost child of a given node, and then succ1, the other S2S successor function, to move
n steps to the right.

Formally, we can define a mapping f from ω∗ to {0, 1}∗ as follows:

f(Λ) = Λ
f(x.i) = f(x).0.1i for i ∈ N0

This mapping is not surjective. In fact, inspection of the definition of f shows that we
are mapping the set of words ω∗ onto the set of those words in {0, 1}∗ that do not start
with a 1 (equivalently, we are mapping onto the set of words starting with 0 together
with the empty word Λ). This set of words can be characterised by an S2S formula:

fulltree(x) = ¬(∃y)[root(y) ∧ y.1 ≤ x]

The formula fulltree(x) will be satisfied under an assignment α iff α maps x to a word
that does not start with a 1, i.e. a word that is in the range of the function f .

The language of SωS has one successor function for each natural number (including
0). To distinguish the functions symbols of the two logics, we are going to write succω

i

5.1 Monadic Second-order Logic 157

with i ∈ N0 for successor functions of SωS and reserve the original symbols, namely
succ0 and succ1, for S2S. To be able to translate terms in the language of SωS into
terms in the language of S2S we have to show how to represent the function symbols of
SωS within S2S in a way that corresponds to the mapping f between the two infinite
trees. Here is a simple recursive definition of the translation function:

succω
0 (x) = succ0(x)

succω
i (x) = succ1(succω

i−1(x)) for i ∈ N

That is, the SωS term succω
3 (x), for example, would be translated into the S2S term

succ1(succ1(succ1(succ0(x)))). In our shorthand notation, this means that x.3 would be
represented as x.0.1.1.1.

We are now in a position to describe the process of translating a (closed) SωS formula
ϕ into an S2S formula ϕ∗ in such a way that ϕ is valid in SωS iff ϕ∗ is valid in S2S.
The first step is to rewrite SωS terms as terms using only the two successor functions of
S2S. The next step is to ensure that variables in the translated formula only range over
those words (or set of words in the case of set variables) of {0, 1}∗ that are in the range
of the mapping f from {0, 1}∗ to ω∗. To this end we introduce a special set variable
T (which is different from any of the set variables used in ϕ) that is intended to be
assigned to precisely that set of words. This assignment can be enforced by the formula
(∀x)[fulltree(x) ↔ T (x)]. Furthermore, we replace every quantification in ϕ by a
quantification guarded by T . That is, we rewrite (∃x) as (∃x∈T) and ∃P as (∃P ⊆T),
and accordingly for universal quantifiers.

Let ϕT
01 be the S2S formula we get by translating all function symbols in ϕ by the

appropriate combinations of succ0 and succ1 as well as replacing every quantification
with a quantification guarded by the set variable T . Then the formula ϕ∗, defined as
follows, will be valid in S2S iff our original formula ϕ is valid in SωS:

ϕ∗ = (∀T)[(∀x)[fulltree(x) ↔ T (x)] → ϕT
01]

Hence, by Rabin’s Theorem, SωS must be a decidable logic.

Example. Consider, for example, the SωS formula (∃P)(∀x)[P (x) → P (x.3)]. This
formula is valid iff there exists a set of words that is closed under appending a 3 at
the end of a word. This is clearly the case; the infinite set {Λ, 3, 33, 333, 3333, . . .},
for instance, would be a candidate. To translate the formula we first have to fix a
name, say T , for the set variable corresponding to the set of words in the range of the
translation function f . Translating the formula itself then yields the following result:
(∃P ⊆T)(∀x∈T)[P (x) → P (x.0.1.1.1)]. Before we can check validity we have to ensure
that T will be interpreted as intended, namely as the set of all words that correspond to
words in ω∗. In summary, our original formula (∃P)(∀x)[P (x) → P (x.3)] is valid in the
logic SωS iff the following formula is valid in S2S:

(∀T)[(∀x)[fulltree(x) ↔ T (x)] → (∃P ⊆T)(∀x∈T)[P (x) → P (x.0.1.1.1)]]

158 Chapter 5. Decidability

Prefix and lexicographic ordering for SωS. The definitions of both the prefix
and the lexicographic orderings over words given earlier in this sections were specific
to S2S and analogous definitions for SωS are not possible, because we now have an
infinite number of successor functions to consider. However, it is possible to express
these relations within the embedding of SωS into S2S just described.

Let a and b be two words in ω∗ and let f(a) and f(b) be their translations into {0, 1}∗.
If a is a proper prefix of b then this will manifest itself in the words f(a) and f(b) as
follows. The word f(b) will have f(a) as a prefix and that prefix will be followed by the
translation of at least one more number, that is, the string f(a) will at least be followed
by a 0 within the word f(b). The converse holds as well, that is, the formula x.0 ≤ y

characterises the proper prefix ordering for the embedding of SωS into S2S. We can
thus use the formula (x.0 ≤ y) ∨ (x = y) to rewrite the usual (reflexive) prefix ordering
of SωS when translating formulas into S2S.

Expressing the lexicographic ordering for SωS is even simpler. In fact, as is readily
verified, the lexicographic ordering � of S2S acts also as a lexicographic ordering for SωS
(if we use the embedding into S2S presented above). That is, no specific translation of
the defined predicate � is necessary.

Encoding theories with finitely many successor functions. The embedding of
SωS into S2S can easily be adapted in such a way as to serve as an embedding of SnS
into S2S for any finite n ∈ N. All that is required is an additional formula that further
restricts the substructure of {0, 1}∗ used for the actual embedding to ensure that no
substrings corresponding to numbers greater or equal to n can appear in the translation
of an SnS word. To encode, for instance, the logic S4S we simply add the formula
¬(∃y)(y.1.1.1.1 ≤ x) to the definition of the predicate fulltree(x).

It follows that SnS must be a decidable logic for any finite number of successor
functions n ∈ N.

Defined predicates again. Observe that all the defined predicates discussed earlier
are available in all our second-order logics. Whenever a definition does not make any
reference to successor functions at all (such as our definition of equality over words, for
instance), we can use the same formula for every logic. In cases where the successor
functions are required (as in the definition of prefix-closed), the definition can easily
be adapted for logics SnS with a finite number n of successor functions.

However, this would not be possible in the case of SωS. Still, as we have seen earlier,
the critical predicates, namely the prefix ordering ≤ and the lexicographic ordering � for
SωS can both be translated into formulas in S2S, the logic we have used to embed SωS
into. So indeed, all of the defined predicates we have seen in this section are available
in all of the second-order theories we have been discussing.

Applications in modal logic. It turns out that a variety of modal logics can be em-
bedded into the monadic second-order theory of two successor functions. Given Rabin’s

5.2 Finite Binary Trees 159

Theorem, such an embedding would then show that the modal logic in question must
be decidable. A number of early decidability results for modal logics using this method
were obtained by Gabbay [27, 28].

We briefly outline some of the basic intuitions underlying this approach. For modal
logics with a single fixed frame such as, for instance, the temporal logic over the rational
numbers, the first crucial step for an embedding into S2S is a mapping from the set of
worlds in the modal frame to a suitable substructure of {0, 1}∗ (similar to the mapping
from ω∗ to {0, 1}∗ discussed earlier). For modal logics defined with respect to a class
of frames (rather than a single frame) we also have to show that we can capture any
member of this class by means of a set variable ranging over all possible sets of words
that could make up a frame of this logic. We also have to show that we can define
predicates that correspond to the accessibility relations of such frames. Finally, we
have to give a translation from modal formulas to second-order formulas. This will be
very similar to the standard translation of modal logic formulas into classical first-order
logic and the translated formulas will directly refer to the predicates representing the
accessibility relations. Propositional letters of the modal language will be translated into
unary predicates. We can use quantification over these predicates to simulate the range
of all possible valuations.

Broadly speaking, this is the path we are going to follow for our decidability proof
for OTL. Of course, instead of embedding a modal logic directly into S2S, we may also
choose to define an embedding into either SωS or SnS for some finite n ∈ N. Decidability
then follows from the fact that these second-order logics can themselves be embedded
into S2S (as shown in this section).

Plan for the rest of this chapter. The following two sections may be considered
case studies, where we use first S2S and then SωS to prove decidability for the va-
lidity problem of OTL with respect to finite binary trees and discretely ordered trees,
respectively. Our main decidability result, for OTL in general, will then be proved in
Section 5.4 via a reduction to S4S.

5.2 Finite Binary Trees

In this section we are going to show how we can prove that the validity problem for OTL
formulas with respect to finite binary trees is decidable via a reduction to Rabin’s The-
orem. In fact, such a reduction is almost straightforward. Essentially, what is required
are a translation from OTL formulas into S2S and a means of restricting reference from
the infinite binary tree underlying S2S to arbitrary (finite) initial subtrees.

Modal logics of finite binary trees. In [9], Blackburn and Meyer-Viol introduce a
modal logic of finite binary trees, demonstrate its relevance to applications in the area of
computational linguistics, prove completeness of a finite axiomatisation, and show that

160 Chapter 5. Decidability

their logic is decidable. Binary trees may be considered special cases of ordered trees. If
every internal node is known to have exactly two children, then we can always identify
the left and the right child of a node by reference to the order declared over siblings.
Towards the end of the section on correspondences in Chapter 3, we have indicated how
to express the modal operators available in the logic of Blackburn and Meyer-Viol in
terms of OTL operators, assuming that the class of admissible frames is restricted to
binary trees.

The following definition identifies the class of finite binary trees as a subclass of the
class of all ordered trees (as specified in Definition 3.4).

Definition 5.10 (Finite binary trees) An ordered tree T = (T,R, S) is called a finite
binary tree iff the set of nodes T is finite and the set of siblings [t]R−1◦R is a set with
exactly two elements for every node t ∈ T except the root.

Defining the accessibility relations. The structure {0, 1}∗ underlying the logic S2S
is a binary tree and thereby also an ordered tree. A first requirement for being able
to translate modal OTL formulas into S2S formulas is to show that the accessibility
relations relevant to the semantics of OTL can be expressed in terms of S2S. These
accessibility relations are the descendant relation, the child relation, the sibling relation,
the neighbour relation, and their inverses. Given that we are going to use the tree
{0, 1}∗ itself, rather than using it to encode a differently structured tree first, expressing
these relations is easy. For instance, the descendant relation directly corresponds to the
(proper) prefix relation introduced earlier:

descendant(x, y) = (x < y)

That is, the word represented by the variable x has as a descendant in the infinite binary
tree {0, 1}∗ the word represented by y iff the former is a proper prefix of the latter.
The ancestor relation is the inverse of the descendant relation. That is, the formula
descendant(y, x) is true iff y represents an ancestor of the word represented by x in
the infinite binary tree. We could use the predicate descendant to define a predicate
for the child relation, namely by stipulating that y is the child of x iff y is a descendant
of x and there is no other node that is both a descendant of x and an ancestor of y.
Alternatively, we may also give a direct definition as follows:

child(x, y) = (x.0 = y) ∨ (x.1 = y)

This definition is based on the fact that if appending either a 0 or a 1 to the end of the
word represented by x yields the word referred to by y then y represents the child of the
word represented by x in the infinite binary tree. Again, we may also use the predicate
child to refer to the parent of a given node, because the two accessibility relations are
inverse to each other. It follows from our definitions that the predicate descendant

must be interpreted as the transitive closure of the relation corresponding to the predicate

5.2 Finite Binary Trees 161

child, because the prefix relation is the transitive closure of the immediate prefix relation
encoded by child.

Next we turn to the definition of an accessibility relation to refer to right- and lefthand
siblings. Two words represent sibling nodes iff they only differ in their final letter. The
word ending in 0 is the lefthand sibling; the one ending in 1 is the righthand sibling.
That is, a sibling relation may be defined as follows:

sibling(x, y) = (∃z)(z.0 = x ∧ z.1 = y)

In the case of binary trees, the notions of sibling and neighbour coincide; thus:

neighbour(x, y) = sibling(x, y)

Characterising initial subtrees. The infinite binary tree generated by two successor
functions is a particular ordered tree. The set of nodes is given by the set of words {0, 1}∗.
The child relation R of an ordered tree can be represented in terms of the child predicate
and the sibling relation S corresponds to the sibling predicate. We would now be in a
position to prove decidability of the validity problem of OTL for the particular frame
given by the infinite binary tree. As we are interested in validity over the class of all
(finite) binary trees, we first have to put forward suitable conditions that allow us to
decide for any given subset of {0, 1}∗ whether that set represents itself a binary tree or
not.

Observe that any given binary tree is isomorphic to an initial binary subtree of the
infinite binary tree. By an initial subtree we mean any subset of {0, 1}∗ that includes the
root of the infinite tree (i.e. the empty word Λ) such that, whenever a node belongs to
this set, so does its parent. We furthermore call an initial subtree binary iff it contains
either both or none of the two children of any given node. Using the defined predicates
encoding the accessibility relations together with the predicate root defined in the
previous section, we can express these properties as a formula with a free set variable T
corresponding to the set of nodes that make up the respective initial binary subtree. We
abbreviate this formula as tree(T):

tree(T) = (∀x)[root(x) → T (x)] ∧
(∀x)(∀y)[child(x, y) ∧ T (y) → T (x)] ∧
(∀x)(∀y)[sibling(x, y) → (T (x) ↔ T (y))]

Now, if α is an S2S variable assignment such that α |= tree(T) holds, then the triple
(Tα, JchildK, JsiblingK) is a binary ordered tree.3 Also, for every binary tree there exists
an assignment α such that (Tα, JchildK, JsiblingK) is isomorphic to that binary tree (for
some set variable T with α |= tree(T)). Furthermore, the relations induced on these
trees by the predicates descendant and neighbour work as intended: JdescendantK
is the transitive closure of JchildK and JneighbourK is the immediate successor relation
underlying JsiblingK.

3Of course, the relations JchildK and JsiblingK range over the entire infinite binary tree. If we wish

restrict them explicitly to Tα, we may write (Tα, JchildK ∩ Tα×Tα, JsiblingK ∩ Tα×Tα) instead.

162 Chapter 5. Decidability

The Translation Function trT
x

trT
x (P) = P ′(x) for propositional letters P

trT
x (>) = >

trT
x (¬ϕ) = ¬trT

x (ϕ)
trT

x (ϕ ∧ ψ) = trT
x (ϕ) ∧ trT

x (ψ)
trT

x (eϕ) = (∃y∈T)[child(y, x) ∧ trT
y (ϕ)]

trT
x (3ϕ) = (∃y∈T)[descendant(y, x) ∧ trT

y (ϕ)]
trT

x (eϕ) = (∃y∈T)[neighbour(y, x) ∧ trT
y (ϕ)]

trT
x (3ϕ) = (∃y∈T)[sibling(y, x) ∧ trT

y (ϕ)]
trT

x (eϕ) = (∃y∈T)[neighbour(x, y) ∧ trT
y (ϕ)]

trT
x (3ϕ) = (∃y∈T)[sibling(x, y) ∧ trT

y (ϕ)]
trT

x (3ϕ) = (∃y∈T)[child(x, y) ∧ trT
y (ϕ)]

trT
x (3+ϕ) = (∃y∈T)[descendant(x, y) ∧ trT

y (ϕ)]

P ′: set variable(s),
encoding valuation for
propositional letter(s) P

T : set variable,
encoding modal frame

x: simple variable,
encoding world in frame

y: simple variable,
fresh for each subformula

Table 5.1: Translating OTL formulas into monadic second-order logic

Translating modal formulas. We now turn to the actual translation of OTL formu-
las into formulas of monadic second-order logic. This translation is going to be similar
to the usual standard translation of modal logics into classical first-order logic.4 For the
standard translation, we require a binary first-order predicate for each of the accessibility
relations referred to in the definition of the semantics of the respective modal logic. Here,
this role will be filled by our previously defined predicates characterising the descendant,
child, sibling, and neighbour relations in an ordered tree. As for the standard translation,
every translated formula will have a single free variable x, which may be thought of as
ranging over the nodes in a tree. Furthermore, quantification in the translated formulas
will be guarded by a set variable T intended to represent the set of words used for the
encoding of a particular ordered tree as a substructure of the infinite binary tree.

Our translation function trT
x is defined in Table 5.1. The x in the subscript fixes

the name of the simple free variable in the resulting second-order formula and the T
is the name of the free set variable guarding quantification in the same formula. Any
propositional letter P appearing in an OTL formula ϕ to be translated will be represented
by a unary predicate P ′ in the second-order formula trT

x (ϕ).

