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ABSTRACT
We develop an algorithm for the axiomatic justification problem
in social choice that is sufficiently efficient to be applicable in deci-
sion making scenarios of real practical interest. Given a profile of
individual preferences, a suggested election outcome, and a corpus
of axioms encoding fundamental normative principles of electoral
fairness, solving this justification problem involves computing a
minimal set of instances of some of the axioms in the corpus that
together rule out any outcome that is different from the one we
want to justify. Our approach combines the use of state-of-the-art
tools for computing minimally unsatisfiable sets of constraints with
a graph-search algorithm. The latter searches the graph induced by
the set of all axiom instances in an incremental manner and relies
on a number of heuristics to further improve performance.
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1 INTRODUCTION
Imagine a scenario in which a small committee has to take a de-
cision that involves choosing from a handful of alternatives. The
committee members have different preferences and there is no fixed
voting rule (prescribed by a constitution or similar) they can rely
on to decide. Instead they want to justify the choice made directly
from fundamental normative principles of social choice (so-called
axioms) and they want to explain to outsiders why accepting those
principles entails the choice made. Such notions of justification
and explanation have recently been advocated by several authors
working in the field of computational social choice [9, 11, 22, 24].
Their interest in these concepts aligns with the surge of attention
that explainability is receiving from researchers in AI [2].

Boixel and Endriss [9] put forward a general definition of what
it means to justify a target outcome X⋆ for a given preference pro-
file R⋆ in axiomatic terms. This definition can be used together with
any corpus of axioms one might wish to refer to in a justification—
both classical axioms from the literature on social choice theory [32]
and new user-defined axioms for specific application scenarios. The
downside of this level of generality is that it makes generating such
justifications a computationally very demanding task. Indeed, the
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baseline algorithm of Boixel and Endriss hardly scales beyond sce-
narios with three voters and three alternatives. In this paper, we set
out to develop a new algorithm to solve the justification problem
that improves significantly over the performance of that baseline,
with the ambition of making justification generation available for
use in practice for scenarios such as the one invoked earlier.

Let us briefly recall the definition of Boixel and Endriss in infor-
mal terms (see Section 2.2 for a formal definition). Given a profile
R⋆, a target outcomeX⋆, and a (possibly large) corpus A of axioms,
we first look for a normative basis, a subset of A, such that every
voting rule that satisfies the axioms in that normative basis would
elect X⋆ in R⋆. This provides a normative argument for choos-
ing X⋆. But our audience might not yet understand that argument.
So, next, we look for an explanation. Observe that we can think of
an axiom, constraining the behaviour of acceptable voting rules in
a large number of situations, as consisting of many different axiom
instances, each talking about one specific situation only (say, one
specific pair of profiles and one specific alternative).1 An explana-
tion is a set of instances of the axioms in the normative basis that
is small (so we can present it to an audience) yet logically strong
enough to still force X⋆ as the only possible outcome for R⋆.

In any concrete implementation, axioms and their instances need
to be encoded in a suitable formal language, such as propositional
logic or a constraint modelling language [9].2 Finding the instances
making up the explanation from the set of all instances of the ax-
ioms in the corpus A is the main algorithmic problem we face.
The baseline algorithm of Boixel and Endriss consists of a genera-
tion phase (of the instances of the axioms in A) and a subsequent
solving phase (where we try to identify instances making up an
explanation). The latter, while computationally demanding in its
own right [10], naturally maps into the well-studied problem of
computing a minimally unsatisfiable subset (MUS) of a set of formu-
las (or constraints) and thus can be tackled using state-of-the-art
tools [7, 17, 18, 26, 31]. The real bottleneck is the generation phase.

At the core of our approach is the idea of generating the set
of relevant axiom instances in an incremental fashion, and to in-
terleave generation and solving rather than only starting solving
once generation is complete. We start by considering only axiom
instances that exclusively refer to the given profile R⋆. We then
proceed to add instances mentioning other profiles as well. We
keep on iteratively enlarging the search space by adding—in each
round—all axiom instances that mention at least one profile discov-
ered in the previous round. This algorithm is then refined using

1For example, the very simple Faithfulness axiom [30] says that whenever there is
just a single voter, her top alternative should win; one of its many instances says that a
should win when there is only one voter and she expresses the preference a ≻ b ≻ c .
2Encoding axioms into propositional logic to make it possible to reason about them,
e.g., to prove impossibility theorems, with the help of SAT solvers is by now a standard
technique in computational social choice [14, 28], which we can use also here.



two types of heuristics. First, using implied-instance heuristics, we
avoid generating axiom instances that are logically entailed by two
or more of the instances generated already. Second, using derived-
axiom heuristics, we define new “meta-axioms” for combinations of
axioms that frequently feature together in justifications observed in
experiments, so as to directly stir the algorithm towards common
patterns found in solutions to real-world justification problems.

Related work. The term “justification”, in the sense in which we
use it here, has first been invoked in the literature on computational
social choice in the work of Cailloux and Endriss [11], who devel-
oped an algorithm for the justification problem for a specific set of
axioms, namely those featuring in the axiomatisation of the Borda
rule due to Young [30]. This algorithm thus can be used to justify
the election of Borda winners (and only those). Peters et al. [22]
further refined and generalised this approach and proved it to be
optimal in view of the lengths of the arguments it produces. Boixel
and Endriss [9] instead provided a general definition of the notion
of justification, one that can be applied to any corpus of axioms and
one that relies on the use of general-purpose algorithms developed
in AI and Operations Research (such as algorithms for constraint
programming and SAT solving) rather than on tailor-made algo-
rithms for the problem at hand. Our work directly builds on those
ideas. Finally, Boixel and de Haan [10] analysed the computational
complexity of (the solving phase of) the justification problem.

Contribution. We develop a heuristic graph-search algorithm for
solving the axiomatic justification problem in social choice; we
prove that algorithm to be correct; and we demonstrate that it
performs well in scenarios big enough to be of practical interest.

