
Refinements of the CIFF Procedure

Ulle Endriss1, Markos Hatzitaskos1, Paolo Mancarella2, Fariba Sadri1, Giacomo Terreni2, and Francesca Toni1

1 Department of Computing, Imperial College London 2 Dipartimento di Informatica, Università di Pisa
Email: {ue,mh803,fs,ft}@doc.ic.ac.uk Email: {paolo,terreni}@di.unipi.it

1 Introduction

Abductive Logic Programming (ALP) combines abductive
reasoning with logic programming. In recent work [2], we
have introduced a new proof procedure for ALP which we
call CIFF. Our procedure extends the IFF procedure of
Fung and Kowalski [3] by integrating ALP with constraint
solving and by relaxing the restrictions on allowed inputs
for which the procedure can operate correctly. CIFF has
been applied successfully in the context of multiagent sys-
tems. An implementation of the procedure is available at
http://www.doc.ic.ac.uk/∼ue/ciff/.

In this extended abstract, we summarise several recent
refinements of the CIFF procedure. After giving a brief
introduction to ALP and CIFF in the next section, we
firstly indicate how to extend CIFF with negation as fail-
ure and then discuss a number of improvements to the
implementation of the procedure, pertaining to both op-
timisation and usability issues.

2 ALP and CIFF

An abductive logic program consists of a (constraint) logic
program (called the theory) and a finite set of integrity
constraints. In our case, the integrity constraints are im-
plications of the form L1 ∧ · · · ∧ Lm → A1 ∨ · · · ∨ An

(not to be confused with constraint predicates, such as
T#<10). We assume that the theory is presented as a set
of “iff-definitions”, which may be regarded as the (selec-
tive) completion of a normal logic program [1].

A theory provides definitions for certain predicates and
the integrity constraints restrict the range of possible in-
terpretations. Predicates that are neither defined nor spe-
cial (such as constraint predicates) are called abducibles.
A query (a conjunction of literals) may be regarded as an
observation against the background of the world knowl-
edge encoded in a given abductive logic program. An
answer to such a query would then provide an explana-
tion for this observation: it would specify which instances
of the abducible predicates have to be assumed to hold
for the observation to hold as well. In addition, such an
explanation should also validate the integrity constraints.
Under a different interpretation, a query may be seen as
a goal, in which case an answer would provide a plan for
achieving that goal.

The CIFF procedure can be used to compute such an-
swers. There are three possible outputs: (1) the procedure
succeeds and returns an answer to the query; (2) the pro-
cedure fails, thereby indicating that there is no answer;
and (3) the procedure reports that computing an answer
is not possible, because a critical part of the input is not
allowed. Allowedness relates to input formulas with cer-
tain quantification patterns for which the concept of a
(finite) answer cannot be defined. Whereas the original
IFF procedure [3] requires allowedness conditions to be

checked in advance (with the result of being overly re-
strictive), CIFF can handle this issue dynamically. Our
procedure has been shown to be sound (both in the case
of success and in the case of failure) with respect to the
completion semantics for ALP [2].

The CIFF procedure operates on so-called nodes. A
node is a set (representing a conjunction) of formulas
which are called goals. A proof is initialised with a node
containing the integrity constraints and the literals of the
query. The theory is kept in the background and is only
used to unfold defined predicates as they are being en-
countered. The proof procedure repeatedly manipulates
the current node by rewriting goals in the node, adding
new goals to it, or deleting superfluous goals from it. If
a disjunction is encountered, then the splitting rule can
be applied, giving rise to different branches in the proof
search tree. Besides unfolding and splitting, CIFF uses
rewrite rules such as the following:

• Propagation: Given goals of the form p(~t) ∧ A → B
and p(~s), add the goal (~t = ~s) ∧A → B.

• Negation elimination: Replace any implication of the
form ¬A1 ∧ · · · ∧ ¬An → B by A1 ∨ · · · ∨An ∨B.

• Case analysis for constraints: Replace any goal of
the form Con ∧ A → B, where Con is a constraint
not containing any universally quantified variables,
by [Con ∧ (A → B)] ∨ Con.

A node containing an apparent contradiction is called a
failure node. If all branches in a derivation terminate with
failure nodes, then the procedure is said to fail (i.e. there
exists no answer to the query). A non-failure node to
which no more proof rules apply (and that is allowed) can
be used to extract an answer by collecting all the atomic
abducibles (and constraints) in that node.

3 Negation as failure

We have found that ALP and CIFF are useful formalisms
for modelling intelligent agents. Abducibles can be used to
represent the actions available to an agent and integrity
constraints can be used to specify an agent’s behaviour
by means of reactive rules. However, in some cases the
classical treatment of negation in CIFF can lead to non-
intuitive answers being computed. To exemplify the prob-
lem, consider the following integrity constraint:

request ∧ ¬have → reject

Intuitively, this (simplified) rule expresses that, if a re-
quest has been made to an agent for an object and the
agent does not have that object, then the agent should
reject the request. But given the observation request,
CIFF will first propagate that observation with the in-
tegrity constraint to get (¬have → reject) and then rewrite



the latter as (¬¬have ∨ reject) using negation elimina-
tion. Thus, CIFF will compute the intuitively correct an-
swer {request, reject}, as well as the non-intuitive answer
{request, have}. The second answer says that an agent
using CIFF might react to a request for an object by sud-
denly “having” that object (which does, of course, not
make sense as “having” should not be treated as an ac-
tion available to the agent).