We are going to use the same translation function in the following two sections, where
we are going to describe an encoding of discretely ordered trees into SωS and an encoding
of general ordered trees into S4S, respectively. Only the definition of predicates, such as
descendant, encoding the accessibility relations is going to change, depending on the
particular construction.

4The standard translation for the basic modal logic has briefly been discussed in the introductory

Chapter 2. The standard translation from our logic OTL into classical first-order logic will also be

defined in Chapter 6.

5.3 Discretely Ordered Trees 163

Decidability for finite binary trees. We are now in a position to prove decidability
of the validity problem for the modal logic of finite binary trees. To be able to phrase
this result as a specific decidability result for OTL we introduce the notion of OTL
validity in finite binary trees.

Definition 5.11 (Validity in finite binary trees) A formula ϕ is called valid in fi-
nite binary trees iff T |= ϕ holds for every finite binary tree T .

Our first Decidability Theorem now states that for any given OTL formula the problem
of checking whether that formula is valid over the class of finite binary trees is a decidable
problem.

Theorem 5.12 (Decidability for finite binary trees) The problem of checking va-
lidity in finite binary trees is decidable.

Proof. Let ϕ be an OTL formula and let P1, . . . , Pn be the propositional letters appearing
in ϕ. Consider the S2S formula ϕ∗ defined as follows:

ϕ∗ = (∀finT)[tree(T) → (∀P ′
1⊆T) · · · (∀P ′

n⊆T)(∀x∈T)trT
x (ϕ)]

Here, trT
x is the translation function given in Table 5.1 and the meta-predicate tree

as well as the binary predicates descendant, child, sibling, and neighbour (the
latter four of which feature in the definition of trT

x) are understood to be the respective
predicates as previously defined in this section.5 The predicates P ′

1, . . . , P
′
n are the unary

predicates we obtain when we translate the propositional letters P1, . . . , Pn.
The formula ϕ∗ expresses that, for every finite subset of {0, 1}∗ that is an initial

binary subtree of the infinite binary tree, we can choose the assignments to the predicate
symbols P ′

1 to P ′
n so as to refer to any subsets of that finite tree, and the translation

of ϕ will be true on that particular structure. This is the case precisely iff ϕ is valid
with respect to all finite binary trees. Hence, checking validity of ϕ (with respect to
finite binary trees) is equivalent to checking validity of ϕ∗ in S2S. By Rabin’s Theorem,
the latter problem is decidable, so checking validity for finite binary trees must be a
decidable problem as well. 2

Our discussion at the beginning of this section shows that Theorem 5.12 confirms one
of the results of Blackburn and Meyer-Viol [9], namely that their modal logic of finite
binary trees is decidable.

5.3 Discretely Ordered Trees

Our aim for this section is to improve on Theorem 5.12 and show that our logic remains
decidable when we extend the class of frames under consideration from binary trees to

5In later sections, we are going to give different definitions for these four predicates.

164 Chapter 5. Decidability

discretely ordered trees in general. Recall that we call an ordered tree a discretely ordered
tree iff the children of each node (together with the sibling relation S) form a strongly
discrete order.6 A formal definition was given in Chapter 3 (Definition 3.12).

We are going to reduce the decidability problem for OTL restricted to discretely
ordered trees to the decidability problem for SωS. The latter is known to be decidable.
This was already shown in Rabin’s original paper [61]. It also follows from our discussion
in Section 5.1, where we have shown that SωS can in fact be embedded into S2S. All
second-order formulas in this section are understood to be SωS formulas and any variable
assignments α map into the structure of ω successor functions.

Immediate prefixes. In the following construction, we will often have to refer to the
immediate prefix of a given word. In S2S, such a predecessor relation can be defined in
terms of the two successor functions available in the language (the child predicate from
the previous section is an example). In SωS, on the other hand, this is no longer possible,
because we now have an infinite number of successor functions to consider. Instead, we
can define a predecessor predicate via the (irreflexive) prefix relation < as follows:

prec(x, y) = (x < y) ∧ ¬(∃z)[x < z ∧ z < y]

By this definition, prec(x, y) is a true formula iff the variable x represents the word over
ω∗ we obtain by removing the final letter from the (non-empty) word assigned to y.

Encoding the infinite unbounded discretely ordered tree. The tree ω∗ is an
infinite tree where every node has a child for every natural number. That is, branching
is infinite and discrete, but bounded to the left. The crucial step in our construction
will be to show how we can represent an infinite tree where branching is discrete and
unbounded. We will then be able to describe the set of all discretely ordered trees as the
set of all initial subtrees of that infinite tree.

The central idea underlying our construction is to model infinite branching to both
the left and right by using only words ending in either 0 and 1 and interpreting the
former as children to the left of the centre and the latter as children to the right of
it. More specifically, we only consider those words in ω∗ that are of of even length and
where every second letter is either a 0 or a 1 (including the empty word Λ). Given a
particular word, we obtain its parent in the new tree by removing the final two letters.
For example, 308151 is the 5th righthand child of the word 3081. The latter, in turn, is
the 8th righthand child of the node represented by 30, which again is the 3rd lefthand
child of the root Λ. This embedding of the infinite unbounded discretely ordered tree
into the tree underlying SωS is also sketched in Figure 5.2. Here, every node is labelled
with the two additional letters to be appended to the word representing its parent. For
instance, the last node shown at the lower righthand corner of the picture corresponds to
the word 1121, the 2nd righthand child of the 1st righthand child of the root. (It is also

6The term strongly discrete order is defined in Appendix A.

5.3 Discretely Ordered Trees 165

•
Λ

•01 •11 •21 •31•00•10•20•30

•01 •11 •21•00•10•20

��*
**

**
**

**
**

*

��?
??

??
??

??
??

??
??

?

%%LLLLLLLLLLLLLLLLLLLLLLL

((QQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ

��
��
��
��
��
��

����
��

��
��

��
��

��
��

yyrrrrrrrrrrrrrrrrrrrrrrr

vvmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

��(
((
((
((
((
((
(

��9
99

99
99

99
99

99
99

##G
GGGGGGGGGGGGGGGGGGG

����
��
��
��
��
��

����
��

��
��

��
��

��
�

{{wwwwwwwwwwwwwwwwwwww

Figure 5.2: Encoding the infinite unbounded discretely ordered tree in SωS

the righthand neighbour of the righthand neighbour of 1101, the ‘0th’ righthand child of
the word 11.)

We now turn to the definition of the various SωS predicates required to describe
the suggested embedding. The following two auxiliary predicates may be used to check
whether a given variable x represents a word ending in 0 or 1, respectively:

left(x) = (∃y)(y.0 = x) right(x) = (∃y)(y.1 = x)

So left(x), for instance, will be true iff x represents a node that is one of the lefthand
children of its parent (provided it represents one of the nodes used for the embedding in
the first place).

Every word in the set of words taken into account for our construction has to end in
either 0 or 1, or it has to be the empty word Λ. We can use the following meta-predicate
to check whether a given set (assigned to a set variable P) fulfils this condition:

zero-one(P) = (∀x)[P (x) → root(x) ∨ left(x) ∨ right(x)]

Another requirement for the subset of ω∗ representing the unbounded infinite tree is
that it contains the empty word Λ. We can reuse the predicate root to specify a meta-
predicate for set variables P that evaluates to true iff the corresponding set contains the
empty word:

rooted(P) = (∃x)[root(x) ∧ P (x)]

Another property of the set of words used to encode the unbounded tree is that, whenever
that set contains a given word, it will also contain the predecessor of the predecessor of
that word. In other words, the set is closed under removing the last two letters of a
word. This property of a set is captured by our next meta-predicate:

gap-closed(P) = (∀x)(∀y)(∀z)[prec(x, y) ∧ prec(y, z) ∧ P (z) → P (x)]

166 Chapter 5. Decidability

We are now going to put together the various auxiliary predicates defined earlier and
present a predicate that defines the set of words in ω∗ that are used for our encoding of
the unbounded discretely ordered tree indicated in Figure 5.2. How can we characterise
the set of words that make up this substructure of ω∗? Suppose we take a single word
x and use it to generate a set of words P as follows: x is in P and for any word in P

also the word we get by removing the last two letters is in P (provided that word has
at least two letters). This latter operation can be implemented by means of our defined
predicate gap-closed. Then the generated set P shows whether or not x is one of the
words we are looking for. If it is, then every word in P has to end either in a 0 or a 1
(this can be implemented using zero-one) and the empty word Λ has to be part of P
(that is, P has to be rooted). The latter guarantees that the original word x must have
been of even length. In summary, the following predicate fulltree determines the set
of words required for our construction:

fulltree(x) = (∀P)[P (x) ∧ gap-closed(P) → rooted(P) ∧ zero-one(P)]

The universal quantification over P guarantees that rooted(P) ∧ zero-one(P) holds,
in particular, for the smallest set P that satisfies P (x) ∧ gap-closed(P).

Defining the accessibility relations. If both x and y represent words that belong
to the full tree then the latter is a descendant of the former iff it is one of its prefixes. In
other words, the prefix relation of ω∗ restricted to the set of words used to represent the
unbounded discretely ordered tree coincides with the descendant relation declared over
the latter. Hence, the following is a suitable definition of the descendant predicate for
this construction:

descendant(x, y) = (x < y)

We have again more than one option of how to define the child relation. One of them
would be to exploit the fact that we get from a given word to the word representing
its parent by removing the last two letters, that is, the parent of a node is represented
by the immediate prefix of the immediate prefix of the word representing the node in
question. Here is the corresponding definition of our new child predicate:

child(x, y) = (∃z)[prec(x, z) ∧ prec(z, y)]

Defining a suitable sibling predicate now is a little more involved than in the previous
section. Certainly, two nodes are siblings whenever they share a common parent. This
observation will enter our definition of the new sibling predicate, but it is not enough
to determine which of the two nodes lies to the left of the other. Suppose we have
already established that two given variables x and y represent sibling nodes in the infinite
unbounded tree. We can then distinguish three cases in which x would correspond to a
node somewhere to the left of the node represented by the variable y:

(1) First, assume both x and y are lefthand children of their common parent (i.e. both
of them end in 0). Let z stand for the parent. Then x is of the form z.i.0 and y is

5.3 Discretely Ordered Trees 167

of the form z.j.0 (for some i, j ∈ N0). The word z.i.0 represents a node somewhere
to the left of z.j.0 iff i is a greater number than j. This is the same as to say
that y lexicographically precedes x. Hence, if both x and y are lefthand children
of their common parent then x is a lefthand sibling of y iff y strictly precedes x in
the lexicographic order ≺ declared over ω∗.

(2) By an analogous argument, if both x and y are righthand children of their common
parent then x is a lefthand sibling of y iff x ≺ y.

(3) Finally, x is also a lefthand sibling of y iff x ends in 0 and y ends in 1.

If none of these three conditions applies, then x cannot be a lefthand sibling of y. Alto-
gether, we end up with the following definition of sibling:

sibling(x, y) = (∃z)[child(z, x) ∧ child(z, y)] ∧
[(left(x) ∧ left(y) ∧ y ≺ x) ∨
(right(x) ∧ right(y) ∧ x ≺ y) ∨
(left(x) ∧ right(y))]

Finally, we define a neighbour relation over the infinite unbounded discretely ordered
tree by stipulating that two nodes x and y are neighbours iff they are siblings and there
exists no other node z that is both a righthand sibling of x and a lefthand sibling of y:

neighbour(x, y) = sibling(x, y) ∧ ¬(∃z)[sibling(x, z) ∧ sibling(z, y)]

Before we can accept the above definition of the neighbour predicate, however, we
have to make the following observation. The set of words used to encode a particular
discretely ordered tree will be a proper subset of ω∗. The variable z featuring in the
definition above is intended to represent nodes in this substructure only. That is, our
characterisation of particular ordered trees later on will have to be such that, whenever
two nodes are supposed to represent neighbours, then there can be no other word in ω∗

that would be a righthand sibling of the first node and a lefthand sibling of the second
if it was itself part of the chosen ordered tree. (Another option would have been to
explicitly guard the quantification over z.)

Characterising initial subtrees. Just as every strongly discrete order is isomorphic
to a suborder of the integers, every discretely ordered tree is isomorphic to an initial
subtree of the infinite unbounded discretely ordered tree we have embedded into ω∗. In
fact, it even suffices to only consider certain subtrees which we shall call initial subtrees
without gaps. These are initial subtrees satisfying the following two properties:

(1) Whenever a word x ending in 0 belongs to the subtree, so do any of the righthand
siblings of x which themselves end in 0.

(2) Similarly, whenever a word ending in 1 belongs to the subtree, so do any of its
lefthand siblings which themselves end in 1.

168 Chapter 5. Decidability

This class of trees allows us to represent any finite branching factor as well as infinite
branching that is either bounded to the left, bounded to the right, or unbounded in
either direction. This covers all cases, just as there are only three distinct infinite order
types that are strongly discrete: the positive integers (bounded to the left), the negative
integers (bounded to the right), and the whole set of the integers (unbounded).

The following meta-predicate encodes the class of initial subtrees without gaps. The
conditions are similar to the definition of tree(T) in the previous section. In addition
to that, we also have to ensure that T represents a subset of the words satisfying our
defined predicate fulltree and that there are no gaps between sibling nodes.

tree(T) = (∀x)[T (x) → fulltree(x)] ∧
(∀x)[root(x) → T (x)] ∧
(∀x)(∀y)[child(x, y) ∧ T (y) → T (x)] ∧
(∀x)(∀y)[sibling(x, y) ∧ left(y) ∧ T (x) → T (y)] ∧
(∀x)(∀y)[sibling(x, y) ∧ right(x) ∧ T (y) → T (x)]

Let α be an SωS variable assignment mapping the set variable T to a subset of ω∗. Our
discussion shows that (Tα, JchildK, JsiblingK) will be a discretely ordered tree whenever
α |= tree(T) holds. Also, vice versa, for any discretely ordered tree there exists an
assignment α such that this tree is isomorphic to (Tα, JchildK, JsiblingK) for some set
variable T with α |= tree(T). Furthermore, restricted to any Tα with α |= tree(T),
the relation JdescendantK is the transitive closure of JchildK and JneighbourK is the
immediate successor relation underlying JsiblingK.

Decidability for discretely ordered trees. Before we state the decidability result
for this section, we give a formal definition of the class of formulas that are valid with
respect to discretely ordered trees.

Definition 5.13 (Validity in discretely ordered trees) A formula ϕ is called valid
in discretely ordered trees iff T |= ϕ holds for every discretely ordered tree T .

Here is our Decidability Theorem for discretely ordered trees:

Theorem 5.14 (Decidability for discretely ordered trees) The problem of check-
ing validity in discretely ordered trees is decidable.

Proof. Let ϕ be an OTL formula and let P1, . . . , Pn be the propositional letters that
appear in it. Now consider the SωS formula ϕ∗ defined as follows:

ϕ∗ = (∀T)[tree(T) → (∀P ′
1⊆T) · · · (∀P ′

n⊆T)(∀x∈T)trT
x (ϕ)]

trT
x is again the translation function given in Table 5.1, but this time the predicates

descendant, child, sibling, and neighbour used in the definition of trT
x are the

5.4 General Ordered Trees 169

respective SωS predicates defined in this section. The meta-predicate tree is our pred-
icate encoding initial subtrees without gaps. The set variables P ′

1, . . . , P
′
n are the unary

predicates we obtain when translating the propositional letters P1, . . . , Pn.
The formula ϕ∗ says that for any initial subtree without gaps (represented by T) of

the unbounded discretely ordered tree (which we have encoded as a substructure of ω∗)
and for any sets of words (that is, any subsets of the set of words assigned to T) assigned
to the set variables P ′

1 to P ′
n, the translation of the formula ϕ will be true, whatever

node of the subtree we assign the variable x to. This is the case iff ϕ is valid with
respect to any discretely ordered tree. Hence, checking validity of ϕ in discretely ordered
trees is equivalent to checking validity of ϕ∗ in SωS. The latter problem is known to be
decidable, i.e. checking validity for discretely ordered trees must be a decidable problem
as well. 2

5.4 General Ordered Trees

In this section, we are going to show that OTL is a decidable logic. The proof falls into
two parts. We first show how OTL with (almost) no restrictions on the admissible class
of frames can be embedded into S4S (and thereby into S2S). The only restriction that
we cannot eliminate is that for any such embedding the set of nodes in the respective
ordered tree will have to be countable.7 Therefore, in the second part of our proof we
have to show that, in fact, this restriction does not matter: any satisfiable formula will
also be satisfiable in a model based on an ordered tree with a countable set of nodes.