Paper outline. The remainder of this paper is organised as follows.
We review relevant prior work in Section 2, covering both basic
notions from voting theory and the definition of the axiomatic jus-
tification problem. We then present our graph-based algorithm and
prove it to be correct in Section 3, before analysing its performance
on both synthetic and real-world preference data in Section 4. For
more details, refer to theMSc thesis of the first author [20]. Our code
(including a full record of our experiments) is available online [21].

2 JUSTIFICATION OF ELECTION OUTCOMES
In this section, we first present relevant notions from voting the-
ory. We then recall the definition of a justification for an election
outcome as proposed by Boixel and Endriss [9] and briefly discuss
the challenging task of retrieving such justifications in practice.

2.1 Voting Theory
Before we begin, let us note that wewill model anonymous elections,
i.e., elections where all voters have the same power and thus the
identities of individual voters do not matter. This not only is a
fairness requirement imposed on many real-world elections, but
allows for a compact representation of voter preferences.

Let n⋆ ∈ N be the number of voters and let X be the finite and
nonempty set of alternatives. Each voter’s preference is modelled as
a (strict) linear order over X ; the set of all such orders is denoted by
L(X ). A profile is a function R : L(X ) → N0 (where N0 = N∪ {0}),
mapping any given preference to the number of voters expressing
it. We denote by |R | the total number of voters expressing some

preference in profile R. We write R[n] for the set of all profiles with
exactly n voters, and R+ =

⋃n⋆

n=1 R
[n] for the set of all profiles with

up to n⋆ voters. Furthermore, we define R + R′ as the sum of the
two profiles (that is, (R + R′)(≻) = R(≻) + R′(≻)).

A voting rule F for n⋆ voters and alternatives X is a function
F : R+ → 2X \ {�}, mapping any given profile to a (nonempty)
set of winning alternatives. This definition reflects the fact that a
voting rule might declare a tie between two or more alternatives.
Examples of well-known voting rules include the plurality rule, the
Borda rule, and the Copeland rule [32].

Different voting rules satisfy different normative principles,
known as axioms in social choice theory. A large number of such
axioms can be found in the literature [32]. We recall here a small
selection of such axioms (the ones we will use in our experiments).
They apply to all profiles in R,R′ ∈ R+ and alternatives x ,y ∈ X .
• Faithfulness. If there is only a single voter in profile R,
then her top-ranked choice should be the unique winner.
• Pareto Principle. If all voters prefer alternative x to alter-
native y in profile R, then y should not win.
• Cancellation. If all alternatives tie in pairwise majority
contests in profile R, then all alternatives should win.
• Neutrality. If profile R′ can be obtained from profile R by
permuting the occurrences of the alternatives within R, then
the winners under R′ should be obtained by applying the
same kind of permutation to the winners under R.
• Positive Responsiveness. If profile R′ can be obtained from
profile R by raising the support for alternative x (one of the
winners under R), then x must be the sole winner under R′.
• Reinforcement. If the intersection of the winning sets un-
der profiles R and R′ is nonempty, then that intersection
should win under R + R′ (as long as |R + R′ | ≤ n⋆).3

Formally, the interpretation of an axiomA, which we denote by I(A),
is simply the set containing all the voting rules that satisfy A. The
interpretation of a set of axioms is defined analogously.

An axiom is (typically) a complex requirement, constraining
the behaviour of rules w.r.t. many profiles and alternatives. So
we can think of an axiom as being made up of multiple axiom
instances. Intuitively, an instance encodes the general restriction
of an axiom for a concrete situation (e.g., a specific profile). For
example, the Pareto Principle talks about all profiles in which
some alternative dominates some other alternative. One of its many
instances stipulates that for the specific profile in which two voters
report a ≻ b ≻ c and three voters report b ≻ c ≻ a, alternative c
should not win. What exactly constitutes an instance depends on
the language in which axioms are expressed, and several definitions
of instances are possible w.r.t. the same language. Still, Boixel and
Endriss [9] stipulated a list of requirements that such a definition
must satisfy (for example, any instance should be an axiom in its
own right). We writeA′ ◁A ifA′ is an instance ofA. Similarly, given
two sets of axioms A and A ′, we write A ′ ◁A if every A′ ∈ A ′
is an instance of some A ∈ A. Moreover, given an instance A′, let
P(A′) denote the set of profiles mentioned in (or constrained) by A′.
For a set of instancesA ′, the set P(A ′) is defined as

⋃
A′∈A′ P(A

′).

3Note that this variant of Reinforcement is weaker than the original formulation
proposed by Young [30], because it only applies to profiles containing the preferences
of at most n⋆ voters overall. We refer to Boixel and Endriss [9] for a discussion.



2.2 Axiomatic Justifications
Given a profile R⋆, what would be a good argument for why a
specific outcome X⋆ should be selected? If X⋆ happens to be the
outcome selected by some voting rule F , then one could try to argue
in favour of F , possibly by reference to the axioms characterising F ,
and thereby—indirectly—justify the selection of X⋆. An alternative
approach would be to argue for the selection of X⋆ directly from
some set of attractive axioms, by demonstrating that accepting
those axioms forces us to accept that outcome [9].

Definition 1 (Boixel and Endriss, 2020). Let A be a corpus of
axioms for voting rules for up ton⋆ voters and alternativesX , letR⋆ be
a profile for n⋆ voters, and let X⋆ ⊆ X a nonempty set of alternatives.
Then a justification for X⋆ in R⋆ given A is a pair ⟨AN ,AE ⟩ of
sets of axioms, with normative basis AN and explanation AE ,
in case the following conditions are satisfied:
• Explanatoriness. AE minimally explains the desired out-
come: for every F ∈ I(AE ) it holds that F (R⋆) = X⋆ and for
every setA ⊊ AE there is an F ∈ I(A) such that F (R⋆) , X⋆.
• Relevance. The explanation is composed of instances of the
axioms in the normative basis: AE ◁AN .
• Adequacy. The axioms in the normative basis belong to the
provided corpus of axioms: AN ⊆ A.
• Nontriviality. There exists at least one voting rule that satis-
fies all axioms in the normative basis: I(AN ) , �.

