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Introduction
In terms of choice functions, Arrow impossibility theorem
states that there is no non-dictatorial aggregation rule which
satis�es IIA and unanimity conditions and preserves the set of
all rational choice functions on a �nite set of at least three
alternatives.
S. Shelah proved (2005) that Arrow theorem can be extended
to the case when the choice functions are not rational in a very
general setting. We obtained a re�ned version of this theorem
containing a complete characterization of all symmetric sets of
choice functions that have the Arrow property.
References.

S. Shelah. On the Arrow property. Advances in Applied
Mathematics, 34:217�251, 2005.
N. Poliakov.On the Galois correspondence for classes of
discrete functions and a generalization of Arrow theorem.
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Basic definitions



Individual choices

Let A be a nonempty �nite set of alternatives.
For any natural number r the symbol [A]r denote the set of all
r -element subsets of A:

[A]r = {B ⊆ A : |B | = r}

and the symbol Cr (A) denote the set of all choice function
de�ned on [A]r

Cr (A) = {c ∈ [A]rA : (∀p ∈ [A]r ) c(p) ∈ p}.

Functions c ∈ Cr (A) represent individual choices of "voters".



Individual choices

A function c ∈ Cr (A) is called rational if there is a linear order
≤ on A such that c(q) is the maximal element of q, i.e.

(∀q ∈ [A]r )(∀x ∈ q) x ≤ c(q).

The set of all rational function c ∈ Cr (A) is denoted by Rr (A).



Individual choices

A set D ⊆ Cr (A) is called symmetric if for any function c ∈ D
and permutation 𝜎 ∈ SA the function c𝜎 de�ned by

(∀p ∈ [A]r ) c𝜎(p) = 𝜎−1c(𝜎p),

belongs to D.

Informally, a symmetric set D ⊆ Cr (A) represents a set of
individual choices coordinated by the same "common
principle".

For example, the set Rr (A) is symmetric.



Individual choices
Other natural examples:

I the set of all function c ∈ Cr (A) such that c(q) is the
median element in q according to some ordering (r is
odd);

I the set

{c ∈ C2(A) : (∃x ∈ A)(∀y ∈ A ∖ {x}) c({x , y}) = x},

I let ≺ be a strict partial order on A and C≺
r (A) a set of all

functions c ∈ Cr (A) such that c(p) is some
non-dominated elements of p, i.e.

(∀x ∈ p) c(p) ⊀ x .

Let W be a set of strict partial order on A closed under
isomorphisms. The set

⋃︀
≺∈W

C≺
r (A) is symmetric.

etc.



Aggregation rules

For any natural number n ≥ 1 a function

f : (Cr (A))n → Cr (A)

is called an (n-ary) aggregation rule.

The set of all aggregation rules is denoted by 𝒪(A, r).



Aggregation rules

Definition 1.

An aggregation rule f ∈ 𝒪(A, r) is normal if for all p ∈ [A]r

there is a function fp : pn → p such that

1. f (c1, c2, . . . , cn)(p) = fp(c1(p), c2(p), . . . , cn(p))
for all c1, c2, . . . , cn ∈ Cr (A),

2.
⋁︀
i<n

fp(a1, a2, . . . , an) = ai for all a1, a2, . . . , an ∈ p.

We denote the set of all normal aggregation rules f ∈ 𝒪(A, r)
by 𝒩 (A, r).



Aggregation rules

Remark. Item 1 of this De�nition 1 means that the
aggregation rule f has the IIA property (Independence of
Irrelevant Alternatives).
Item 2 is slightly stronger than the unanimity condition, i.e.
Item 2 implies that for all c1, c2, . . . , cn ∈ Cr (A), p ∈ [A]r and
a ∈ p

c1(p) = c2(p) = . . . = cn(p) = a → f (c1, c2, . . . , cn)(p) = a.

Item 2 can be replaced by

2'. f (c1, c2, . . . , cn)(p) ∈ {c1(p), c2(p), . . . , cn(p)}.



Aggregation rules

Definition 2.

An aggregation rule f : (Cr (A))n → Cr (A) is called

I simple if f is normal and fp does not depend on p, i.e.

(∀p, q ∈ [A]r )(∀a ∈ pn ∩ qn)fp(a) = fq(a);

I dictatorial (or monarchical) if f is a projection, i.e.

(∃j < n)(∀c1, c2, . . . , cn ∈ Cr (A))f (c1, c2, . . . , cn) = cj .

The set of all simple (dictatorial) aggregation rules
f ∈ 𝒪(A, r) is denoted by 𝒮(A, r) (respectively ℳ(A, r)).



Aggregation rules

Remark.