As for the first part of our proof, the crucial step up from Theorem 5.14 is that we
are now going to drop the restriction to discretely ordered trees. In particular, general
ordered trees allow for sibling nodes that are densely ordered. Therefore, before we
describe the main construction of an infinite densely ordered tree, we are going to show
how we can encode a single dense order into S2S.

Encoding dense orders in S2S. Our construction follows that given by Gabbay et
al. [30]. The basic idea is to ‘project’ the nodes of the infinite binary tree underlying
S2S down onto a straight line as shown in Figure 5.3.

Intuitively, such a projection induces a left-to-right ordering on the set of words in
{0, 1}∗. Given a word x, the word x.0 is supposed to lie slightly to the left of x, while
the word x.1 lies a little to its right. However, neither of them will lie as far to the left
or right of x as any of the prefixes (or ancestors) of x. In other words, x.1 for instance,
will lie half way between x and the longest prefix of x ending in 1 (if any), i.e. the closest
ancestor of x (with respect to the binary tree) lying itself to the righthand side of x. We

7In the literature, sets that are either finite or countably infinite are sometimes called at most countable.

Here, we do not always make this distinction and simply refer to both finite and countably infinite sets

as countable ones.

170 Chapter 5. Decidability

•
Λ

•0

•0

•0 •1

•1

•0 •1

•1

•0

•0 •1

•1

•0 •1

000 00 001 0 010 01 011 Λ 100 10 101 1 110 11 111

����
��

��
��

��
��

��
��

��
��

��
�

����
��

��
��

��

��?
??

??
??

??
?

����
��

��?
??

?
����

��
��?

??
?

��?
??

??
??

??
??

??
??

??
??

??
??

����
��

��
��

��

��?
??

??
??

??
?

����
��

��?
??

?
����

��
��?

??
?

oo //

Figure 5.3: Encoding dense orders in S2S

now formally define this left-to-right ordering as follows:8

x� y = x.1 ≤ y ∨ y.0 ≤ x ∨ (∃z)[z.0 ≤ x ∧ z.1 ≤ y]

That is, we have x� y iff x 6= y and there is a node w in the tree such that x is either w
itself, its lefthand child, or a descendant of its lefthand child, and y is either w itself, its
righthand child, or a descendant of its righthand child. The first disjunct describes the
case where x is that dominating node w and y is either its righthand child or a descendant
of the latter. The second disjunct describes the case where y is the dominating node w
and x is either its lefthand child or a descendant of the latter. The third disjunct, finally,
describes the case where both x and y are descendants of a common ancestor w; x is
either its lefthand child or a descendant of its lefthand child and y is either its righthand
child or a descendant of its righthand child.

We are now going to show that the definition of the predicate � really yields the
kind of left-to-right ordering we intended: it induces a strict linear order over the set of
all words {0, 1}∗ that is dense and without endpoints. We also remark that this order
must be countable, the significance of which we are going to comment on at a later point
in this section. To establish that ({0, 1}∗,�) is a strict linear order we have to check
that it is indeed irreflexive, transitive, and connected:

(1) Irreflexivity. Follows immediately from the definition of �.
8The binary predicate � induces a binary relation J�K over the set of words {0, 1}∗. However, to

simplify notation, in the sequel we are not always going to make this distinction and shall usually use

the symbol � also for the (semantic) relation.

5.4 General Ordered Trees 171

(2) Transitivity. Again, this follows directly from the definition of � (see also the
explanation given just after the definition).

(3) Connectedness. Any two words in {0, 1}∗ that are not identical must either have
a common proper prefix (possibly Λ) or one must be a proper prefix of the other.
Hence, we have x = y or x� y or y � x for any two words x, y ∈ {0, 1}∗, that is,
the relation induced by � must be connected.

Next we show that the linear order ({0, 1}∗,�) must be dense, i.e. for any x, y ∈ {0, 1}∗

with x� y there exists a word z ∈ {0, 1}∗ such that x� z and z � y. According to the
definition of �, we can distinguish three cases. Firstly, if x � y holds because x.1 ≤ y

does, then the word y.0 fulfils our requirements: we have x � y.0 � y. Secondly, if we
have x � y by virtue of y.0 ≤ x then x.1 does the job, i.e. we get x � x.1 � y. And
thirdly, in case we have x � y because of (∃z)[z.0 ≤ x ∧ z.1 ≤ y] then that word z is
such that x� z � y holds. Hence, ({0, 1}∗,�) is indeed dense.

Next we observe that for any word x there exist both words that precede and words
that succeed x in the order induced by �, i.e. ({0, 1}∗,�) is an order without endpoints.
For instance, we have x.0 � x and x� x.1 for any word x ∈ {0, 1}∗.

Finally, {0, 1}∗ must be a countable set, because there is a direct bijective mapping
between {0, 1}∗ and the natural numbers in their binary representation (simply add a
single 1 at the beginning of each word).

A quick remark on the side, before we move on and use this kind of construction
for our own purposes: By Cantor’s Theorem [12], any two countable dense linear orders
without endpoints are isomorphic to each other. In particular the theory of the rational
numbers (Q, <) will be isomorphic to ({0, 1}∗,�). Hence, an immediate consequence of
the above construction would be that the monadic second-order theory of (Q, <) — as
well as that of any other countable unbounded dense linear order — is decidable [30, 61].
This result can serve as a basis for proving decidability results for linear temporal logic
over various flows of time. We refer to Gabbay et al. [30] for more information on this
subject.

Encoding the infinite densely ordered tree. As we have already mentioned at the
beginning of this section, our first step in proving decidability for the full logic OTL will
be to construct an infinite tree where the children of each node form a (countable) dense
linear order without endpoints. We have just seen how to encode a single dense order
into S2S, but this involved collapsing the entire binary tree. How are we going to get
back to a tree while maintaining density at the same time?

The basic ideas underlying our construction are illustrated in Figure 5.4. Rather
than using S2S we are now going to use S4S, the monadic second-order theory of four
successor functions. For the set of children of any given node in the infinite densely
ordered tree we are going to use either the first two successor functions succ0 and succ1

or the second two successor functions succ2 and succ3 to encode a countable dense linear
order without endpoints in the same way as we have just seen. In addition, by alternating

172 Chapter 5. Decidability

◦
Λ

•0

•0

•0 •1 •0 •1

◦1 •0

•0 •1 ◦0 •1

•1

•1

◦
01

•2

•2

•2 •3 ◦2 •3

•3 •2

•2 •3 •2 •3

◦3

•3

◦
110

2/3

◦
01232

0/1

◦
0133

0/1

����
��

��
��

��
��

��
��

�

����
��

��
�

��?
??

??
??

���� ��?
?

���� ��?
?

��?
??

??
??

??
??

??
??

??

����
��

��
�

��?
??

??
??

���� ��?
?

���� ��?
?

______________ ______________

�
�
�
�
�
�
�
�
�
�
�
�
�

_ _

�
�
�
�
�
�
�
�
�
�
�
�
�

����
��

��
��

��
��

��
��

�

����
��

��
�

��?
??

??
??

���� ��?
?

���� ��?
?

��?
??

??
??

??
??

??
??

??

����
��

��
�

��?
??

??
??

���� ��?
?

���� ��?
?

______________ ______________

�
�
�
�
�
�
�
�
�
�
�
�
�

_ _

�
�
�
�
�
�
�
�
�
�
�
�
�

��
��

��
��

�

??
??

??
??

?
____ ____

�
�
�
�
�

_ _ _ _ _ _ _ _ _

�
�
�
�
�

��
��

��
��

�

??
??

??
??

?
____ ____

�
�
�
�
�

_ _ _ _ _ _ _ _ _

�
�
�
�
� ��

��
��

��
�

??
??

??
??

?
____ ____

�
�
�
�
�

_ _ _ _ _ _ _ _ _

�
�
�
�
�

Figure 5.4: Encoding the infinite (densely) ordered tree in S4S

between the two pairs of successor functions, we can simulate the levels in a tree. For
instance, the word 01 represents an element in the dense linear order we can map the
set of words {0, 1}∗ to. Similarly, the word 232 represents an element in the dense linear
order we can embed into {2, 3}∗ in precisely the same way. Now the concatenation of
the two, i.e. the word 01232, may be considered representing a node on the second level
of the infinite ordered tree. Nodes on the third level are again encoded using the first
two successor functions, and so on.

The empty word Λ is used to represent the root of the ordered tree, that is, it is
not part of the dense linear order of nodes from the first level below the root. Similarly,
appending Λ (now considered an element of {2, 3}∗) to the end of, say, 01 yields again
01, i.e. we stay on the first level of nodes. Of course, removing a single element (namely

5.4 General Ordered Trees 173

Λ) from a countable dense linear order without endpoints yields again a countable dense
linear order without endpoints, and the two are isomorphic to each other. Hence, our
construction really does result in an infinite ordered tree where the set of children of any
given node form a countable dense linear order without endpoints which is, for instance,
isomorphic to the order of the rationals (Q, <).

Our suggested embedding of the infinite densely ordered tree into S4S makes use of
all the words in {0, 1, 2, 3}∗, except those that begin with either a 2 or a 3. This set of
words is characterised by the following predicate:

fulltree(x) = ¬(∃y)[root(y) ∧ (y.2 ≤ x ∨ y.3 ≤ x)]

Defining the accessibility relations. We now turn to the definition of the crucial
accessibility relations over the infinite densely ordered tree for our embedding. The
descendant predicate to be defined will have a lot in common with the strict prefix
relation < declared over words in {0, 1, 2, 3}∗: in ‘most’ cases, if x is a proper prefix of
y, then the former will in fact represent an ancestor of the latter in the embedded tree.
However, this is not the case if a node and its prefix encode elements of the same dense
linear order. That is, to find out whether x represents an ancestor of y, we have to check
not only that x is a proper prefix of y, but also that, when we ‘move’ from the encoding
of x to that of y, at least one change in the pair of successor functions used will take
place. For instance, if x ends either in 0 or in 1, then the prefix identical to x within y

has to be immediately followed by either a 2 or a 3. A special case is the empty word
Λ, which represents the root of the embedded tree and thereby an ancestor of any other
node. Here is the formal definition of the descendant predicate for this embedding:

descendant(x, y) = [(∃z)(z.0 = x ∨ z.1 = x) ∧ (x.2 ≤ y ∨ x.3 ≤ y)] ∨
[(∃z)(z.2 = x ∨ z.3 = x) ∧ (x.0 ≤ y ∨ x.1 ≤ y)] ∨
[root(x) ∧ ¬root(y)]

A predicate for the child relation in the infinite ordered tree can be expressed in terms
of the descendant predicate as follows:

child(x, y) = descendant(x, y) ∧ ¬(∃z)[descendant(x, z) ∧ descendant(z, y)]

We should point out that whenever x and y are mapped to words that are being used
for the embedding of the infinite ordered tree (i.e. if both of them are mapped to words
not starting with either 2 or 3), then any word assigned to z validating the formula
descendant(x, z) ∧ descendant(z, y) would also have to belong to that set of words
used for the embedding. Hence, no explicit restriction of the quantification over z in the
above definition of the child predicate is necessary.

Our new definition of the sibling predicate is similar to that of the predicate �,
which we have seen earlier as part of the encoding of a dense linear order into S2S.
We first use the child predicate to check that two given variables x and y do represent
sibling nodes at all. If they do, then either both of them will end in 0 or 1 or both of

174 Chapter 5. Decidability

them will end in 2 or 3. In the former case, we simply copy the definition of � given
earlier; in the latter case we rewrite any 0 as a 2 and any 1 as a 3. We thus end up with
the following definition:

sibling(x, y) = (∃z)[child(z, x) ∧ child(z, y)] ∧
[(x.1 ≤ y ∨ y.0 ≤ x ∨ (∃z)(z.0 ≤ x ∧ z.1 ≤ y)) ∨
(x.3 ≤ y ∨ y.2 ≤ x ∨ (∃z)(z.2 ≤ x ∧ z.3 ≤ y))]

As for the embedding discussed in the previous section, we can again express the
neighbour predicate in terms of the sibling predicate just defined. An important
difference is that, this time, we are going to consider all initial subtrees of the infinite
densely ordered trees, which means that we have to be more careful regarding the quan-
tification over words that may represent sibling nodes in between the two nodes checked
for neighbourhood. We solve this problem by explicitly restricting the quantification over
the variable z in the following definition of neighbour by the set variable T , which is
going to represent the set of nodes making up the initial subtree in question later on:

neighbour(x, y) = sibling(x, y) ∧ ¬(∃z ∈ T)[sibling(x, z) ∧ sibling(z, y)]

Strictly speaking, the neighbour predicate takes three arguments: the two variables
x and y, and the set variable T . However, as the symbol T will stay fixed for all uses
of this predicate, we have not explicitly referred to it on the lefthand side of the above
definition.

Characterising initial subtrees. The last part of our construction concerns again
the characterisation of the set of all initial subtree of the infinite ordered tree, in order
to capture the class of all countable ordered trees. This time, we take all possible initial
subtrees into account, i.e. the definition of our new tree is straightforward. We have to
ensure that the set variable T is interpreted as a subset of the set of words characterised
by the fulltree predicate, that the empty word Λ is part of that set, and that for any
word belonging to the set also the word representing its parent node is included.

tree(T) = (∀x)[T (x) → fulltree(x)] ∧
(∀x)[root(x) → T (x)] ∧
(∀x)(∀y)[child(x, y) ∧ T (y) → T (x)]

Just as any (at most) countable linear order is isomorphic to a substructure of a countable
dense linear order without endpoints, any ordered tree with a set of nodes that is (at
most) countable will be isomorphic to an initial subtree of the infinite densely ordered tree
characterised by the defined predicate fulltree, together with the accessibility relations
JchildK and JsiblingK. That is, if α is an assignment for S4S mapping the set variable
T to a subset of {0, 1, 2, 3}∗ such that α |= tree(T) holds, then (Tα, JchildK, JsiblingK)
will be a countable ordered tree. As for the other direction, every ordered tree with
a countable set of nodes is isomorphic to (Tα, JchildK, JsiblingK) for some variable
assignment α.

5.4 General Ordered Trees 175

Furthermore, by construction, JdescendantK will be the transitive closure of JchildK
and JneighbourK will the immediate successor relation induced by JsiblingK.

Decidability for countable ordered trees. We are now in a position to prove that
our logic OTL, restricted to ordered trees with countable sets of nodes, is decidable.
Let us first capture the notion of validity with respect to this class of frames in a formal
definition:

Definition 5.15 (Validity in countable ordered trees) A formula ϕ is called valid
in countable ordered trees iff T |= ϕ for all ordered trees T = (T,R, S) such that T is a
set that is at most countable.

Here is our intermediate decidability result:

Lemma 5.16 (Decidability for countable ordered trees) The problem of checking
validity in countable ordered trees is decidable.

Proof. Let ϕ be an OTL formula and let P1, . . . , Pn be the propositional letters appearing
in ϕ. We define the S4S formula ϕ∗ as follows:

ϕ∗ = (∀T)[tree(T) → (∀P ′
1⊆T) · · · (∀P ′

n⊆T)(∀x∈T)trT
x (ϕ)]

Here, trT
x is the translation function defined in Table 5.1. The predicates descendant,

child, sibling, and neighbour referred to in the definition of trT
x are understood to

be the respective S4S predicates defined earlier in this section. In particular, the unary
predicate symbol T appearing as a parameter of the translation function trT

x is the same
symbol as that appearing in the definition of the neighbour predicate. The set variables
P ′

1, . . . , P
′
n correspond to the propositional letters P1, . . . , Pn.