This is a complex definition, so let us briefly go through the un-
derlying intuitions. Suppose you want to justify why the outcome
should be X⋆ when the profile is R⋆, and suppose you believe that
your audience will find axioms belonging to A compelling. You will
succeed if you can find a set AN of axioms such that accepting
AN logically entails selecting outcome X⋆. But not just any AN

will do! First, the axioms in AN need to be acceptable to your
audience (adequacy). Second, they should not be too strong and
lead to an impossibility result, thereby technically implying every
conceivable outcome (nontriviality). Then, you do not just want
to tell your audience that accepting AN implies choosing X⋆, but
you also want to provide an explanation for why that is the case.
But understanding the logical consequences of several axioms, each
talking about many different profiles, is difficult. Instead, you want
to pinpoint for your audience which instances of the axioms ac-
tually play a role for the specific problem at hand. This is where
the explanation AE comes in. It should be a set of instances of the
axioms in AN (relevance) that retains just enough of the logical
strength of AN to still imply the selection of X⋆ (explanatoriness).

Example 1. Consider a two-voter profile R⋆ where one voter re-
ports a ≻ b ≻ c and the other b ≻ a ≻ c . Suppose we want to justify
the selection of outcome X⋆ = {a,b} using the corpus of axioms
of Section 2.1. A possible justification would be ⟨AN ,AE ⟩, where
AN = {Neutrality, Pareto Principle} and AE is composed of
the following two axiom instances:
• (Pareto Principle) Because every voter prefers a over c ,
alternative c cannot be amongst the winners.
• (Neutrality) Because we cannot distinguish between a and
b by looking only at the two ballots (i.e., they are used sym-
metrically), neither should be treated more favourably than
the other: either both a andb are in the outcome, or neither is.

The only outcomes satisfying both instances are those that exclude
c and that include a if and only if they include b as well. So the only
nonempty set that satisfies these conditions is {a,b}. △

To encode such an example in propositional logic, we could use
one variable pR,x for each R ∈ R+ and x ∈ X , with the intended
meaning that pR,x is true whenever x should be part of the out-
come under profile R. Then, the instance of the Pareto Principle
featuring in Example 1 could simply be encoded as ¬pR⋆,c .

2.3 Algorithmic Challenges
Given a profile R⋆, a target outcome X⋆, and a corpus A, we refer
to the triple ⟨R⋆,X⋆,A⟩ as a justification problem. Solving such a
justification problem means computing a justification ⟨AN ,AE ⟩

that meets the requirements of Definition 1.
Computing justifications is a computationally demanding task.

Boixel and de Haan [10] showed that it is at least Σp2 -hard [1]; the
exact complexity depends on the details of the encoding of the
problem. The good news is that the problem of computing AE

from a given set of instances of A (together with one additional
constraint expressing that X⋆ is not to be selected) reduces to a
well-studied problem, namely computing a minimally unsatisfiable
subset (MUS). Boixel and Endriss [9] used this insight to design an
algorithm for computing justifications. It can be divided into two
phases: the generation phase and the solving phase. In the generation
phase, all instances of every axiom in A are encoded in a suitable
language (for example, constraint programming or SAT). Then, in
the solving phase, an external reasoning tool (specifically, an MUS
extractor) is used to search through the encoded instances and
retrieve the justifications. Using this approach, Boixel and Endriss
were able to compute justifications for profiles with three voters
and three alternatives in 5–30 minutes per profile, but this approach
does hardly scale to even moderately larger scenarios.

Since the solving phase can be delegated to a high-performance
state-of-the-art tool [17, 18, 31], the bottleneck is the generation
phase. So in the sequel we shall focus on this generation phase.

3 ALGORITHM DESIGN AND CORRECTNESS
In this section, we present our main contribution: a graph-based al-
gorithm for solving the justification problem.We also introduce two
families of heuristics designed to further improve its performance.

3.1 Core Algorithm: Instance Graph Generation
The core idea underlying our approach is to perform the generation
of axiom instances incrementally, in order to interleave generation
and solving. To do so, we introduce a notion of distance between pro-
files: this enables us to generate the instances mentioning profiles
“close” to R⋆ first. If no justification is found, we can then gradually
increase the distance and explore the search space further.

To define this distance, we introduce the notion of an instance
graph. Such a graph can be constructed from any given set of axiom
instances (such as those of the axioms in the corpus A). Technically,
an instance graph is an undirected multi-hypergraph, i.e., a graph
where two distinct edges can connect the same profiles, and where
an edge may connect any number of profiles. Intuitively, the nodes
correspond to profiles and the (hyper-)edges to instances.



Definition 2. Given a set of instances A ′, the instance graph
induced by A ′ is a pair GA′ = ⟨P ,E⟩, where:

• P is a set of profiles (also called nodes) such that P = P(A ′);
• E is a multiset of edges, containing for every instanceA′ ∈ A ′

an edge e = {R ∈ P | R ∈ P(A′)} that connects all the nodes
representing profiles mentioned inA′ and that is labelled byA′.

With a slight abuse of notation, for any given corpus A of axioms,
let GA denote the instance graph induced by {A′ ◁A | A ∈ A}.

A path (of length k) is a sequence of edges e1 · · · ek such that
two consecutive edges always have at least one profile in common.
Two profiles are connected if there is a path between them, and
the distance between two connected profiles is the length of the
shortest path between them.