We have therefore investigated a different way of treat-
ing negation within (the residues of) integrity constraints,
namely negation as failure [1]. Following the approach
proposed in [5], we have integrated negation as failure
into CIFF. In the modified version of the procedure, all
implications in a node are either marked (using the sym-
bol ∗) or unmarked. Initially, all integrity constraints are
marked (but negative literals in the query, which we rep-
resent as A→⊥, are not). Every proof rule can be applied
to marked implications, except for negation elimination.
We define a new rule to handle negation:

• Negation rewriting: Replace any marked implication
of the form ∗(¬A1∧· · ·∧¬An → B) by the disjunction
pr(A1)∨· · ·∨pr(An)∨[∗(A1→⊥)∧· · ·∧∗(An→⊥)∧B].

Here pr(A) stands for “A is provably true”. Given a neg-
ative element A in a marked implication, negation rewrit-
ing can be thought of as either proving that A is true or,
otherwise, taking A to be false and considering the rest
of the implication. With respect to our earlier example,
we would still propagate the observation request with the
integrity constraint, but instead of the second proof step,
it would now rewrite the negation as follows:

pr(have) ∨ [∗(have → ⊥) ∧ reject]

Intuitively, this means that either the agent (can prove
that it) has got the object in question (and thus could
accept the request to give it away), or the agent does
not have the object and has to reject the request. After
splitting the disjunction, the new CIFF would then try to
prove pr(have) and fail (meaning that the corresponding
node cannot be used to extract an answer). Hence, only
the answer {request, reject}, corresponding to the second
disjunct, would get generated.

We are currently implementing negation as failure in
CIFF and a first version of the system is described in [4].

4 Implementation refinements

CIFF has been implemented in Sicstus Prolog and con-
straint solving is delegated to its built-in finite domain
solver. Since the first release of CIFF we have imple-
mented a number of improvements of the system, most of
which concern (high-level) optimisation issues; e.g.:

• Guided propagation. The propagation rule of CIFF
(and IFF) allows for an atomic formula to be resolved
with any matching atom in the antecedent of an im-
plication. This rule can be refined by allowing propa-
gation only with respect to the leftmost atom, which
can reduce the number of residues to be considered.

• Ordering of proof rules. We have experimented with
different ways of ordering proof rules to identify the
configuration most suitable for typical queries. Con-
cerning the main rules, our new heuristics give high-
est priority to the constraint rules and lowest priority

to unfolding within implications. Minor proof rules,
such as rewriting according to logical equivalences,
are also given lower priority than before.

• Simple rules. Our implementation includes certain
proof rules that humans would apply implicitly, such
as rewriting a disjunction consisting of a single dis-
junct as that very disjunct. Our original heuristic
has been to give high preference to such rules, while
our new approach is not to waste computing time on
constantly testing for their applicability, but rather
to integrate them into the more complex rules.

Recently, we have also made a number of improvements
regarding the usability of the system, in particular with
respect to the representation of constraint predicates in
extracted answers:

• Constraint simplification. While the original system
(being a faithful implementation of the abstract proof
procedure) only uses the Sicstus constraint solver to
check whether a given set of constraints is satisfi-
able, we now also simplify such satisfiable sets of con-
straints before reporting them to the user.

• Projection. CIFF often generates auxiliary variables
during execution, which should be removed from the
set of constraints returned as part of an answer. We
are therefore currently working on a refinement of
CIFF that would allow us to project the answer con-
straints onto the relevant set of variables. While, in
the general case, no efficient algorithm for projec-
tion onto (integer) variables is known, in the con-
text of CIFF we can take advantage of the fact that
(a) the overall number of variables tends to be rela-
tively small, and (b) we only need to consider a lim-
ited range of constraint patterns.

Acknowledgements. This research has been sup-
ported by the European Commission as part of the SOCS
project (IST-2001-32530).

References

[1] K. L. Clark. Negation as failure. In Logic and Data
Bases. Plenum Press, 1978.

[2] U. Endriss, P. Mancarella, F. Sadri, G. Terreni, and
F. Toni. The CIFF proof procedure for abductive logic
programming with constraints. In Proc. 9th Euro-
pean Conference on Logics in Artificial Intelligence.
Springer-Verlag, 2004.

[3] T. H. Fung and R. A. Kowalski. The IFF proof pro-
cedure for abductive logic programming. Journal of
Logic Programming, 33(2):151–165, 1997.

[4] M. Hatzitaskos. Extending the CIFF proof proce-
dure with negation as failure and implementing part
of a multi-stage negotiation architecture for sharing
resources amongst logic-based agents. Master’s thesis,
Dept. of Computing, Imperial College London, 2004.

[5] F. Sadri and F. Toni. Abduction with negation as fail-
ure for active and reactive rules. In Proc. 6th Congress
of the Italian Association for Artificial Intelligence.
Springer-Verlag, 1999.