The formula ϕ∗ expresses that for any initial subtree (represented by the set variable
T) of the countably infinite densely ordered tree and any possible assignments of subsets
of the set of words assigned to T to the set variables P ′

1, . . . , P
′
n, as well as any possible

assignment of an element of that same set to the variable x, the translation of ϕ will
be true. This is precisely the case iff the formula ϕ is valid in countable ordered trees.
Hence, the problems of checking validity of ϕ in countable ordered trees and checking
validity of ϕ∗ in S4S are in fact equivalent. Given that the latter is known to be
decidable, we find that checking validity with respect to countable ordered trees must
be decidable as well. 2

Lemma 5.16 strongly suggests that OTL is decidable, also without the restriction to
countable frames. In the remainder of this section we are going to verify this intuition
and prove that the concepts of validity, on the one hand, and validity with respect to
countable ordered trees, on the other, do in fact coincide.

176 Chapter 5. Decidability

Eliminating the restriction to countable ordered trees. We say that a formula ϕ
has got a countable ordered tree model iff there is an ordered tree model M = (T,R, S, V)
such that T is an (at most) countable set and M, t |= ϕ holds for some node t ∈ T . The
following lemma states that every formula that has got an ordered tree model will also
have a countable ordered tree model (the converse trivially holds as well).

The corresponding result in classical first-order logic is known as the downward
Löwenheim-Skolem Theorem: every first-order sentence with a model has got a count-
able model [14]. We also have similar results in linear temporal logics: the language of
temporal logic cannot ‘distinguish’ countable models from those that are not countable.
One way of proving this kind of result would be to translate into first-order logic and
then to appeal to the downward Löwenheim-Skolem Theorem [30]. This kind of approach
seems likely to also be applicable in the case of OTL. Nevertheless, we choose to prove
our lemma via a direct argument here.

Lemma 5.17 (Countable models) Every formula with an ordered tree model has got
a countable ordered tree model.

Proof. Let ϕ be a satisfiable formula. We are going to show how we can transform a given
(possibly uncountable) model for ϕ into a countable model. Recall that the depth of an
ordered tree is always countable. Hence, it is enough to reduce the tree underlying the
original model to a tree where every internal node has got a countable set of children; the
overall number of nodes will then be countable as well. In fact, we are going to transform
the original model of ϕ into a general model based on a loosely ordered tree (without
cycles) where every set of pseudo siblings is countable.9 It follows from our construction
in the proof of Lemma 3.39 in Chapter 3 that the corresponding ordered tree will have
at most countably many children for every node (because we have bulldozed using only
integers and rationals, either of which are countable).

A formula ϕ is satisfiable iff there is a model based on an ordered tree where ϕ∨3+ϕ

is satisfied at the root. Hence, without loss of generality, we may assume that our input
formula ϕ is true at the root of the ordered tree of the original model.

Types. Before we turn to the description of the transformation of the original model
into a model based on a countable loosely ordered tree, we introduce the notion of a
type of a node. Let ϕ be our satisfiable input formula and let M = (T,R, S, V) be the
original ordered tree model satisfying ϕ at the root. Furthermore, let sf (ϕ) denote the
set of subformulas of ϕ (including ϕ itself).

We define the type of a node t ∈ T as the set of subformulas of ϕ satisfied at t in
the original model, i.e. as the set {ψ ∈ sf (ϕ) | M, t |= ψ}. The maximal number of
possible types with respect to a given formula ϕ is 2|sf (ϕ)|: each subformula either holds

9Recall that, at the end of Chapter 3, we have shown that a formula is satisfiable (in an ordered tree

model) iff it is satisfiable in a general model based on a loosely ordered tree (Theorem 3.41). Loosely

ordered trees were introduced in Definition 3.33, loosely ordered trees without cycles in Definition 3.35.

5.4 General Ordered Trees 177

at a particular node or it does not hold at that node.10 The number of subformulas of
a formula ϕ is at most equal to the length of ϕ: every propositional letter appearing
in ϕ constitutes a subformula and every operator gives rise to another subformula. If a
subformula appears more than once, then the number of subformulas will in fact be lower
than the length of the formula. In summary, if n is the length of ϕ then the number of
types is at most 2n. (What matters for our purposes here is that the number of distinct
types is finite.)

Constructing the new model. We are now going to describe the process of constructing
a new model based on a loosely ordered tree without cycles. The new tree will be put
together from (some of the) nodes of the original ordered tree. Typically, ‘most’ of the
nodes in the original tree will not feature in the new one. Whether or not a particular
node is used depends on its type. We are going to prune the (possibly uncountable) set
of children of a node in an ordered tree to obtain a countable set of children in a loosely
ordered tree. The central intuition behind this reduction is that at least one node of
every type appearing within that set of children in the original model should survive.
Unavoidable infinite repetitions of types are taken care of by means of the introduction
of clusters. The same reduction process is to be applied to every set of children in the
original model. The new set of nodes T ′ is a subset of the original set T . A node
belongs to T ′ if it survives the pruning operation and if all its ancestors survive as well
(otherwise that node would be disconnected from the root). The new child relation R′

is the original relation R restricted to nodes in T ′. The pseudo sibling and the pseudo
neighbour relations S′ and N ′ are going to be defined as part of the pruning operation to
be described. The new valuation function V ′ is the same as the original V , but restricted
to the new set of nodes, i.e. V ′(P) = V (P) ∩ T ′ for any propositional letter P .

Let us now turn to the details of our inductive pruning operation for a given set of
sibling nodes. In a preparatory step we identify for every node t its maximal sequence of
neighbours MSN (t), which contains all those siblings of t (including t itself) for which
there are only a finite number of siblings in between that node and t. Such a sequence
may or may not be finite, but observe that MSN (t) will be countable for any node t. For
a dense node t without immediate neighbours, for instance, MSN (t) will only contain t

itself. For every node t, either all or none of the nodes in MSN (t) will be used for the
new model. Those that will be used will become non-cyclic N -sequences in the loosely
ordered tree.

A far as possible, we are going to try to put these kinds of sequences together into
clusters. We say that a given set of sibling nodes can be turned into a cluster iff every
node in that set has got both a lefthand and a righthand sibling of each one of the types
covered by the nodes in the set. That is, whenever we cannot turn a set into a cluster

10The number of different types that a node could actually have will often be much smaller than that,

because the set of formulas forming a type is certainly required to be propositionally consistent. If, for

example, we have a negated formula ¬ψ as a subformula of ϕ then ψ will also be a subformula, but ψ

and ¬ψ can never be satisfied at the same node in a model.

178 Chapter 5. Decidability

then that set will contain a node with a type that has no further occurrences to the right
of that set in the original model (and accordingly for the lefthand side).

We are now going to pick the sequences to be used for the new model. We start
by selecting an arbitrary node t, together with the associated sequence MSN (t) (from
the set of children we want to reduce). If that sequence can be turned into a cluster,
we refer to it as the current cluster, otherwise as the current sequence. The procedure
of selecting sequences to the right of MSN (t) is inductively defined as follows (a similar
process applies to sequences to the left). We first consider the case where the node picked
in the previous round has not become part of a cluster:

(1) If there are no more nodes to the right of the current sequence, then stop.

(2) Otherwise, pick a node t to the right such that any node in between the current
sequence and t has got a type that also occurs again somewhere to the right of t.
(This is always possible.)

(3) Identify the maximal sequence of neighbours MSN (t) and declare it the new cluster
if possible; otherwise declare it the new sequence.

Now for the case where the previously picked node has become part of a cluster:

(1) If there is no more node to the right of the current cluster that has a type not
already represented in the current cluster, then stop.

(2) Otherwise, pick a node t (with a type not covered by the current cluster) to the
right such that any node in between the current cluster and t has got a type that
also occurs somewhere to the right of t. (Again, this is always possible.)

(3) Identify MSN (t). If possible, add it to the current cluster. Failing that, if possible,
declare it the new current cluster. If neither is possible, declare it the new current
sequence.

Whenever the new current structure is a sequence or a new cluster (which could not just
be added to the previous one), the number of types ever to be considered again to the
right will decrease by at least one (because the reason for introducing either a sequence or
a new cluster is that at least one type has no more occurrences to the right). Otherwise,
that is, if we enlarge the current cluster, at least the number of types to be considered
in the next step will decrease. Hence, this process will eventually terminate.

If we apply the same technique to nodes to the left of the node picked in the first
round, then we end up with an ordering of clusters and irreflexive points, i.e. we end
up with a set of pseudo siblings and pseudo neighbours of a loosely ordered tree. We
define the pseudo neighbour relation N ′ by connecting consecutive nodes in any maximal
sequence of neighbours. The pseudo sibling relation S′ is the smallest extension of the
original S (restricted to nodes in T ′) that also relates any two nodes in the same cluster.
This concludes our definition of the new model M′ = (T ′, R′, S′, N ′, V ′). Clearly, T ′

will be a countable set, because the children of every node are now made up of a finite
number of (countable) sequences of neighbours.

5.4 General Ordered Trees 179

Satisfiability in the new model. It remains to be shown that the new model M′ is indeed
a model for our input formula ϕ. To show that this is the case we prove the following
stronger result:

Claim: For every node t ∈ T ′ in the new model and every subformula ψ of
the input formula ϕ we have M′, t |= ψ iff ψ belongs to the type of t.

We can prove this claim by induction over the the structure of subformulas ψ of the
input formula. Without loss of generality, we only need to consider the core operators of
our language (as covered, for instance, by Definition 3.18). For the base case, assume ψ
is a propositional letter. The claim then follows immediately from the definition of the
new valuation function V ′. Also, > will be true at any node in any model and belong to
any type, provided it is a subformula of ϕ.

For the induction step, we consider each one of the core operators in turn:

(1) Negation. Suppose the subformula in question is ¬ψ. We have M′, t |= ¬ψ iff
M′, t 6|= ψ. By the induction hypothesis, the latter is equivalent to ψ not being
part of the type of t, i.e. to ¬ψ belonging to the type of t.

(2) Conjunction. We have M′, t |= ψ1∧ψ2 iff both M′, t |= ψ1 and M′, t |= ψ2 iff both
ψ1 and ψ2 belong to the type of t (induction hypothesis) iff ψ1 ∧ψ2 belongs to the
type of t.

(3) Parent operator. M′, t |= eψ holds iff there exists a t′ ∈ T ′ such that (t′, t) ∈ R′

and M′, t′ |= ψ. By the induction hypothesis, the latter is equivalent to ψ being
part of the type of t′, while the former means that we also have (t′, t) ∈ R in the
original model. Hence, M′, t |= eψ is equivalent to M, t |= eψ, which in turn is
equivalent to eψ being a member of the type of t.

(4) Child operator. If M′, t |= 3ψ holds then t will have a child t′ at which ψ holds.
Hence, by the induction hypothesis, ψ will belong to the type of t′ and 3ψ to the
type of t.

The other direction is more interesting. Suppose 3ψ belongs to the type of t, i.e.
we have M, t |= 3ψ in the original model. Then t must have a child t′ where ψ is
true, i.e. ψ belongs to the type of t′. Our model transformation is such that, for
every type present amongst the children of a node in the original model, at least
one node of that type will survive. Hence, t′ will have a sibling t′′ (possibly t′ itself)
of the same type which is still a child of t in the new tree. Now, by the induction
hypothesis, we get M′, t′′ |= ψ and thereby also M′, t |= 3ψ.

(5) Descendant operator. A formula of the form 3+ψ belongs to the type of t iff t has
got a child with a type containing either ψ or 3+ψ. This observation together with
an argument along the lines of that used for the previous case covers the induction
step for the descendant operator.

180 Chapter 5. Decidability

(6) Neighbour operators. By construction, whenever a node t survives the pruning op-
eration, so do its immediate neighbours (if any), because we have only manipulated
maximal sequences of neighbours as a whole. Hence, truth of subformulas of the
form eψ as well as eψ is not affected.

(7) Sibling operators. These are the only truly non-trivial cases. We start with the
proof from left to right for subformulas of the form 3ψ. Suppose we have M′, t |=
3ψ, i.e. there exists a node t′ ∈ T ′ such that (t, t′) ∈ S′ andM′, t′ |= ψ. This means
that we have either (t, t′) ∈ S in the original model as well or t and t′ are part of
the same cluster in the new model. In the former case, it follows immediately from
the induction hypothesis that ψ will be in the type of t′ and, hence, 3ψ will be in
the type of t. Now consider the case where (t, t′) ∈ S does not hold, but the two
nodes are part of the same cluster. Then, by our condition for the admissibility of
turning a set of nodes into a cluster, t must have had a righthand sibling with the
same type as t′ in the original model. Hence, also in this case, 3ψ will belong to
the type of t.

Now suppose 3ψ belongs to the type of node t. Then t must have got a righthand
sibling t′ in the original model where ψ is true, i.e. ψ belongs to the type of t′.
By construction, whenever t has got a righthand sibling of a certain type in the
original model, then it will have either a (strictly) righthand sibling of the same
type also in the new model, or it will at least share a cluster with a node of that
type. In other words, there exists a node t′′ ∈ T ′ with (t, t′′) ∈ S′ that has the same
type as t′. Hence, by the induction hypothesis, we have M′, t′′ |= ψ and thereby
also M′, t |= 3ψ.

The case of subformulas of the form 3ψ is accounted for in an analogous manner.

This concludes our inductive proof of the above claim. Recall that a subformula ψ of ϕ
belongs to the type of a node t iff we have M, t |= ψ in the original model. Hence, given
that ϕ (which is a subformula of itself) is true at the root in the original model M and
given that the root of the tree is part of T ′, by the above claim, the new model M′ will
satisfy ϕ at the root of the new loosely ordered tree.

Wrapping up. In summary, we have shown that for any ordered tree model M for a
given satisfiable formula ϕ there exists a general modelM′ based on a loosely ordered tree
(without cycles) with a countable set of nodes that also satisfies ϕ. The latter, in turn,
implies that ϕ is satisfiable in a countable ordered tree model, namely the model we get
if we bulldoze and unravel this loosely ordered tree model according to the construction
outlined in the proof of Lemma 3.39. This concludes our proof of Lemma 5.17. 2

Decidability. Putting two and two together (or rather Lemmas 5.16 and 5.17), our
main decidability result now follows almost immediately:

Theorem 5.18 (Decidability) The modal logic of ordered trees is decidable.

5.4 General Ordered Trees 181

Proof. By Lemma 5.17, any formula that does not have a countable ordered tree model is
not satisfiable at all. The converse trivially holds as well. Hence, the notions of validity
and validity with respect to countable ordered trees coincide. By Lemma 5.16, checking
the latter is a decidable problem, i.e. the problem of checking validity in OTL must be
decidable as well. 2

Was this result to be expected? Although our embedding of OTL into the decid-
able logic S2S is of a certain complexity, one may argue that, given Rabin’s Theorem,
the decidability of a modal logic based on some class of trees is not that surprising a
result. On the other hand, two-dimensional modal logics with interacting modalities can
often be undecidable. In particular, OTL may be considered a complex combination
of two separate logical systems (the vertical and the horizontal component) that bears
certain similarities to product logics that are typically found to be undecidable [31].11

Another reason why we consider the above Decidability Theorem an important result
is the fact that, under our extended temporal logic interpretation, OTL may be consid-
ered an (albeit restricted) interval logic (rather than just a point-based temporal logic);
and modal interval logics, such as the logic of Halpern and Shoham [37] for instance, are
also often found to be undecidable.

Proving decidability directly. A possible objection to decidability proofs such as
the ones we have given in this chapter would be that they provide only little intuition on
why the logic in question is decidable. In that respect, proofs that establish decidability
by a direct argument rather than the reduction to a different problem (in our case the
validity problem for a decidable monadic second-order theory) have certain advantages.
On the other hand, proofs based on reduction, of course, are often easier to produce.

In [19] we have put forward an idea for a direct proof of the decidability of OTL
and sketched details of a proof for the case of discretely ordered trees. This approach
is, in part, inspired by techniques used by Sistla and Clarke [66] to establish a number
of upper complexity bounds for propositional linear temporal logics. There are also
connections to our proof of Lemma 5.17. The central idea is to show that OTL has
the (abstract) bounded finite model property, that is, to show that any formula ϕ that is
satisfied by some model is also satisfied by a model of limited size, where the maximal
size of the model is a function of the length of ϕ. Decidability is a direct consequence
of the bounded finite model property, because a näıve decision procedure could simply
enumerate all potential models up to the known maximal size and check each one of
them.

11For example, if we use the modal operators referring to the reflexive closures of our transitive ac-

cessibility relations, then OTL validates two of the three formulas used to axiomatise the most basic

properties of product logics, namely commutativity and the Church-Rosser property [31]. These formulas

are 3∗3∗A → 3∗3∗A, which characterises one direction of commutativity (but the converse does not

hold), and 3∗2∗A → 2∗3∗A, which characterises the Church-Rosser property. See also our discussion

of this issue in Chapter 3 (page 46).