The core task we need to accomplish when solving a justification
problem ⟨R⋆,X⋆,A⟩ is to find a subset AE of the set of instances
of A that meets all our requirements—chief amongst which is the
requirement that the set AE ∪ {“X⋆ does not win in R⋆”}, when
expressed in a suitable formal language, is an MUS of the set of in-
stances ofA.4 The problem is that explicitly generating all instances
of the axioms in A is not feasible. As outlined earlier, having a no-
tion of distance in place allows us to instead generate instances in
an incremental fashion. To do so, we can use familiar graph-search
algorithms. In particular, we will employ breadth-first search (BFS)
to explore the graph GA (starting from R⋆) in a systematic way.
Our search will be parameterised by a maximum depth d ∈ N0
(measured from R⋆). We call this algorithm Gen.

Briefly, Gen(GA,R⋆,d) starts by generating every instance ex-
clusively mentioning the given profile R⋆.5 Then, if d > 0, we
expand R⋆ by generating all instances that mention R⋆ together
with some other profile(s). For every instance A′ generated during
this expansion, we add the (newly discovered) profiles in P(A′) to a
search (FIFO) queue and generate the instances which exclusively
mention them. Then, again, if d > 1, we expand the next profile in
the queue, and repeat the process. The search is interrupted as soon
as a profile at depth d is selected for expansion (as that would mean
reaching the profiles at distance d + 1 from R⋆), and the algorithm
returns the sets of instances generated up to that point. Note that
every time a profile is reached (that is, added to the FIFO queue),
the instances that exclusively mention it are generated. This is be-
cause, if we explore the graph up to depth d , we want to generate
all instances that only mention profiles within distance d from R⋆.
Throughout the search, we keep track of which axioms in A have
given rise to each of the axiom instances we generate.

So Gen(GA,R⋆,d) returns a set of axiom instances A ′ (each of
them is linked to an axiom inA). We now need to search throughA ′
to find a justification—and an explanation AE in particular. This is
what we call the solving phase. Suppose we have an algorithm avail-
able for this task: given a justification problem J = ⟨R⋆,X⋆,A⟩,
the Solve algorithm accepts J and a set of instances A ′ of A as
input and returns any justification for J for which the explanation
is a subset of A ′ (if such a justification exists; if not, nothing is

4In addition, we also need to check that AN , defined as a set the axioms in A that
has the property that its instances fully cover AE , is satisfiable.
5Here, “generating an instance” means generating a suitable expression in our formal
language of choice. One option is to use a constraint modelling language [9]. In our
experiments we used propositional logic, to be able to work with SAT solvers [14].

Algorithm 1: Justify
Data: Problem J = ⟨R⋆,X⋆,A⟩ and depth d ∈ N0.

1 Set d ′ ← 0 and A−1 ← �;
2 while d ′ ≤ d do
3 Set Ad ′ ← Gen(GA,R⋆,d ′);
4 If Ad ′ = Ad ′−1, then stop;
5 If Solve(J ,Ad ′) finds a justification, return it and stop;
6 Otherwise, set d ′ ← d ′ + 1;

returned). As sketched earlier, such an algorithm can be realised
with the help of an MUS extractor. Boixel and Endriss [9] designed
such an algorithm and we refer to their work for full details.6

We are now ready to define our core algorithm, called Justify
(see Algorithm 1). It starts by generating only the instances men-
tioning R⋆, and solving only w.r.t. these instances. If no justification
is found, we generate all instances within a distance of 1 from R⋆,
and solve again; this is repeated until either a justification is found,
the maximum depth permitted is reached, or the search reaches a
fixed point (meaning that the portion of the graph connected to R⋆
has been fully explored).

We are now going to prove Justify to be correct, under the
assumption that Solve is. For either one of these algorithms, we
say that it is correct if it is both sound and complete. In the case
of Justify, soundness means that Justify(J ,d) only returns ac-
tual justifications for J , while completeness means that, for every
justification problem J that has at least one solution there exists
a d ∈ N0 such that Justify(J ,d ′) returns something for every
d ′ ≥ d .7 In the case of Solve, soundness means that Solve(J ,A ′)
only returns actual justifications for J , while completeness means
that Solve(J ,A ′) returns something whenever there exists at least
one justification ⟨AN ,AE ⟩ withAE ⊆ A ′. We note that it is possi-
ble to devise an algorithm Solve that has both these properties; the
algorithm of Boixel and Endriss [9] is an example (the brute-force
algorithm simply checking all subsets ofA ′ is another one). Before
we prove correctness, observe that, if we were to replace Gen by
an alternative generation routine that simply returns the full set of
instances of the axioms in A, then the resulting variant of Justify
would be trivially correct (assuming Solve is)—but of course this
alternative algorithm would not be efficient.

Theorem 1 (Correctness). Algorithm Justify is correct when-
ever its subroutine Solve is correct.

Proof. First, observe that soundness of Justify follows imme-
diately from soundness of Solve. So we focus on completeness.

To prove completeness, it is sufficient to show that, if a justifica-
tion exists, then some set of instances from which an explanation
can be extracted will eventually be given as input to Solve. Now,
given a sufficiently large depth, all instances mentioning profiles
connected to our given profile R⋆ will be generated by Gen. It thus
remains to be shown that any possible explanation AE can only

6While the solving algorithm defined by Boixel and Endriss [9] takes the set of all
instances of the axioms in A as input, it can also be applied to any subset of that set.
7An alternative, more demanding, definition of completeness would require that every
justification is retrieved eventually. We shall not explore this idea further in this paper.



ever contain such instances. So, for the sake of contradiction, sup-
pose AE includes an instance A′ that only mentions profiles that
are not connected to R⋆. Observe that establishing explanatoriness
amounts to showing that AE together with the constraint saying
that the target outcome X⋆ does not win in R⋆ is inconsistent [9].
But if a given constraint network is inconsistent, then so is at least
one of its connected sub-networks [5]. We distinguish two possibil-
ities. First, if the connected component in AE that A′ belongs to is
inconsistent in its own right, then that would violate the require-
ment of nontriviality of the normative basis forAE . Second, if that
connected component is consistent, then some other connected
component and thus also AE \ {A′} would be inconsistent, which
would violate the requirement of minimality. So, either way, we
obtain the required contradiction and are done. □

Next, we are going to define two families of heuristics to further
speed up Justify in practice. Every concrete heuristic belonging
to one of these two families will be tied to specific axioms. We are
going to present some examples for such concrete heuristics, for
some of the best-known axioms from the literature [32]. While, as
we just saw, Justify is defined and works correctly for any corpus
of axioms, it makes sense to try and fine-tune it for use with such
widely used and widely accepted axioms. But we stress that the
choice of heuristics does not in any way limit the range of axioms
we can use; the algorithm will continue to work correctly for any
combination of corpus axioms and any combination of heuristics.