182 Chapter 5. Decidability

To be precise, in the case of OTL, we have (or rather expect to have) an abstract
finite model property, because the models of bounded size are in fact not necessarily
based on ordered trees anymore (or loosely ordered trees or any other class of p-morphic
pre-images of ordered trees), but on structures that finitely represent (possibly) infinite
ordered tree models. Our proof idea involves pruning and transforming a given model
for an input formula ϕ in ways not dissimilar from our proof of the ‘countable model
property’ stated in Lemma 5.17. For example, it is possible to show that, whenever two
sibling nodes t1 and t2 in a given ordered tree model have the same type (with respect
to the reference formula ϕ),12 then we can remove the stretch of nodes (including the
subtrees they dominate) between t1 and t2 (including either one of them) from the model
without affecting satisfiability of ϕ, provided the node satisfying ϕ itself does not get
pruned away and for any formula of the form 3ψ or 3+ψ in the type of the parent
of t1 and t2 at least one witness remains on the tree. Of course, for instance in the
case of an unbounded set of sibling nodes, this kind of model pruning alone will not be
sufficient to reduce an infinite model to a finite structure. In addition, we propose to
reduce infinite sequences of neighbouring nodes to periodic sequences, which can then
be represented using only a finite amount of space. Infinite repetitions of types in dense
parts of an ordered tree model can be represented by introducing clusters (see proof
of Lemma 5.17). The vertical dimension of an ordered tree can be reduced in a similar
manner. By adding meta-information (on the repetition of types of nodes along branches)
we can transform trees of infinite depth into finite structures.

We believe this to be a promising approach, but a number of details of this method
of establishing a bounded finite model property — and thereby proving decidability —
still remain to be worked out. So while the reduction techniques exploited in this chapter
provide excellent tools to establish theoretical results, the model pruning approach may,
in the long run, yield a better understanding of ordered tree logics. At this stage,
however, we settle for the present proof of Theorem 5.18, but note the continuation of
the programme started in [19] as an important direction for future work.

5.5 Summary

In this chapter, we have used embeddings into the monadic second-order logic of two
successor functions as a tool to establish decidability results for ordered tree logics. We
have proved decidability in the general case as well as for two specific classes of ordered
trees. We briefly review the main points.

Decidability over finite binary trees. Decidability of our logic with respect to
frames that are finite binary trees is an almost immediate consequence of the fact that
the monadic second-order theory of two successor functions remains decidable if we add
quantification over set variables that must be interpreted as finite sets of words. We have

12The notion of a type of a node has been defined in the proof of Lemma 5.17.

5.5 Summary 183

used this case study to introduce the translation of OTL formulas into second-order logic
and to show how we can quantify over the set of all initial subtrees of the infinite tree as
a means of taking the class of all admissible frames into account.

Decidability over discretely ordered trees. Next we have shown that the modal
logic of discretely ordered trees is decidable by embedding it into the monadic second-
order theory of ω successor functions. Besides establishing decidability of an interesting
logic in its own right, this case study is also an example for a rather more complex
embedding. The main difference to the previous case is that this time we were not using
the infinite tree underlying the second-order theory in question directly, but rather a
substructure of that theory. The interesting aspects of this proof are in particular the
characterisation of this substructure and the definition of the accessibility relations of
OTL with respect to the elements of this structure.

Decidability in the general case. As a first step towards proving decidability of
OTL we have shown that the modal logic of countable ordered trees is decidable by
embedding it into the monadic second-order theory of four successor functions. Our
construction extends the well-known embedding of countable dense linear orders without
endpoints into the infinite binary tree by alternating between two pairs of successor
functions to encode the vertical dimension of an ordered tree.

In a second step, we have shown that, in fact, OTL is not rich enough a language
to distinguish between structures that are countable and those that are not. The proof
is constructive in the sense that it shows how, in theory, a model based on a countable
ordered tree could be constructed given an arbitrary ordered tree model satisfying a
particular formula. Decidability of the full logic then follows from our result for countable
ordered trees.

Chapter 6

Zooming out

We conclude by reflecting on possible extensions to our modal logic of ordered trees. This
chapter also gives a brief summary of the main results obtained and states a number of
open problems and suggested directions for further investigation.

6.1 Extensions

In this section we present an extended version of our modal logic of ordered trees. We
suggest a number of additional modal operators to obtain an even more expressive logic.
This discussion forms part of our concluding chapter, because it is, essentially, a collection
of ideas for future directions of research, rather than a formal investigation into another
logic.

Extended modal operators. Given our standard interpretation of OTL as a tem-
poral logic, a natural extension would be to include also modal operators such as the
until -operator familiar from linear temporal logic. In fact, we may even introduce until -
style operators for the vertical dimension of an ordered tree. We start by defining the
syntax of well-formed formulas for this extended language.

Definition 6.1 (Extended formulas) The set of well-formed formulas of extended
OTL is the smallest set such that every simple OTL formula is an extended formula
and, if ϕ and ψ are extended formulas, so are (ϕ since ψ), (ϕ until ψ), (ϕ up-to ψ),
and (ϕ down-to ψ).

Again, in practice we are going to drop unnecessary brackets whenever the structure of
formulas is clear without them.

Semantics for the extended language. The semantics of the extended logic is based
on the same notion of ordered tree models as before. Recall that an ordered tree model
is a pair M = (T , V) where T is an ordered tree and V is a suitable valuation function

185

186 Chapter 6. Zooming out

(see Definition 3.5). As we shall see, most operators turn out to be definable (as ab-
breviations on the syntactic level), which is why the following definition only covers the
‘core’ operators.

Definition 6.2 (Extended truth conditions) We inductively define the notion of an
extended formula being true in an ordered tree model M = (T , V) at a node t ∈ T as
follows:

(1) M, t |= P iff t ∈ V (P) for propositional letters P ;

(2) M, t |= >;

(3) M, t |= ¬ϕ iff M, t 6|= ϕ;

(4) M, t |= ϕ ∧ ψ iff M, t |= ϕ and M, t |= ψ;

(5) M, t |= ϕ since ψ iff t has a left sibling t′ with M, t′ |= ψ, and M, t′′ |= ϕ holds
for all nodes t′′ that are left siblings of t and right siblings of t′;

(6) M, t |= ϕ until ψ iff t has a right sibling t′ with M, t′ |= ψ, and M, t′′ |= ϕ holds
for all nodes t′′ that are right siblings of t and left siblings of t′;

(7) M, t |= ϕ up-to ψ iff t has an ancestor t′ with M, t′ |= ψ, and M, t′′ |= ϕ holds
for all nodes t′′ that are ancestors of t and descendents of t′;

(8) M, t |= ϕ down-to ψ iff t has an descendent t′ with M, t′ |= ψ, and M, t′′ |= ϕ

holds for all nodes t′′ that are descendents of t and ancestors of t′.

Definable operators. The remaining propositional connectives and modalities of our
language may be treated as definable operators. To start with, we can define falsum
in terms of verum and negation: ⊥ = ¬>. Now we can give the following syntactic
definitions for our next- and diamond-operators:

eϕ = ⊥ since ϕ 3ϕ = > since ϕeϕ = ⊥ until ϕ 3ϕ = > until ϕeϕ = ⊥ up-to ϕ 3ϕ = > up-to ϕ

3ϕ = ⊥ down-to ϕ 3+ϕ = > down-to ϕ

These definitions coincide with the semantic characterisations of the same modalities
originally given in Definition 3.6. Take, for instance, the case of the right sibling modality
3. A formula of the form 3ϕ is supposed to be true at a node t iff t has got a righthand
sibling t′ at which ϕ is true. According to our new syntactic definition the formula 3ϕ

is equivalent to (> until ϕ). The latter has been defined to be true at node t iff t has a
right sibling t′ such that ϕ holds at t′ and > holds at all nodes t′′ that are right siblings of
t and left siblings of t′. But the second part of this condition will always be true, because
> has been defined to hold at every node in a tree. Hence, the truth condition reduces to

6.1 Extensions 187

the existence of a righthand sibling t′ at which ϕ is true, i.e. the two definitions coincide
as claimed.

As an example for a next-operator consider the case of the parent modality e. Ac-
cording to our original definition, eϕ is true at a node t iff t has got a parent t′ at which
ϕ holds. By Definition 6.2, the formula (⊥ up-to ϕ) has got the same semantics. It is
satisfied at a node t iff t has got an ancestor t′ at which ϕ is true and the formula ⊥ is
true at all nodes t′′ which are both ancestors of t and descendants of t′. But ⊥ cannot
be true at any node, that is, there cannot be any nodes in between t and its ancestor t′.
Hence, t′ must be the parent of t.

Box-operators and the remaining propositional connectives can be defined in the same
way as before (see Definition 3.7).

Global since and until. In analogy to the global past and future modalities intro-
duced in Chapter 3 (see page 48), we can now even define global versions of the until -style
operators. We first define a non-strict version of up-to:

ϕ up-to∗ ψ = ψ ∨ (ϕ ∧ (ϕ up-to ψ))

That is, (ϕ up-to∗ ψ) is true at a node t iff ϕ is true all the way up (including t itself)
to an ancestor of t where ψ holds, or ψ is already true at t itself.

The global versions of since and until can now be defined like this:

ϕ since ψ = 22∗ϕ up-to∗ (2∗ϕ since (ψ ∨ (22∗ϕ down-to (22∗ϕ ∧ ψ))))
ϕ until ψ = 22∗ϕ up-to∗ (2∗ϕ until (ψ ∨ (22∗ϕ down-to (22∗ϕ ∧ ψ))))

The formula (ϕ until ψ), for instance, is true at a node t iff ϕ is true at all righthand
siblings of t (including their descendants) and the same is true for all ancestors of t
up to some ancestor for which ϕ is true until a particular righthand sibling at which
either ψ is true or which at least has a descendant where ψ is true and ϕ is true at all
lefthand siblings (and their descendants) of the nodes we pass when going down to that
node satisfying ψ. In other words, there is a node somewhere to the right of t at which
ψ holds and ϕ is true at all the nodes in between. This is the usual definition of an
until -operator, here with respect to the global left-to-right ordering over the nodes in an
ordered tree. We can easily check that we get 3ϕ ≡ > until ϕ, etc., as expected.

Is there a ‘global next-operator’? Observe that it does not make sense to define
a (horizontal) global next-operator, as there is no notion of a unique global successor
node. However, the formula (⊥ until ϕ) yields something similar: It is true at a node
t whenever ϕ is true either at the righthand neighbour of t, or at a leftmost descendant
of the righthand neighbour of t, or — in case t is itself a rightmost child — at the right-
hand neighbour (or one of its leftmost descendants) of a node of which t is a rightmost
descendant.

Analogously, truth of the formula (⊥ since ϕ) at t requires ϕ to be true at one of
the nodes that are closest to t on its lefthand side.

188 Chapter 6. Zooming out

The Standard Translation stx

stx(P) = P ′(x) for propositional letters P
stx(>) = >

stx(¬ϕ) = ¬ stx(ϕ)
stx(ϕ ∧ ψ) = stx(ϕ) ∧ stx(ψ)

stx(ϕ since ψ) = (∃z)[z < x ∧ stz(ψ) ∧ (∀y)(z < y ∧ y < x→ sty(ϕ))]
stx(ϕ until ψ) = (∃z)[x < z ∧ stz(ψ) ∧ (∀y)(x < y ∧ y < z → sty(ϕ))]
stx(ϕ up-to ψ) = (∃z)[z ≺ x ∧ stz(ψ) ∧ (∀y)(z ≺ y ∧ y ≺ x→ sty(ϕ))]

stx(ϕ down-to ψ) = (∃z)[x ≺ z ∧ stz(ψ) ∧ (∀y)(x ≺ y ∧ y ≺ z → sty(ϕ))]

Table 6.1: The standard translation for extended OTL formulas

Translation into first-order logic. Table 6.1 defines the standard translation from
extended OTL into first-order logic. We use the binary predicate symbols < and ≺
to refer to siblings and descendants, respectively.1 For every propositional letter P
appearing in a modal formula we introduce a unary first-order predicate P ′. The result of
translating an OTL formula ϕ is a first-order formula stx(ϕ) with a single free variable
x. If we fix the meaning of the predicates < and ≺ in such a way that they are always
interpreted as the sibling order and the descendant relation of a proper ordered tree in
the sense of Definition 3.4, then stx defines a translation from OTL into the monadic
first-order theory of ordered trees.

Expressive completeness. An interesting question would now be whether our lan-
guage of extended OTL is expressively complete with respect to certain classes of ordered
trees, that is, whether for every monadic first-order formula (of the appropriate theory)
there is a suitable modal formula such that the translation of the latter is logically
equivalent to the former.2

This question is of course related to the question of expressive completeness in linear
temporal logics. The language of since and until, for instance, is known not to be expres-
sively complete for the class of general linear orders (but the so-called Stavi connectives
are required as well [30, 32]). We would expect to require similar operators also for the
case of general ordered trees. As shown by Kamp [44], for strongly discrete orders, since
and until (together with negation and conjunction) do form an expressively complete
set of operators, so there may be a chance that our extended language is expressively
complete with respect to the monadic first-order theory of discretely ordered trees. We
should stress, however, that at this stage we do not have a clear picture on how the
additional vertical dimension in an ordered tree (as opposed to one-dimensional linear
orders) affects expressive completeness results.

1That is, now the symbol ≺ is used to refer to the transitive vertical relation in an ordered tree,

whereas in Chapter 4 we have used the same symbol to refer to the intransitive child relation.
2This question has been suggested to me by Anuj Dawar (personal communication).

6.1 Extensions 189

Decidability. The decidability proofs for OTL with respect to either finite binary trees
or discretely ordered trees given in Chapter 5 (Theorems 5.12 and 5.14, respectively) can
easily be amended to also cover the additional until -style operators. The same is true
for decidability with respect to ordered trees where the set of nodes is required to be
countable (Lemma 5.16). All that is required is an extension of the translation function
trT

x from modal formulas into monadic second-order logic given in Table 5.1 on page 162.
As we have predicates encoding the relevant accessibility relations available to us, such an
extension of the translation function is straightforward (and very similar to the standard
translation function into first-order logic). Here is the definition of trT

x for the two
additional horizontal operators:

trT
x (ϕ since ψ) = (∃z ∈ T)[sibling(z, x) ∧ trT

z (ψ)
∧ (∀y ∈ T)[sibling(z, y) ∧ sibling(y, x) → trT

y (ϕ)]]

trT
x (ϕ until ψ) = (∃z ∈ T)[sibling(x, z) ∧ trT

z (ψ)
∧ (∀y ∈ T)[sibling(x, y) ∧ sibling(y, z) → trT

y (ϕ)]]

And here is the translation for the two vertical until -style operators:

trT
x (ϕ up-to ψ) = (∃z ∈ T)[descendant(z, x) ∧ trT

z (ψ)
∧ (∀y ∈ T)[descendant(z, y) ∧ descendant(y, x) → trT

y (ϕ)]]

trT
x (ϕ down-to ψ) = (∃z ∈ T)[descendant(x, z) ∧ trT

z (ψ)
∧ (∀y ∈ T)[descendant(x, y) ∧ descendant(y, z) → trT

y (ϕ)]]

To be able to prove decidability for extended OTL without any restrictions on the class of
admissible ordered trees, we would also have to show that the extended language cannot
distinguish countable ordered trees from uncountable ones. For the language without
until -style operators this was shown in Lemma 5.17.

While we strongly conjecture that the extended language cannot distinguish countable
and uncountable models either, and hence, that extended OTL is decidable, the method
of proof chosen for Lemma 5.17 is not immediately amenable to the extended language;
so for the time being this issue remains an open question.

Interpretation as a restricted interval logic. We conclude our discussion of the
proposed extensions to the modal logic of ordered trees by showing how we can use
the extended logic to describe most of the relations that may hold between two time
intervals. As we have already stressed earlier (see, for instance, page 45), OTL may
be interpreted as an extended temporal logic, in which case the nodes in the underlying
ordered tree represent time periods. Below we are going to make this reading more
explicit by defining a number of additional modal operators inspired by the interval logic
of Halpern and Shoham [37].

A time interval x may lie before another interval y, it may be during y, or the two
may be equal. In fact, two temporal intervals x and y may be related by any of the basic
interval relations shown in Figure 6.1, often referred to as Allen relations, due to Allen’s

190 Chapter 6. Zooming out

x equals y

x before y
y after x

x meets y
y met-by x

x overlaps y
y overlapped-by x

x starts y
y started-by x

x during y
y contains x

x finishes y
y finished-by x

� y �� x �

� x �

� x �

� x �

� x �

� x �

� x �

� y �

Figure 6.1: Allen’s 13 interval relations

influential paper [1]. It is easy to see that they are mutually exclusive and that there are
no other interval relations besides the 13 shown.

Halpern and Shoham [37] have proposed a multi-modal logic over intervals where
each of the 13 interval relations represents an accessibility relation and thereby gives rise
to a pair of modal operators. In this logic, a formula such as 〈contains〉ϕ, for instance,
expresses that there exists a time interval lying during the current interval (i.e. the
current interval contains the other) at which the formula ϕ is true. This is arguably the
most natural definition of a modal interval logic. Unfortunately, the resulting logic is not
decidable, in fact, it is not even close to being decidable. Given the importance of time
intervals to many applications in artificial intelligence (such as planning, for instance)
on the one hand, and the popularity of modal logics as a formal tool in many related
areas (such as epistemic logics in the area of multi-agent systems) on the other, the lack
of a decidable modal interval logic not only constitutes a serious gap but may also seem
rather surprising. We believe that OTL provides a useful alternative in many cases and
the following encoding of modalities based on eleven of the interval relations (excluding
overlaps and overlapped-by) may further substantiate this claim.

For the purpose of the following operator definitions, let us assume that ordered trees
are not degenerate, i.e. let us assume that there are no nodes in a tree with just a single
child. Otherwise it would not be clear whether to interpret a single child as the same
interval as its parent, or possibly as an interval occurring strictly during the interval
represented by its parent. We have seen in Chapter 3 (on page 54) how to characterise
non-degenerate trees syntactically.3

3Other restrictions may be imposed as well, e.g. infinite depth (if every interval should have subin-

tervals), weak discreteness (if every interval before another interval should also meet some interval), or

boundedness (if every interval with subintervals should have intervals starting and finishing that interval).

6.1 Extensions 191

To begin with, we can use the global past and future modalities 3 and 3 to encode
modal operators relating to the relations before and after . Two intervals x and y are in
the before-relation iff x occurs strictly before y and their endpoints do not meet. In the
context of an ordered tree this means that the node representing x needs to lie somewhere
to the left of y (anywhere in the tree), but the two cannot be neighbours or be closet to
each other with respect to the global left-to-right ordering. We can exclude immediate
successors simply by using the global future modality twice:

〈before〉ϕ = 33ϕ 〈after〉ϕ = 33ϕ

We are only going to give explicit definitions of the interval diamond-operators here.
Box-operators can be defined on top of them in the usual fashion. For instance, we may
define [before]ϕ = ¬〈before〉 ¬ϕ, in which case [before]ϕ would be true at a node t iff ϕ

is true at every node in the tree somewhere to the right of t, (possibly) excluding any of
the nodes closest to t on any level of the tree.

Two intervals are said to meet iff the endpoint of the first happens to be the starting
point of the second, that is the latter immediately follows the former. In extended OTL
this corresponds to the notion of a ‘global next-operator’ discussed earlier in this chapter:

〈meets〉ϕ = ⊥ until ϕ 〈met-by〉ϕ = ⊥ since ϕ

Next we turn to the definition of diamond-operators pertaining to the interval relations
during and contains. Two intervals x and y are in the during-relation iff the former
occurs strictly during the latter, i.e. the starting point of x lies after that of y, while the
endpoint of x strictly precedes that of y. If we wish to encode this relation in OTL we
cannot simply use the ancestor modality 3, but we have to ensure that the reference
node x is neither one of the leftmost nor one of the rightmost descendants of the node
y representing the larger interval. In the following definition of 〈during〉 we make use
of the propositions leftmost and rightmost defined in Chapter 3 (on page 50). The
central idea is to use the ancestor operator three times, twice in its reflexive form 3∗

and once in its usual irreflexive form. At the two intermediate nodes we ensure that we
are not in a leftmost or a rightmost node, respectively.

〈during〉ϕ = 3∗[¬leftmost ∧3∗(¬rightmost ∧3ϕ)] ∨
3∗[¬rightmost ∧3∗(¬leftmost ∧3ϕ)]

That is, when moving up from the current node to its ancestor representing the larger
interval during which the current one occurs we are going to encounter at least one node
that is not a leftmost child and at least one node that is not a rightmost child. These
may in fact be the same node, and they may also be the current one (but not the one
representing the larger interval).

The definition of an operator for contains, the inverse of during , is analogous:

〈contains〉ϕ = 3+[¬leftmost ∧3∗(¬rightmost ∧3∗ϕ)] ∨
3+[¬rightmost ∧3∗(¬leftmost ∧3∗ϕ)]

192 Chapter 6. Zooming out

An interval x starts another interval y iff the starting points of the two coincide and x

is strictly shorter than y. In an ordered tree, we would call a node ‘starting’ one of its
ancestors iff it is either its leftmost child or the leftmost child of its leftmost child, and
so on. Here are the corresponding definitions:

〈starts〉ϕ = leftmost ∧ (leftmost up-to ϕ)
〈started-by〉ϕ = leftmost down-to (leftmost ∧ ϕ)

The definitions of modal operators for finishes and finished-by are similar:

〈finishes〉ϕ = rightmost ∧ (rightmost up-to ϕ)
〈finished-by〉ϕ = rightmost down-to (rightmost ∧ ϕ)

The thirteenth interval relation is equals. If, for the sake of completeness, we want to
include a corresponding modality into our system, we may use the following definition:

〈equals〉ϕ = ϕ

We cannot express modalities relating to either overlaps or overlapped-by , because we
cannot encode the concept of two intervals overlapping in OTL. In that sense, our logic
provides only a restricted interval logic, which captures some aspects of time intervals,
but not all of them. The important aspect which it does capture is that we can decompose
intervals into smaller parts, which is not possible for a point-based temporal logic.

As we have seen, extended OTL is expressive enough to distinguish between concepts
such as one interval occurring strictly during another interval, starting it, or finishing it.
However, often such level of detail will not be necessary, in which case we recommend
using the original OTL operators.

6.2 Summary of Main Results

Contribution. It is customary to explicitly spell out the contributions made to the
chosen field of study, either at the end or the beginning of a thesis. We would like to think
that the main contribution of this work lies simply in the inauguration of a ‘good’ logic.
The conception of our modal logic of ordered trees has been inspired by a real problem,
namely the lack of modularity in temporal logic specifications. Our proposed solution
addresses this problem by formalising the concept of ‘zooming in’ and this formalisation
has led to the definition of a new logic, which is simple and intuitive. Relevance to
applications as well as simplicity and intuitiveness are certainly important aspects of a
‘good’ logical system.

Technical results. That simple does not mean trivial, becomes clear when we consider
the extensive technical apparatus required to master this new logic. This is where our
concrete results come into play:

6.3 Open Problems 193

• Our investigations described in the later parts of Chapter 3 (culminating in Theo-
rem 3.41) have shown that our modal logic of ordered trees is, in fact, characterised
by the class of frames that we call loosely ordered trees.

• In Chapter 4 we have given a finite axiomatisation of the fragment of our logic
excluding the transitive descendant modalities, which is complete (as shown in
Theorem 4.47) for formulas at the root of a tree (and in fact for any formula
associated with a specific level in a tree).

• Finally, in Chapter 5 we have proved that our logic is decidable (Theorem 5.18) by
showing how it can be embedded into the (decidable) monadic second-order theory
of two successor functions.

On top of that, particularly in the earlier parts of Chapter 3, we have demonstrated the
potential of OTL in view of applications that require a flexible and expressive temporal
representation language.

6.3 Open Problems

In this thesis, we have motivated, defined, and begun to analyse a new logic. This is
only the beginning; a lot of work, both theoretical and practical, still needs to be done.
In what follows, we list a number of open problems and put forward what we feel would
be important areas of further investigation.

Axiomatisation. The axiomatisation of Chapter 4 is not entirely satisfactory. Ideally,
we would like to be able to give a complete finite axiomatisation for our logic that also
covers the transitive descendant modalities. At present, however, we do not know whether
such a system exists. Our first open question thus reads as follows:

• Is full OTL, including the descendant modalities, finitely axiomatisable?

We conjecture that, if there is a finite axiomatisation of full OTL, then it may well
be the system of Table 4.1 on page 104 together with the induction axiom discussed
on page 100, albeit, at this stage, we cannot offer any good advice on how to prove
completeness for this system.

The natural next step would be to attempt to axiomatise the extended logic presented
in the first section of this chapter:

• Axiomatise extended OTL.

For the full extended logic, including, in particular, the down-to-operator pertaining
to the transitive descendant relation, we would expect to encounter the same kind of
problems as before. Apart from that, we would also have to address the usual added
difficulties faced with when axiomatising until -style operators over flows of time that are
not necessarily discrete [62].

194 Chapter 6. Zooming out

Decidability and computational complexity. At the end of Chapter 5, we have
briefly sketched an alternative method for proving decidability of OTL based on tech-
niques that allow us to prune and transform a given model and thereby show that the
logic has the (abstract) bounded finite model property. However, various details of the
proof based on these ideas still remain to be worked out:

• Give a direct proof for the decidability of OTL.

Such a direct proof of decidability would not only help us to understand OTL better,
but may also provide a good starting point to carry out an analysis of the computational
complexity of the logic as it will provide a first approximation for upper complexity
bounds for the satisfiability problem:

• Analyse the complexity of the satisfiability problem for OTL.

We certainly expect the satisfiability problem of OTL to be at least PSPACE-hard,
because that of propositional linear temporal logic (for discrete flows of time and even
without since and until, but with a next-operator) is [66]. Given the connections be-
tween OTL and PDL (both include a transitive closure operator with respect to a
non-linear accessibility relation), the satisfiability problem for our logic is likely to be
even EXPTIME-hard, because that of PDL is [8, 24]. At this stage, we do not have any
concrete conjectures regarding upper complexity bounds. Our preliminary construction
to establish a bounded finite model property suggests that ‘small’ models will be of ex-
ponential size in both dimensions of a tree, even for discretely ordered trees. This means
that the encoding of the satisfiability problem into a (non-deterministic) Turing machine
requiring only linear space, which Sistla and Clarke [66] use to establish their PSPACE
upper bound for propositional linear temporal logic, would not be applicable anymore in
the case of our logic.

In the first section of this chapter, we have already conjectured that the extended
modal logic of ordered trees is very likely to be a decidable logic as well. Adapting the
main part of our decidability proof, namely the embedding into the monadic second-order
theory of two successor functions, is straightforward. However, to actually complete a
decidability proof along the lines of that given in Chapter 5, we would still have to show
that any extended formula with an ordered tree model will also have a countable ordered
tree model. Of course, we may search for a different kind of proof:

• Show that extended OTL is decidable.

As for the original logic without until -style operators, a direct decidability proof (rather
than a reduction to a decidable second-order theory) would be of particular interest. A
related issue is again the computational complexity of the extended logic:

• Analyse the complexity of the satisfiability problem for extended OTL.

6.3 Open Problems 195

Expressive completeness. We have already briefly touched upon the issue of expres-
sive completeness for ordered tree logics earlier in this chapter:

• Is extended OTL expressively complete for discretely ordered trees? If not, is there
an expressively complete set of modalities? How about other types of sibling orders?

The known negative results for certain branching structures (such as the class of all
partially ordered flows of time) seem not to be of immediate relevance here, because in
OTL the additional order declared over siblings allows us to move between nodes more
freely. For instance, it is possible in the monadic first-order theory of ordered trees to
express that a tree has at least n distinct nodes using only two variable names, because
we can use the descendant relation and the definable global left-to-right ordering to
‘comb’ through all nodes in a tree without having to keep track of the nodes already
encountered, as would be the case in a simple tree. (This is a typical example used to
show the failure of expressive completeness for a given theory; see Gabbay et al. [30] on
the subject of finite H-dimension.)

Automated reasoning. Our decidability proof does not lend itself to an efficient de-
cision procedure for OTL, because the monadic second-order theory of two successor
functions, in which we have embedded our logic, is of such a high computational com-
plexity. We consider the development of an implementable deduction system for OTL a
difficult but important problem:

• Devise efficient decision procedures for (extended) OTL.

As a matter of personal preference, we suggest an investigation into options for a de-
cision procedure based on semantic Tableaux. Devising sound expansion rules for a
Tableaux-based deduction system seems unproblematic; the crux of the matter lies in
the formulation of appropriate termination conditions. Wolper’s Tableaux system for
propositional linear temporal logic [73] provides a good starting point and some of the
recent work on Tableaux for expressive description logics may also be relevant (see, for
instance, the survey [4] and references therein).

While, from a logician’s point of view, deduction may be regarded as the central
problem of automated reasoning, it is in fact the availability of highly efficient model
checking algorithms (particularly for branching time logics) that have contributed signif-
icantly to the recent success of temporal logics in the area of systems specification and
verification [17]. The following thus seems a promising area of activity:

• Devise efficient model checking algorithms for (extended) OTL.

We would expect a combination of techniques developed for linear and branching time
temporal logics to be applicable also in the case of OTL, but have not investigated this
issue to date.

196 Chapter 6. Zooming out

Applications. Although inspired by applications, the work reported in this thesis is
mostly (some would argue, entirely) theoretical. We do believe that this is the right order
of approaching difficult problems, but eventually we should take the fruits of our efforts
back into the real world and seek to apply our findings to real problems. For instance:

• Use OTL for the modular specification of practical systems.

More logics. Our final suggestion for further work in the area is again — at least
initially — of a theoretical nature. The modal logic of ordered trees has originally been
conceived as the result of adding a zoom to propositional linear temporal logics. The
same idea may usefully be applied to other temporal logics as well:

• Combine the idea of ‘zooming in’ with branching time logics.

The result would be a logic that combines two modal systems built on trees: one for the
(branching) flow of time and one to model changes in the level of abstraction.

So many questions, so little time . . .

Appendices

197

Appendix A

Relations and Orders

This appendix serves as a references to definitions of some of the basic concepts regarding
relations and linear orders referred to throughout this thesis.

A.1 Relations

Definition A.1 (Relational algebra operations) Let R, R1, and R2 be binary rela-
tions over a common domain T . We define the standard operations of relational algebra
as follows:

(1) Intersection: (t1, t2) ∈ R1 ∩R2 iff (t1, t2) ∈ R1 and (t1, t2) ∈ R2.

(2) Union: (t1, t2) ∈ R1 ∪R2 iff (t1, t2) ∈ R1 or (t1, t2) ∈ R2.

(3) Complement: (t1, t2) ∈ R iff (t1, t2) 6∈ R.

(4) Difference: (t1, t2) ∈ R1\R2 iff (t1, t2) ∈ R1 but (t1, t2) 6∈ R2.

(5) Inverse: (t1, t2) ∈ R−1 iff (t2, t1) ∈ R.

(6) Composition: (t1, t3) ∈ R1 ◦R2 iff (t1, t2) ∈ R1 and (t2, t3) ∈ R2 for some t2 ∈ T .

(7) Iteration: (t1, t2) ∈ Rn iff (t1, t2) ∈ R◦Rn−1 for n ∈ N and (t1, t2) ∈ R0 iff t1 = t2.

Definition A.2 (Basic properties of relations) Let R be a binary relation over
some domain T . We define the following basic properties of relations:

(1) R is called reflexive iff (t, t) ∈ R for all t ∈ T .

(2) R is called irreflexive iff (t, t) 6∈ R for all t ∈ T .

(3) R is called symmetric iff (t1, t2) ∈ R implies (t2, t1) ∈ R for all t1, t2 ∈ T .

(4) R is called transitive iff (t1, t2) ∈ R and (t2, t3) ∈ R implies (t1, t3) ∈ R for all
t1, t2, t3 ∈ T .

199

200 Appendix A. Relations and Orders

(5) R is called euclidean iff (t1, t2) ∈ R and (t1, t3) ∈ R implies (t2, t3) ∈ R for all
t1, t2, t3 ∈ T .