3.2 Heuristics: Omitting Implied Instances
The goal of the first family of heuristics is to avoid the generation
of redundant instances. Here, a redundant instance is an instance
whose constraint (its “effect” over some profiles) is already enforced
(or implied) by other instances of the same axiom. Observe that
we can omit the generation of such an implied instance, as long as
we do generate the instances that imply it: everything that can be
explained by the former can be explained by the latter instead.

Example 2. Consider some profile R1. Suppose that by raising the
support of alternative x we obtain another profile R2. Thus, there
is an instance of Positive Responsiveness (let’s call it A1,2) that
constrains R1 and R2 (by prescribing that, if x wins in R1, then it
must be the unique winner in R2). Now, suppose that by further in-
creasing the support of x in R2 we obtain another profile R3. Hence,
there also is an instance of Positive Responsiveness constraining
R2 and R3 (let’s call it A2,3). But, clearly, R3 can also be obtained
directly from R1 by raising the support of x . So there is an instance
connecting R1 to R3 directly (let’s call it A1,3). Note that the con-
straint enforced by A1,3 is implied by A1,2 and A2,3; hence, as long
as we generate the latter two, we can avoid generating A1,3. △

Let us make this idea formal.

Definition 3. Given an axiom A, one of its instances A′ ◁A, and
a set A ′ of further instances of A such that I(A ′) ⊆ I(A′), we say
that A′ is an implied instance of A with implicant set A ′.

Note that I(A ′) ⊆ I(A′) means that every rule that satisfies all
instances in A ′ will also satisfy the implied instance A′. Hence,
explicitly imposing A′ on top of A ′ has no impact on the range of
possible rules we consider when searching for a justification.

We call an implied-instance heuristic any refinement of Justify
that, in Step 3, instead of exploring GA, explores GA− , whereA− ⊆
{A′ ◁ A | A ∈ A} can be thought of as having been obtained as
follows. Initialise A− with the full set {A′ ◁ A | A ∈ A} of corpus
axiom instances and then repeat any number of times: remove
an instance A′ from A− that has an implicant set that is fully
included in A−. We now show that any such heuristic preserves
the correctness of the main algorithm established in Theorem 1.

Proposition 2. Algorithm Justify remains correct when we re-
fine it with any number of implied-instance heuristics.

Proof (sketch). Soundness clearly is not affected by omitting
some of the instances from the instance graph.

To prove completeness we need to show that, if Justify returns
some justification, then so does the refined algorithm. Let us con-
sider the case where Justify only returns justifications featuring
implied instances. We need to make sure that Solve will eventu-
ally be given a set of instances, free from implied instances, from
which some justification can be retrieved. The existence of such a
set follows from the fact that the explanation of any justification
found by Justify that features some of the implied instances can be
rewritten by replacing those implied instances by their implicants.8
Because implied instances and their implicants refer to profiles that
are connected, without any limit on depth, these implicants will
eventually be generated. Thus there exists at least one justification
that can be retrieved by the refined algorithm. □

3.3 Heuristics: Adding Derived Axioms
During initial experiments, we observed that certain axioms were
frequently involved in the same “patterns of explanation”. That is,
the underlying arguments of many justifications involving such
axioms displayed a recurring structure. Our second family of heuris-
tics leverages this a-posteriori knowledge regarding the structure
of typical justifications in order to speed up the search.

To formulate such a heuristic, we take a commonly observed
pattern of interaction between axioms (involving multiple profiles)
and amalgamate it into a single new axiom (whose instances men-
tion only one profile at a time), which we refer to as a derived axiom.
The goal here is to “reduce” an explanation that would require a
depth of d into a single instance that only requires a depth of d ′
(with d ′ < d). Doing so allows us to, sometimes, stop the generation
at depth d ′ instead of exploring the graph up to depth d .

Example 3. Consider the axioms of Positive Responsiveness
and Cancellation. We call a Cancellation profile any profile where
all alternatives tie in pairwise majority contests. We can define
the following derived axiom A⋆: “For every profile R and every
alternative x⋆, if R can be obtained from some Cancellation profile by
raising the support for x⋆, then {x⋆} should win in R.” It is easy to
see that any voting rule F that satisfies Positive Responsiveness
and Cancellationmust satisfyA⋆ as well. Furthermore,A⋆ refers
to just one profile R.9 Hence, instead of searching through the graph
8Such an explanation may originally fail to satisfy the explanatoriness requirement.
In this case we can remove instances one-by-one until minimality is restored. At the
same time, note that the nontriviality requirement is not affected.
9Note that another profile (the “Cancellation profile”) is implicitly mentioned. How-
ever, it is possible to generate the instances of this derived axiom quickly during the
expansion of R without having to reach and expand said Cancellation profile.



for a suitable Cancellation profile R′ connected to R, we can directly
generate the relevant instance of this axiom while expanding R. △

We now formally define the concept of a derived axiom.10

Definition 4. A derived axiom of a set of axioms A with
I(A) , � is an axiom Ad < A such that I(A) ⊆ I(Ad ) and, for
all axiom instances A′ ◁Ad , it is the case that |P(A′)| = 1.