(6) R is called serial iff for all t1 ∈ T there exists a t2 ∈ T such that (t1, t2) ∈ R.

(7) R is called connected iff (t1, t2) ∈ R or t1 = t2 or (t2, t1) ∈ R for all t1, t2 ∈ T .

We also sometimes refer to the notion of a relation R being connected over a particular
subset of T × T like, for instance, the set of pairs that stand in some other relation R′.
This is the case iff (t1, t2) ∈ R or t1 = t2 or (t2, t1) ∈ R for all (t1, t2) ∈ R′.

Definition A.3 (Transitive closure) Let R be a binary relation over a domain T .
The transitive closure R+ of R is the smallest binary relation over T with R ⊆ R+ that
is transitive. The reflexive transitive closure R∗ of R is the smallest binary relation over
T with R+ ⊆ R∗ that is reflexive.

We sometimes refer to R+ as the non-reflexive transitive closure of R, as opposed to the
reflexive transitive closure R∗.

As is well-known, whenever we have (t1, t2) ∈ R+, then there exists an n ∈ N such
that (t1, t2) ∈ Rn holds.

A.2 Linear Orders

Definition A.4 (Strict linear orders) A strict linear order is a pair (T,<) where T
is a set and < is a binary relation over T that is irreflexive, transitive, and connected.

Strict linear orders are also called strict total orders. Next we are going to define what it
means for a strict linear order to be either discrete or dense. In the case of discreteness,
two different definitions can be found in the literature. Here, we shall use both of them
and distinguish between weak and strong discreteness.

Definition A.5 (Weakly discrete orders) A strict linear order (T,<) is called
weakly discrete iff for any t ∈ T we have a closest point to either side of t (if any).

Definition A.6 (Strongly discrete orders) A strict linear order (T,<) is called
strongly discrete iff for any t1, t2 ∈ T there are only finitely many t ∈ T such that
t1 < t and t < t2 hold.

Observe that in any strongly discrete order for every element we have a closest element
to either side (with the exception of a possible first or last element in the order), that is,
strong discreteness is indeed (just as the names suggest) at least as strong a requirement
as weak discreteness. The converse, on the other hand, does not hold, that is, having
both a closest left and a closest right neighbour is not a sufficient condition for a strict

A.2 Linear Orders 201

linear order to be strongly discrete. To see this, consider the following set of rational
numbers:

T = { 1
n | n ∈ Z \{0}} = {−1,−1

2 ,−
1
3 ,−

1
4 ,−

1
5 , . . . ,

1
5 ,

1
4 ,

1
3 ,

1
2 , 1}

Then (T,<), with the usual ordering relation < over rational numbers, is not a discrete
order according to Definition A.6, because there are infinitely many elements between
−1 and 1. This is so despite the fact that every element in our set T (apart from the
endpoints −1 and 1) has got a closest element to both their left and right.

Definition A.5 appears to be the ‘standard’ definition for discreteness. Most definitely,
one would want to call a point discrete in a structure iff it has a closest point to both its
left and right.1 In the context of temporal logics, on the other hand, Definition A.6 is
often the preferred option (see Goldblatt [35], for instance). It certainly provides a better
match for our intuitions about time: one would want to be able to reach any future point
in time after a finite number of elementary steps (provided we admit the concept of an
elementary step in the first place). However, there are exceptions: Gabbay et al. [30] use
the term discreteness in the sense of Definition A.5. In this thesis, when referring to a
discrete order, without specifically qualifying it as being either weak or strong, we mean
a strongly discrete order in the sense of Definition A.6.

Definition A.7 (Dense orders) A strict linear order (T,<) is called dense iff for any
t1, t2 ∈ T with t1 < t2 there exists a t ∈ T such that t1 < t and t < t2.

Definition A.8 (Total orders) A total order is a pair (T,≤) where T is a set and ≤
is a binary relation over T that is reflexive, transitive, and connected.

In view of Definition A.4 we may also call a total order a non-strict linear order. The
following proposition gives a criterion for finiteness of a total order.2

Proposition A.9 (Finite total orders) Let (T,≤) be a total order. Every non-empty
subset of T has got a minimal and a maximal element with respect to ≤ iff T is finite.

Proof. ‘⇒’: We are going to show the converse, i.e. that T being infinite implies that
T must have a non-empty subset that does not have both a minimal and a maximal
element. Assume T is infinite. Then it must have either an infinite ascending chain or an
infinite descending chain, i.e. T must contain an infinite sequence of elements t0, t1, t2, . . .
such that either t0 ≤ t1 ≤ t2 ≤ · · · or · · · ≤ t2 ≤ t1 ≤ t0. But then {t0, t1, t2, . . .} is a
subset of T that lacks either a maximal or a minimal element, i.e. we are done.

‘⇐’: If T is finite, then also every non-empty subset of T must be finite and will
certainly have both a minimal and a maximal element. 2

1In other words, what we call a weakly discrete order here is in fact a strict linear order in which

every point is discrete.
2A total order (T,≤) is called a well-ordering iff every non-empty subset of T has got a minimal

element with respect to ≤. That is, an alternative way of phrasing Proposition A.9 would be to say that

a total order (T,≤) is finite iff T is well-ordered by both ≤ and its inverse.

Appendix B

Derivations

In this appendix we prove a number of derivable theorems of the axiomatic proof system
presented in Chapter 4. Axioms and rules of this system are listed in Table 4.1 on
page 104.

B.1 Proof of Lemma 4.8

The following are derivations for the theorems listed in Lemma 4.8 on page 111.

Part 1. ` ¬(2⊥ ∧ eA)

(1) eA→ 3A from (M3)
(2) eA→ ¬2¬A from (1) and (D3)
(3) 2¬A→ ¬ eA from (2)
(4) ⊥ → ¬A propositional tautology
(5) 2(⊥ → ¬A) from (4) by generalisation
(6) 2⊥ → 2¬A from (5) and (K4)
(7) 2⊥ → ¬ eA from (3) and (6)
(8) ¬(2⊥ ∧ eA) from (7)

Part 2. ` 3 eA→ A

(1) e¬A→ ¬ eA from (F3)
(2) 2(e¬A→ ¬ eA) from (1) by generalisation
(3) 2 e¬A→ 2¬ eA from (2) and (K4)
(4) ¬2¬ eA→ ¬2 e¬A from (3)
(5) 3 eA→ ¬2 e¬A from (4) and (D4)
(6) ¬A→ 2 e¬A from (B8)
(7) ¬2 e¬A→ A from (6)
(8) 3 eA→ A from (5) and (7)

203

204 Appendix B. Derivations

Part 3. ` 32A→ A

(1) ¬A→ 2 e¬A from (B8)
(2) e¬A→ 3¬A from (M3)
(3) 2(e¬A→ 3¬A) from (2) by generalisation
(4) 2 e¬A→ 23¬A from (3) and (K4)
(5) ¬A→ 23¬A from (1) and (4)
(6) ¬23¬A→ A from (5)
(7) 3¬3¬A→ A from (6) and (D4)
(8) 32A→ A from (7) and (D3)

Part 4. ` 2A→ 22A

(1) 3¬A→ e3¬A from (X1)
(2) ¬ e3¬A→ ¬3¬A from (1)
(3) ¬ e3¬A→ 2A from (2) and (D2)
(4) 2(¬ e3¬A→ 2A) from (3) by generalisation
(5) 2¬ e3¬A→ 22A from (4) and (K4)
(6) 3 e3¬A→ 3¬A from Part (2) of this lemma
(7) 2A→ 2¬ e3¬A from (6) and (D4)
(8) 2A→ 22A from (5) and (7)

Part 5. ` (2A ∧ e>) → eA
(1) e¬A→ 3¬A from (M2)
(2) 2A→ ¬ e¬A from (1) and (D2)
(3) (2A ∧ e>) → eA from (2) and (F2)

Part 6. ` e2A→ 22A

(1) (33¬A ∧ e>) → e3¬A from (M2)
(2) (¬22A ∧ e>) → e¬2A from (1) and (D2)
(3) (¬ e¬2A ∧ e>) → 22A from (2)
(4) e2A→ (¬ e¬2A ∧ e>) from (F2)
(5) e2A→ 22A from (3) and (4)

Part 7. ` e(A ∧2A) → 2A

(1) (3¬A ∧ e>) → (e¬A ∨ e3¬A) from (M2)
(2) (¬ e¬A ∧ ¬ e3¬A) → (¬3¬A ∨ ¬ e>) from (1)
(3) (¬ e¬A ∧ ¬ e¬2A) → (2A ∨ ¬ e>) from (2) and (D2)
(4) (¬ e¬A ∧ ¬ e¬2A ∧ e>) → 2A from (3)
(5) (eA ∧ e2A) → 2A from (4) and (F2)
(6) e(A ∧2A) → 2A from (5) by distribution

Bibliography

The numbers in brackets at the end of each bibliographic entry refer to the pages where
that item has been cited in the text.

[1] J. F. Allen. Maintaining Knowledge about Temporal Intervals. Communications of
the ACM, 26(11):832–843, 1983. (190)

[2] J. F. Allen. Towards a General Theory of Action and Time. Artificial Intelligence,
23:123–154, 1984. (55, 58)

[3] L. Åquist. Deontic Logic. In D. Gabbay and F. Guenthner, editors, Handbook of
Philosophical Logic, volume 8. Kluwer Academic Publishers, 2nd edition, 2002. (28)

[4] F. Baader and U. Sattler. Tableau Algorithms for Description Logics. In R. Dyckhoff,
editor, Automated Reasoning with Tableaux and Related Methods, number 1847 in
LNAI, pages 1–18. Springer-Verlag, 2000. (37, 195)

[5] H. Barringer, R. Kuiper, and A. Pnueli. Now You May Compose Temporal Logic
Specifications. In Proceedings of the 16th Annual ACM Symposium on Theory of
Computing, pages 51–63. ACM, 1984. (9)

[6] H. Barringer, R. Kuiper, and A. Pnueli. A Really Abstract Concurrent Model and its
Temporal Logic. In Proceedings of the 13th Annual ACM Symposium on Principles
of Programming Languages, pages 173–183. ACM, 1986. (9)

[7] O. Becker. Zur Logik der Modalitäten. Jahrbuch für Philosophie und Phänomeno-
logische Forschung, 6:497–548, 1930. (30)

[8] P. Blackburn, M. de Rijke, and Y. Venema. Modal Logic. Cambridge University
Press, 2001. (19, 26, 31, 37, 45, 50, 62, 63, 77, 117, 143, 194)

[9] P. Blackburn and W. Meyer-Viol. Linguistics, Logic and Finite Trees. Logic Journal
of the IGPL, 2:3–29, 1994. (8, 53, 97, 144, 147, 159, 163)

[10] P. Blackburn, W. Meyer-Viol, and M. de Rijke. A Proof System for Finite Trees.
In H. Kleine Büning, editor, Computer Science Logic, volume 1092 of LNCS, pages
86–105. Springer-Verlag, 1996. (8)

205

206 Bibliography

[11] E. Börger, E. Grädel, and Y. Gurevich. The Classical Decision Problem. Springer-
Verlag, 1997. (24)

[12] G. Cantor. Beiträge zur Begründung der Transfiniten Mengenlehre. Mathematische
Annalen, 46:481–512, 1895. (171)

[13] A. Chagrov and M. Zakharyaschev. Modal Logic. Oxford University Press, 1997.
(37, 62, 124)

[14] C. C. Chang and H. J. Keisler. Model Theory. Elsevier Science Publishers, 3rd
edition, 1990. (176)

[15] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, 1980.
(27, 30)

[16] A. Church. An Unsolvable Problem of Elementary Number Theory. American
Journal of Mathematics, 58:345–363, 1936. (13)

[17] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999. (37,
195)

[18] E. M. Clarke and B.-H. Schlingloff. Model Checking. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, volume 2. Elsevier Sci-
ence Publishers, 2001. (37, 103)

[19] U. Endriss. Adding a Zoom to Linear Temporal Logic. In T. Walsh, editor, Pro-
ceedings of the 9th Workshop on Automated Reasoning. AISB, April 2002. (181,
182)

[20] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi. Reasoning about Knowledge.
MIT Press, 1995. (37)

[21] R. Feys. Les Logiques Nouvelles des Modalités (Part 1). Revue Néoscholastique de
Philosophie, 40:517–553, 1937. (27)

[22] R. Feys. Les Logiques Nouvelles des Modalités (Part 2). Revue Néoscholastique de
Philosophie, 41:217–252, 1938. (27)

[23] J. L. Fiadeiro and T. Maibaum. Sometimes “tomorrow” is “sometime”: Action
Refinement in a Temporal Logic of Objects. In D. Gabbay and H. J. Ohlbach,
editors, Temporal Logic, volume 827 of LNAI, pages 48–66. Springer-Verlag, 1994.
(9, 55)

[24] M. J. Fischer and R. E. Ladner. Propositional Dynamic Logic of Regular Programs.
Journal of Computer and System Sciences, 18:194–211, 1979. (194)

Bibliography 207

[25] M. Fisher. A Resolution Method for Temporal Logic. In J. Mylopoulos and R. Re-
iter, editors, Proceedings of the 12th International Joint Conference on Artificial
Intelligence, pages 99–104. Morgan Kaufmann Publishers, 1991. (37)

[26] M. Fitting and R. L. Mendelsohn. First-Order Modal Logic. Kluwer Academic
Publishers, 1998. (37)

[27] D. Gabbay. Decidability Results in Non-Classical Logics. Part I. Annals of Mathe-
matical Logic, 8:237–295, 1975. (159)

[28] D. Gabbay. Investigations in Modal and Tense Logics with Applications to Problems
in Philosophy and Linguistics. Reidel Publishing Company, 1976. (159)

[29] D. Gabbay. An Irreflexivity Lemma with Applications to Axiomatizations of Condi-
tions on Tense Frames. In U. Mönnich, editor, Aspects of Philosophical Logic, pages
67–89. Reidel Publishing Company, 1981. (144)

[30] D. Gabbay, I. Hodkinson, and M. Reynolds. Temporal Logic: Mathematical Foun-
dations and Computational Aspects, volume 1. Oxford University Press, 1994. (35,
36, 37, 144, 169, 171, 176, 188, 195, 201)

[31] D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-dimensional Modal
Logics: Theory and Applications. Forthcoming. (37, 46, 47, 181)

[32] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the Temporal Analysis of Fairness.
In Proceedings of the 7th ACM Symposium on Principles of Programming Languages,
pages 163–173. ACM, 1980. (35, 188)

[33] D. Gabbay, M. Reynolds, and M. Finger. Temporal Logic: Mathematical Founda-
tions and Computational Aspects, volume 2. Oxford University Press, 2000. (32,
37)

[34] J. W. Garson. Quantification in Modal Logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 3. Kluwer Academic Publishers,
2nd edition, 2001. (37)

[35] R. Goldblatt. Logics of Time and Computation. CSLI, 2nd edition, 1992. (37, 40,
51, 62, 97, 100, 101, 145, 201)

[36] R. Goldblatt. Mathematical Modal Logic: a View of its Evolution. In D. van
Dalen, J. Dawson, and A. Kanamori, editors, A History of Mathematical Logic.
Forthcoming. (37)

[37] J. Y. Halpern and Y. Shoham. A Propositional Modal Logic of Time Intervals.
Journal of the ACM, 38(4):935–962, 1991. (8, 59, 181, 189, 190)

[38] D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000. (145)

208 Bibliography

[39] L. Henkin. The Completeness of the First-Order Functional Calculus. Journal of
Symbolic Logic, 14(3):159–166, 1949. (113)

[40] D. Hilbert and W. Ackermann. Principles of Mathematical Logic. Chelsea Publishing
Company, 1950. Translation of the 2nd German edition of 1938. (98)

[41] G. E. Hughes and M. J. Cresswell. An Introduction to Modal Logic. Methuen, 1968.
(19)

[42] G. E. Hughes and M. J. Cresswell. A New Introduction to Modal Logic. Routledge,
1995. (31, 37, 115)

[43] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2000. (37)

[44] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Depart-
ment of Philosophy, University of California at Los Angeles, 1968. (35, 188)

[45] S. A. Kripke. Semantical Analysis of Modal Logic I: Normal Propositional Calculi.
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.
(19, 25)

[46] L. Lamport. Specifying Concurrent Program Modules. ACM Transactions on Pro-
gramming Languages and Systems, 5(2):190–222, 1983. (55)

[47] L. Lamport. What Good Is Temporal Logic? In R. E. A. Mason, editor, Information
Processing, volume 83, pages 657–668. Elsevier Science Publishers, 1983. (9, 35)

[48] E. J. Lemmon (in collaboration with D. Scott). The “Lemmon Notes”. An Intro-
duction to Modal Logic, volume 11 of American Philosophical Quarterly Monograph
Series. Blackwell Publishers, 1977. Printed version of an unpublished draft from
1966, edited by K. Segerberg. (113)

[49] C. I. Lewis and C. H. Langford. Symbolic Logic. The Century Co., New York, 1932.
(27, 28, 30)

[50] D. Makinson. On Some Completeness Theorems in Modal Logic. Zeitschrift für
Mathematische Logik und Grundlagen der Mathematik, 12:379–384, 1966. (113)

[51] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1992. (36, 37)

[52] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, 1995. (37)

[53] M. Marx and Y. Venema. Multi-dimensional Modal Logic. Kluwer Academic Pub-
lishers, 1997. (37)

Bibliography 209

[54] D. V. McDermott. A Temporal Logic for Reasoning about Processes and Plans.
Cognitive Science, 6:101–155, 1982. (55)

[55] J. C. C. McKinsey. On the Syntactical Construction of Systems of Modal Logic.
Journal of Symbolic Logic, 10(3):83–94, 1945. (31)

[56] A. Montanari. Metric and Layered Temporal Logic for Time Granularity. PhD
thesis, Institute for Logic, Language and Computation, University of Amsterdam,
1996. (8)

[57] M. Mortimer. On Languages with Two Variables. Zeitschrift für Mathematische
Logik und Grundlagen der Mathematik, 21:135–140, 1975. (24)

[58] B. Moszkowski. A Temporal Logic for Multilevel Reasoning about Hardware. IEEE
Computer, 18(2):10–19, 1985. (8)

[59] H. J. Ohlbach. A Resolution Calculus for Modal Logics. In E. L. Lusk and R. A.
Overbeek, editors, Automated Deduction (CADE-9), volume 310 of LNCS, pages
500–516, 1988. (37)

[60] A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th Annual
Symposium on Foundations of Computer Science, pages 46–57. IEEE, 1977. (8)

[61] M. O. Rabin. Decidability of Second-Order Theories and Automata on Infinite
Trees. Transactions of the AMS, 141:1–35, 1969. (147, 152, 164, 171)

[62] M. Reynolds. An Axiomatization for Until and Since over the Reals without the
IRR Rule. Studia Logica, 51:165–194, 1992. (193)

[63] D. Scott. A Decision Method for Validity of Sentences in Two Variables. Journal
of Symbolic Logic, 27:477, 1962. (24)

[64] K. Segerberg. Modal Logics with Linear Alternative Relations. Theoria, 36:301–322,
1970. (77)

[65] Y. Shoham. Temporal Logics in AI: Semantical and Ontological Considerations.
Artificial Intelligence, 33:89–104, 1987. (55, 56, 58, 59)

[66] A. P. Sistla and E. M. Clarke. The Complexity of Propositional Linear Temporal
Logics. Journal of the ACM, 32(3):733–749, 1985. (181, 194)

[67] W. Thomas. Languages, Automata, and Logic. In G. Rozenberg and A. Salomaa,
editors, Handbook of Formal Languages, volume 3. Springer-Verlag, 1997. (147,
152)

[68] A. Turing. On Computable Numbers, with an Application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, 42:230–265, 1936.
(13)

210 Bibliography

[69] J. van Benthem. Correspondence Theory. In D. Gabbay and F. Guenthner, edi-
tors, Handbook of Philosophical Logic, volume 3. Kluwer Academic Publishers, 2nd
edition, 2001. (29, 31)

[70] J. van Benthem. Modal Logic. In D. Jacquette, editor, A Companion to Philosoph-
ical Logic, pages 391–409. Blackwell Publishers, 2001. (37)

[71] J. van Benthem and K. Doets. Higher-order Logic. In D. Gabbay and F. Guenthner,
editors, Handbook of Philosophical Logic, volume 1. Kluwer Academic Publishers,
2nd edition, 2001. (148)

[72] D. van Dalen. Intuitionistic Logic. In D. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, volume 5. Kluwer Academic Publishers, 2nd edition,
2002. (59)

[73] P. Wolper. The Tableau Method for Temporal Logic: An Overview. Logique et
Analyse, 28(110–111):119–136, 1985. (37, 195)

List of Figures

1.1 Adding a zoom to linear temporal logic 5

2.1 Three models . 21

3.1 A simple ordered tree model . 42
3.2 Scope of the global past and future modalities 49
3.3 Unwinding (bulldozing) cycles . 78
3.4 Unravelling a bulldozed tree . 80
3.5 Bulldozing clusters . 87

4.1 Proof detail for Lemma 4.40 . 133
4.2 Proof detail for Lemma 4.41 . 134

5.1 Encoding SωS in S2S . 156
5.2 Encoding the infinite unbounded discretely ordered tree in SωS 165
5.3 Encoding dense orders in S2S . 170
5.4 Encoding the infinite (densely) ordered tree in S4S 172

6.1 Allen’s 13 interval relations . 190

211

List of Tables

2.1 Modes of truth . 17
2.2 Basic correspondences . 30

4.1 Axioms and rules . 104

5.1 Translating OTL formulas into monadic second-order logic 162

6.1 The standard translation for extended OTL formulas 188

213

Index

A
accessibility relation 19
action . 55
actual truth . 15
alethic logic . 16
Allen relations. .189
alphabet . 148
ancestor . 41
Ancestor Existence Lemma 121
applications

artificial intelligence 190
computational linguistics 53
e-commerce . 3
planning . 55
software engineering 8, 35, 55

assignment . 150
assignment variant 150
automated reasoning 195
awareness . 118, 126
axiom . 24, 104

B
back condition .63
belief . 16
bidirectional p-morphism 63
binary . 53
binary tree . 53
bounded .51
bounded branching 51
bounded finite model property181
bounded morphism 62
box-operator . 17, 40
brackets . 18
branch . 41
branching

bounded. .51
dense. .51
finite . 53
strongly discrete51
weakly discrete 51

branching time 32, 196
branching(n) . 53
bulldozing . 77

clusters . 86, 87
cycles (unwinding) 78

C
canonical child relation 118
canonical frame.128, 135
canonical model 113, 118, 135
canonical neighbour relation 126
canonical sibling relation 126
Cantor’s Theorem 171
child . 160, 166, 173
child . 41

leftmost . 50
rightmost . 50

Child Existence Lemma 121
Church-Rosser property 181
closed formula . 151
cluster . 74, 76, 177
cluster elimination 86
commutativity 46, 181
compactness 107, 140
complement . 199
completeness 24, 106, 113, 138
complexity. .14, 194
composition of relations 199
connectedness . 200
consistent. .24, 105

215

216 Index

conversely functional70, 124
correspondence theory 29
correspondences.29, 50
countable ordered tree model 176
countable sets . 169
cycle .74, 76
cycle elimination . 77

D
decidability 22, 47, 180

extended logic 189
for countable ordered trees 175
for discretely ordered trees 168
for finite binary trees 163
second-order theories 152

defect . 76
definable operators 20, 33, 44, 151
definable predicates 152
degenerate tree . 54
dense . 51
dense branching . 51
density . 201
density axiom . 101
deontic logic . 28
depth

finite . 54
derivation . 97, 105
derived theorem . 103
descendant 160, 166, 173
descendant . 41
Descendant Existence Lemma 123
diamond-operator 17, 40
difference of two relations.199
difference operator (3,2) 49
discrete . 52
discrete branching 51
discretely ordered tree 52, 164
discreteness

strong . 200
weak . 200

distribution.108, 110
distribution axiom 25, 98

double negation . 57
down-hered . 56
down-to . 186
downward-hereditary.56, 58
doxastic logic . 16
dual of a next-operator 103
duality . 16
duality axiom . 24, 98

E
empty path . 81
empty word (Λ) . 148
epistemic logic .16
equivalence class .41
euclidean axiom . 30
euclidean relation 200
event . 55, 59
Existence Lemma 114, 121, 127
expressive completeness 35, 188, 195
expressiveness.14, 95
extended formula 185
extended temporal logic 45

F
fact . 55
falsum (⊥) . 18
finite axiomatisation.145
finite binary tree53, 159
finite-branching 53
finite branching. .53
finite-depth . 54
finite depth . 54, 58
finite model property 181
finite tree. .53
first-order definability 31
Fischer-Ladner closure.143
flow of time . 33
formula . 18, 39

closed . 151
extended . 185
second-order 149

frame

Index 217

basic modal logic 19
general . 61
intended. .61
linear temporal 33

frame validity . 62
fulltree 156, 166, 173
functional . 68

conversely 70, 124
functional completeness 20, 34
functionality axiom 99
fusion . 46

G
Gabbay-style rule 144
general frame . 61
general model . 60, 61
generalisation rule 25, 102
generated canonical frame 135
generated canonical model 135
generated canonical tree 124
generated canonical valuation.136
generated set of worlds 124
generated subframe.124
gestalt . 59
gestalt proposition59
global future modality (3,2) 48
global next-operator 187
global past modality (3,2) 48
global truth 22, 45, 62
global until -style operators 187
granularities . 8

H
H-dimension. .195
holds . 55, 58
hom .56
homogeneity . 56
homogeneous proposition 56, 58
homomorphic condition 63
horizontal accessibility relation 118, 126

I
immediate prefix of a word 164

implication
strict (⇒) . 58

inconsistent . 105
induction axiom 100, 141
inference rule 24, 102, 104
infinite binary tree 148
infinite branch . 54
initial subtree 161, 167, 174
intended frame . 61
intended model . 61
interaction . 46, 140
interaction axiom 102, 129, 140
internal node . 41
intersection. .199
interval . 45
interval logic . 8, 189
interval relations 189
intuitionistic logic 58
inverse axiom. .99
inverse back condition 63
inverse relation . 199
irreflexive point. .74
irreflexivity . 69, 199
irreflexivity rule . 144
iterated modality 50, 109
iterated relations 199
ITL . 8

K
K (axiom) . 25, 98
knowledge . 16
Kripke model . 19

L
leaf . 50, 54
leaf . 41, 50
left sibling . 41
leftmost . 50, 191
leftmost child .50
letter . 148
level . 115, 119, 122
level of abstraction 5

218 Index

lexicographic ordering (�) 154
Lindenbaum’s Lemma 117
linear order. .200
liveness property . 35
local . 59
local proposition. .59
logic . 94, 103
loosely ordered tree 72, 94, 128, 134
Löwenheim-Skolem Theorem 176

M
maximal sequence of neighbours 177
maximally consistent set.115
McKinsey axiom. .31
mixed linearity axiom.101, 134
mixing axiom. 100, 112
modality . 16
model

basic modal logic 19
countable ordered tree.176
general . 60, 61
linear temporal logic.33
ordered tree . 42

model checking . 195
model pruning. .182
modes of truth . 15
modus ponens 25, 102
monadic second-order theory 148
multi-modal logic 22, 60

N
naming . 50
natural numbers . 50
necessary truth . 15
necessitation rule 25, 102
negation

strong (∼). .56
negative introspection 27
neighbour 161, 167, 174
next-operator 9, 40, 60

dual of a . 103
weak . 103

node . 41
non-degenerate 54

O
occur . 55
ontological categories 55, 59
ontology . 55
operators . 47
order type N . 41, 143
ordered tree 41, 62, 75

discretely. .52
loosely . 72

ordered tree model 42
OTL . 39
overlapping intervals 8, 59, 192

P
p-morphic image 21, 63, 68

of a tree . 70
of an ordered tree 73

p-morphism
bidirectional .63
composed . 66
for frames . 63
for models .63
for relational structures.62

P-morphism Theorem. 65, 67
parent . 41
Parent Existence Lemma 121
path . 81, 90

empty . 81
PDL . 143, 194
positive introspection 27
possible worlds . 18
prefix ordering (≤) 153
product. .46, 181
proof . 97
property . 55, 58
propositional axiom 98
propositional letter 39
propositional logic 14
pseudo neighbour relation 75

Index 219

pseudo sibling relation 75

Q
quantification . 147

guarded . 155
over finite sets.154

quasi-equivalence class 41

R
Rabin’s Theorem 152
reactive systems . 8
reflexive closure . 72
reflexive transitive closure 200

operators . 48
reflexivity . 199
reflexivity axiom. .29
related work . 8
restrictions

completeness 138, 142
right sibling . 41
rightmost .50, 191
rightmost child . 50
root . 50, 154
root . 41, 50
rooted . 69
rootedness axiom 102, 142
rule . 24, 102, 104

S
safety property . 35
satisfiability . 22, 45

in a general model62
in loosely ordered trees 93

second-order theory 147
semantics .40

extended . 185
sequence. .74
seriality . 200
seriality axiom 30, 54
set variable . 149
sibling 161, 167, 174
sibling . 41
simple variable . 149

since .32, 186
since . 187
SnS . 148, 158
S2S . 148, 152
SωS . 148, 155, 157
solid proposition . 59
soundness . 24, 106
specification . 8, 35
standard translation 22, 188
state . 55
Stavi connectives 35, 188
strict implication (⇒) 58
strict linear order.200
strong completeness 106, 140
strong discreteness 200
strong negation (∼) 56
strongly discrete branching 51
subrelation . 68
substitution . 102
subtree . 41

initial 161, 167, 174
successor functions 148
symbols . 47
symmetry . 199
symmetry axiom. .30
syntax . 39

extended . 185

T
temporal logic 2, 16, 45
term . 148

interpretation 150
theorem . 24, 103
time period . 45, 55
total order . 201
transitive closure 143, 200

non-reflexive 200
reflexive . 200

transitive closure rule.145
transitivity . 199
transitivity axiom 30, 101, 128
translation

220 Index

into first-order logic 22, 188
into second-order logic162, 189

tree . 161, 168, 174
tree . 40

binary. .53
degenerate . 54
discretely ordered 52
finite . 53
loosely ordered 72
ordered. .62

tree validity . 45
truth

extended logic 186
global . 45, 62
in a basic modal logic model20
in a general model61
in a temporal logic model.33
in an ordered tree model 43
second-order theories 150

Truth Lemma 114, 136
two-variable-fragment 24, 31
type of a node . 176

U
undecidability.13, 47
uniform substitution 25, 102
union . 199
universal/global modality (3,2) 48
unravelling 77, 80, 89
until . 32, 186
until . 187
until -style operators 186

basic temporal logic 32
global (since, until) 187
horizontal (since, until) 186
vertical (up-to, down-to)186

unwinding cycles . 78
up-hered . 56
up-to . 186
upward-hereditary 56

V
validity . 22, 45, 62

in a frame 22, 62
in a tree . 45
in countable ordered trees 175
in discretely ordered trees 168
in finite binary trees163
second-order theories 152

valuation.19, 42, 136
variable

set . 149
simple. .149

veridicality . 27
vertical accessibility relation 118
verum (>) . 18

W
weak completeness 106
weak density axiom. 101, 132
weak discreteness 200
weak next-operator 103
weakly-discrete 51
weakly discrete branching.51
well-ordering . 201
witness . 43
word . 148

empty (Λ). .148
world . 19

Z
zoom . 5

	Zooming in
	Adding a Zoom to Linear Temporal Logic
	Thesis Overview

	Modal and Temporal Logics
	Introducing Modalities
	Possible World Semantics
	Axioms and Correspondences
	Temporal Logic
	Bibliographic Notes

	Semantic Characterisation
	Syntax and Semantics
	Some Defined Operators
	Correspondences
	Ontological Considerations
	General Models and P-morphisms
	Loosely Ordered Trees
	Summary

	Axiomatic Characterisation
	Axioms and Rules
	Some Derived Theorems
	Completeness without Descendant Modalities
	Alternatives
	Summary

	Decidability
	Monadic Second-order Logic
	Finite Binary Trees
	Discretely Ordered Trees
	General Ordered Trees
	Summary

	Zooming out
	Extensions
	Summary of Main Results
	Open Problems

	Appendices
	Relations and Orders
	Relations
	Linear Orders

	Derivations
	Proof of Lemma 4.8

	Bibliography
	List of Figures
	List of Tables
	Index