The restriction of |P(A′)| = 1 is enforced for performance reasons
only: when we impose a maximum depth of d on the generation,
for any profile R at distance d from the given profile R⋆, we only
generate the instances that exclusively mention R. Hence, if we
reduce part of a complex explanation constraining the outcome for
R into a single instance only mentioning R itself, we ensure that
this part of the explanation is discovered as soon as R is reached
(and thus, with the smallest depth possible).

Given a justification problem J = ⟨R⋆,X⋆,A⟩ and a set of
derived axioms Ad for axioms in A, let JAd be a variant of J
where A has been extended with Ad . Then, we say that a derived-
axiom heuristic (w.r.t. Ad ) is a refinement of Justify defined as
JustifyAd (J ,d) = Justify(JAd ,d). Note that, since the two no-
tions are completely independent, an algorithm implementing both
implied-instance and derived-axiom heuristics is naturally defined:
we call any such algorithm a heuristic variant of Justify.

Now consider one such heuristic variant JustifyH of Justify,
and let Ad be the set of derived axioms extending the original
corpus. Assuming again the correctness of Solve, it follows im-
mediately from Theorem 1 and Proposition 2 that, for any input
problem J , JustifyH will eventually find a justification for JAd ,
if one exists. However, as that justification might feature instances
of some of the derived axioms and thus violate the relevance re-
quirement, it is not necessarily a justification for J . We argue that
this is unlikely to be a problem in practice; in fact, it might even be
desirable. Indeed, if a derived axiom encapsulates a complex pattern
of explanation arising from multiple instances, it might be fruitful
to present the concise derived axiom instance to the users instead
of the full explanation. Furthermore, as we shall see next, even if
we do want to insist on a justification that only involves axioms
from the original corpus A, this need not be a problem. Indeed, if
A is nontrivial, then we can always “convert” a justification for
JAd back to a justification for J . Let Justify+H be the algorithm
that first executes JustifyH , searching for a justification using the
extended corpus of axioms, and then replaces every derived axiom
in the normative basis found by the original axioms deriving it
and any instance of a derived axiom with the original instances
deriving it. In case the resulting explanation is not minimal, we
remove instances one-by-one until it is. We now show that this
algorithm is correct when used with nontrivial corpora.

Proposition 3. For nontrivial corpora, algorithm Justify refined
with any number of implied-instance heuristics remains correct when
further refined with any number of derived-axiom heuristics and
followed by the aforementioned postprocessing routine.

Proof (sketch). Consider a justification problem J =

⟨R⋆,X⋆,A⟩ and a setAd of derived axioms for a nontrivial corpus
10Our notion of derived axiom is reminiscent of the use of lemmas in automated
reasoning [3]. We do not use this terminology here to stress the fact that a derived
axiom typically is not just a technical tool but also has some normative appeal.

A. By Proposition 2 we know that, internally, Justify+H will retrieve
a valid justification ⟨AN ,AE ⟩ for JAd if one exists. Then, in the
postprocessing phase, any instance of a derived axiom in AE is
replaced by the instances of the axioms in A that imply it.11 Finally,
redundant instances (that would violate minimality) are removed.
As this new set AE

⋆ of instances entails AE , there exists no rule
picking an outcome different from X⋆ for R⋆ while also satisfying
AE

⋆ (by explanatoriness of AE ). Call AN
⋆ the normative basis ob-

tained from AN where every derived axiom has been replaced by
the axioms it is derived from. The nontriviality ofAN

⋆ ⊆ A follows
from the nontriviality of A. Hence the pair ⟨AN

⋆ ,A
E
⋆⟩ returned by

Justify+H is a correct justification for J . □

If I(A) = �, i.e., if the corpus is not nontrivial, then we are not
guaranteed to be able to perform such a conversion, since the
resulting normative basis might violate nontriviality. However, we
can slightly modify the above algorithm to perform a check of the
resulting, converted justifications: if they are proper justifications
for the input problem J , then they are returned.12 Otherwise,
the search is resumed. Since a derived-axiom heuristic only adds
instances to the instance graph, all the original justifications for J
will still be retrievable, so this algorithm would be trivially correct.

4 PERFORMANCE ANALYSIS
In this section, we report on the experiments we conducted to anal-
yse the performance of our approach [21]. We ran our algorithm on
a set of justification problems with moderately-sized profiles, using
both randomly generated profiles and profiles extracted from real-
world data [19]. Overall, we found that, on a powerful computer, our
method can handle such queries in a matter of minutes in the worst
case and in a matter of seconds on average, thereby improving over
the baseline algorithm [9] by several orders of magnitude.

4.1 Experimental Setup and Results
Our experiments were designed as follows. We searched for justifi-
cations grounded in the corpus of axioms presented in Section 2.1.
This corpus is nontrivial, meaning that there exist rules that satisfy
all of its axioms.13 Hence, for any given profile there can be a justi-
fication for at most one target outcome. Given a set of test profiles,
we thus tried to compute a justification for some target outcome
for every profile in the set (by iterating over all possible outcomes
until one is found), and we measured the time it took to do so.

We focused on profiles ranging from 2 to 12 voters, and 3 to 4
alternatives. Although of limited size, we argue that such scenarios
are already large enough to capture some real-world, high-stakes
scenarios: for example, a research group looking for a PhD candidate
to hire, a small committee voting to enact a new policy, or the
strategic unit of a company choosing where to open the next branch.
To generate the test profiles, we used three different approaches.
• Exhaustive. In the first approach, also followed by Boixel
and Endriss [9], we exhaustively test our algorithm on every

11Note that, at least in principle, this is always possible. If Ad is implied by (that is,
derived from) some axioms in A, then any instance of Ad is implied by (at least) the
set of all instances of A. In practice, any sensible derived axiom will allow for its
instances to be replaced by just a handful of the instances of the original axioms.
12To do this, we need to check whether the resulting normative basis is nontrivial.
13For example, the Borda rule is one of several such rules [30].



possible profile (involving a given number of voters and
alternatives), up to symmetry breaking.14 Note that this is
feasible only for the smaller scenarios considered.
• Random. In the second approach, we sample uniformly
from the space of all profiles (of a given size). This is known
as the impartial culture (IC) assumption [13].15

• Preflib. In the third approach, we generate profiles by sam-
pling from Preflib, an online library of real-world preference
datasets [19]. Since most profiles in Preflib involve a large
number of voters, we use the following bootstrapping ap-
proach to generate a profile: given a Preflib profile R with
n voters, we sample n′ (with n′ < n) preference orders, and
the probability of extracting each preference is proportional
to the number of voters reporting that ballot in R. Since this
kind of bootstrap sampling, in expectation, preserves the
distribution of the preference orders, we consider it a rea-
sonable way of generating profiles. It has also been used in
a number of other works in social choice theory [15, 23, 25].

Specifically, for the case of 3 alternatives, we performed exhaustive
generation on all profiles with between 2 and 8 voters, and we used
both random and Preflib generation for profiles of 10 and 12 voters.
For the case of 4 alternatives, we performed exhaustive generation
on all profiles with between 2 and 4 voters, and we used random and
Preflib generation for profiles of 5 to 8 voters. For both sampling
approaches, for each of the scenarios considered, we generated
180 profiles. Specifically, for the Preflib generation, we selected
at random 30 profiles, and for each of them generated 6 random
subprofiles (by sampling as described above).

A further clarification is in order. In the case of 4 alternatives, we
imposed a maximum search depth of 3, for several reasons. First, the
depth of a justification (i.e., theminimumdepth at which the instance
graph must be explored to retrieve it) generally correlates with its
intricacy. Overly deep justifications can be hard to understand.
Second, in our preliminary experiments, we found that in fact most
justifications are found within a depth of at most 3, so in case no
justification has been found at that depth it is unlikely that one
would be found later on, meaning that restricting the depth can be
a good trade-off between performance and full coverage.

We used a heuristic variant of Justify featuring several
implied-instance heuristics (for Neutrality, Reinforcement,
and Positive Responsiveness) and derived-axiom heuristics (for
Neutrality, Positive Responsiveness, and Cancellation). As
our encoding language we used SAT (i.e., propositional logic),
and we employedMarco [17] for the MUS enumeration and Lin-
geling [6] for checking satisfiablity. All experiments have been
run on a machine of the Dutch national computing cluster LISA,
equipped with an Intel Xeon Silver 4110 CPU (2.10GHz).16

14Indeed, if several profiles are identical up to a renaming of the alternatives, then it is
sufficient to test our algorithm on only one representative of this equivalence class.
15Note that, due to our symmetry breaking approach, in expectation, the results of
an experiment for the same number of voters and alternatives might differ for the
exhaustive and the random approach. To obtain the same results, one would need to
use what is known as the impartial anonymous and neutral culture assumption [12].
16Besides the experiments we report on here, we also conducted experiments with two
further samplingmethods, namely the Polya-Eggenberger urn model [4, 27] and uniform
sampling restricted to single-peaked profiles [8, 29]. These results were consistent with
the findings we report here: all queries were answered within a matter of minutes,
with the best performance obtained for profiles generated from real-life data. For more
details, we refer the reader to the MSc thesis of the first author [20].

Generation Explained Profiles Avg time (s) Max time (s)

Three Alternatives

Exhaustive

2 voters 5/5 (100%) 0.11 (± 0.01) 0.13
3 voters 9/10 (88.89%) 0.12 (± 0.01) 0.14
4 voters 22/23 (95.65%) 0.14 (± 0.13) 0.77
5 voters 42/42 (100%) 0.23 (± 0.31) 1.50
6 voters 83/83 (100%) 0.23 (± 0.37) 2.33
7 voters 132/132 (100%) 0.41 (± 0.69) 4.02
8 voters 222/222 (100%) 0.45 (± 1.06) 9.99

Random

10 voters 180/180 (100%) 0.40 (± 1.12) 10.74
12 voters 180/180 (100%) 0.93 (± 1.99) 9.26

Preflib

10 voters 180/180 (100%) 0.48 (± 1.28) 9.36
12 voters 180/180 (100%) 1.19 (± 3.95) 25.69

Four Alternatives

Exhaustive

2 voters 15/17 (88.24%) 0.21 (± 0.09) 0.35
3 voters 68/111 (61.26%) 1.11 (± 1.14) 4.95
4 voters 509/762 (66.80%) 3.15 (± 3.82) 16.76

Random

5 voters 113/180 (62.78%) 12.40 (± 12.67) 42.12
6 voters 132/180 (73.33%) 16.58 (± 21.92) 77.32 [1′17′′]
7 voters 140/180 (77.78%) 63.23 (± 65.19) 183.15 [3′03′′]
8 voters 167/180 (92.78%) 155.85 (± 189.46) 545.78 [9′05′′]

Preflib

5 voters 133/180 (73.89%) 7.18 (± 10.09) 40.82
6 voters 145/180 (80.56%) 14.40 (± 22.84) 91.57 [1′32′′]
7 voters 149/180 (82.78%) 25.83 (± 43.37) 176.67 [2′57′′]
8 voters 161/180 (89.44%) 57.49 (± 103.45) 493.46 [8′13′′]

Table 1: Experimental results. Average are given with standard devi-
ation in brackets (also expressed in minutes for the slowest cases).

Table 1 shows the results of our experiments. Note that we also
ran the same experiments without any heuristics, and we were
able to observe a clear positive impact on performance when using
heuristics. We do not present these additional results here in any
detail, but, for example, the experiment concerning all 222 profiles
with 8 voters and 3 alternatives took approximately half an hour
in total (compared to less than 2 minutes with the heuristics). A
more extreme example is the experiment concerning profiles with
4 voters and 4 alternatives: running all 762 of them took around 22
hours (compared to less than 40 minutes with heuristics).

We stress that our findings are specific to the corpus of axiomswe
employed and the profiles we considered. This is true, in particular,
with regards to the results about the proportion of profiles for
which we were able to justify an outcome. Interestingly, all the
justifications found turned out to be justifications of Borda winners.
This is not entirely surprising, given that the axioms of Section 2.1
closely resemble (but are not completely equivalent to) the axioms
used in Young’s characterisation of the Borda rule [30].



4.2 Discussion: Three Alternatives
As is clear from the upper part of Table 1, for most profiles with 3
alternatives a justification can be found within a reasonable amount
of time: the absolute maximum time encountered is less than half a
minute. Moreover, on average, computing a justification takes less
than one second on almost every scenario considered, and takes
slightly more (1.19 seconds) only for the largest case considered.

The vast majority of retrieved justifications were found within
a maximum depth of 3 (98.95%). Specifically, for the sampling ap-
proaches, only one single profile required a depth of 4 (generated
with Preflib, for the case of 10 voters). The average depth needed
to justify the profiles (across all generation methods and scenar-
ios) was 0.94 (±0.73) and the median depth was 1. Hence, most
justifications can be found close to the profile of interest.

Note that the only profiles for which we were not able to justify
any outcome involved either 3 or 4 voters. For 3 voters, no justifica-
tion was retrieved for the profile where one voter reports a ≻ b ≻ c
and two voters report c ≻ a ≻ b. The Borda outcome for this
profile is {a, c}, which can be justified with the classical (stronger)
formulation of Reinforcement (together with Neutrality, the
Pareto Principle, and Cancellation) by referring to a profile
of 5 voters. However, our weaker formulation of Reinforcement
only considers profiles with up to n⋆ = 3 voters (when searching
for a justification for a 3-voter profile), so this would not be a valid
justification for our corpus. The same issue also arises for one of
the 4-voter profiles, where one voter reports a ≻ b ≻ c and three
voters report c ≻ a ≻ b. Similarly as before, the Borda outcome for
this profile (where c is the unique winner) can only be explained
by referring to a profile that is larger than the profile of interest.

4.3 Discussion: Four Alternatives
The results of the experiments with 4 alternatives case are shown
on the lower part of Table 1. As one would expect and as is clearly
visible from the results, compared to the case of 3 alternatives, we
now are facing a much harder computational problem.

First of all, observe that, across all the experiments considered,
for the majority of profiles (74%) a justification can still be found
within a reasonable amount of time. Indeed, all queries are answered
within a matter of minutes; the absolute worst running time is
slightly more than 9 minutes. Although this would be too much
for a real-time application, we can envision a tool that works in an
asynchronous fashion, e.g., by returning the results via email.

We now also observe greater average and median depths, when
compared to the case of 3 alternatives. Across all retrieved justifi-
cations, the average depth was 1.61 (±0.90), and the median depth
was 2. Indeed, profiles involving more alternatives are usually more
complex, so one can expect justifications to be more intricate.

Furthermore, note that outcomes for profiles sampled from Pre-
flib were justified more frequently than for those sampled from
the impartial culture (save for the case of 8 voters), and they also
required less computing time. Although the number of profiles anal-
ysed is limited and our results are specific to the corpus considered,
this is very encouraging, given that our goal is to justify outcomes
for real-world decision making scenarios.

Moreover, we can observe a general tendency regarding the
number of voters: as n⋆ increases, the percentage of profiles with a

justification generally increases as well (with the exception of the
case of 2 voters). This mirrors the pattern observed for 3 alternatives,
where the only profiles for whichwe retrieved no justifications were
to be found in the smallest scenarios. A possible explanation for
this trend might be related to the role played by Reinforcement. A
justification involving this axiom usually is obtained by “breaking
down” the given profile R⋆ into two subprofiles.

Example 4. Consider the profile R⋆ with two voters reporting
a ≻ b ≻ c and one reporting c ≻ b ≻ a. We can partition this profile
into two subprofiles: one where there is a single voter reporting a ≻
b ≻ c (where a wins by Faithfulness), and a 2-voter profile where
one votes a ≻ b ≻ c and the other c ≻ b ≻ a (so all alternatives tie
by Cancellation). Now we can construct a justification for {a}
for R⋆ by appealing to Reinforcement. △

This might explain why, as n⋆ grows larger, more profiles have
justifiable outcomes: the larger the number of voters, the more
choices there are to decompose the given profile R⋆ into subprofiles,
and so themore likely it is that at least one such partition will lead to
a justification involving Reinforcement. We consider this another
positive finding: in most real-world decision making scenarios we
should expect to see more than just a couple of individuals involved,
so it is encouraging that our approach works well for such scenarios.

5 CONCLUSION
We have presented an algorithm to iteratively generate axiom in-
stances that might turn out to be relevant to the justification of an
outcome for a given preference profile. This generation proceeds
by exploring the graph spanned by the set of all axiom instances
over the set of all profiles. We have further refined this algorithm
by using heuristics that exploit the structure of specific axioms.
The resulting algorithm, when combined with state-of-the-art tools
for SAT solving and MUS enumeration, has allowed us to make
significant progress on the challenge of solving the axiomatic justi-
fication problem for scenarios that are sufficiently complex to be
of practical interest for applications. Our experimental results for
real-world preference data are particularly encouraging.

While these results, and the concrete heuristics used to refine
our algorithm, are specific to our corpus of axioms, the techniques
presented are generic and adapting the heuristics to other axioms
can be expected to be straightforward in most cases.

We can identify several important directions for future work.
First, our experimental study could be extended to a broader range
of axioms. Second, our algorithm could be used as a tool in a qual-
itative study of justifications and explanations, e.g., to better un-
derstand typical patterns observed in explanations. Third, our algo-
rithm could be refined with a search strategy that favours justifica-
tions with certain characteristics, such as being particularly short
or favouring the involvement of some axioms over others [9, 16].
The design of such a strategy should be informed by a user study
to establish what kinds of justifications users are most likely to
understand and accept. Finally, more research is needed on how
best to present an explanation to a nonexpert user in practice.
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