1. Any dictatorial aggregation rule is simple.

2. If f ∈ 𝒪(A, 2), then the following conditions are
equivalent

I f is normal,
I f is simple,
I f satisfies IIA and unanimity.

3. If 2 < r ≤ |A|, then

ℳ(A, r) ( 𝒮(A, r) ( 𝒩 (A, r) ( 𝒪(A, r)



Preservation relation

Definition 3.

Let D ⊆ Cr (A) and f ∈ 𝒪(A, r). We say that f preserves D
(or f is a polymorphism of D) and D is preserved (or closed)
under f if

f (c1, c2, . . . , cn) ∈ D for all c1, c2, . . . , cn ∈ D.

The set of all f ∈ 𝒪(A, r) that preserves D ⊆ Cr (A) is
denoted by PolD.



Arrow property

In terms of choice functions, Arrow impossibility theorem
asserts that if |A| ≥ 3, then any normal aggregation rule which
preserves the set R2(A) (of all rational function c ∈ C2(A)), is
dictatorial, i.e.

PolR2(A) ∩𝒩 (A, 2) = ℳ(A, 2).

Definition 4.

A set D ⊆ Cr (A) has the Arrow property if

PolD ∩𝒩 (A, r) = ℳ(A, r).



Main theorem



Shelah’s theorem

S. Shelah proved that Arrow theorem can be extended to the
case when the individual choices are not rational in a very
general setting.

Theorem (S. Shelah, 2005)
There are natural numbers r1, r2 (e.g. r1 = r2 = 7) such that
for any natural number r , r1 ≤ r ≤ |A| − r2, any non-empty
proper symmetric subset D of the set Cr (A) has the Arrow
property.

We proved that, if |A| ≥ 5, this theorem is true if r1 = 3 and
r2 = 0. Conversely, if either r = 2, or r = 3 and |A| = 4, then
there are non-empty proper symmetric subsets D of the set
Cr (A) which do not have the Arrow property.



Exceptional cases

Let |A| = 4 and let K be the Klein four-group of permutations
of A.
For any sets p, q ∈ [A]3 there is only one permutation
𝜎p,q ∈ K for which

q = 𝜎p,q(p).

We denote by the symbol CK3 (A) the set of all function
c ∈ C3(A) such that

c(q) = 𝜎p,qc(p) for all p, q ∈ [A]3.

The set CK3 (A) is preserved under any simple binary function
f ∈ 𝒩 (A, 3) satisfying the condition

𝜎fq(a) = f𝜎q(𝜎a) for all q ∈ [A]3, a ∈ q2 and 𝜎 ∈ K .



Exceptional cases

Table : A = {a, b, c, d}, CK3 (A) = {c0, c1, c2}

q c0(q) c1(q) c2(q)
{a, b, c} a b c
{a, b, d} b a d
{a, c , d} c d a
{b, c , d} d c b

Table : f ∈ PolCK3 (A) ∩𝒩 (A, 3), f /∈ ℳ(A, 3)

fq a b c d
a a a c d
b b b c d
c a b c c
d a b d d

f c0 c1 c2
c0 c0 c0 c2
c1 c1 c1 c2
c2 c0 c1 c2



Exceptional cases

Next we de�ne the sets

C0
2(A),C1

2(A) ⊆ C2(A)

for any set A, |A| ≥ 2.
Let a ∈ A, i ∈ {0, 1} and c ∈ C2(A).
Let

Z c
a = {b ∈ A ∖ {a} : c({a, b}) = a},

W c
i = {a ∈ A : |Z c

a| = i (mod 2)},
Ci2(A) = {c ∈ C2(A) : W c

(1−i) = ∅}.



Exceptional cases

Remark.

Any function c ∈ C2(A) may be represented by the tournament
Γc = (A,E ) where E = {(a, b) ∈ A2 : a ̸= b ∧ c({a, b}) = b}.
The sets C0

2(A) and C1
2(A) are the sets of all functions

c ∈ C2(A) such that the indegree of any node of the
tournament Γc is even (respectively, odd).
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Exceptional cases

Proposition

1. The sets C0
2(A) and C1

2(A) are symmetric,

2. C0
2(A) ̸= ∅ iff n equals 0 or 1 (mod 4),

3. C1
2(A) ̸= ∅ iff n equals 0 or 3 (mod 4),

4. C0
2(A) ∪ C1

2(A) ̸= C2(A).

Each of the set C0
2(A), C1

2(A), C0
2(A) ∪ C1

2(A) is preserved, for
example, under the (simple) ternary function ℓ ∈ 𝒩 (A, 2)
de�ned by

ℓq(x , x , y) = ℓq(x , y , x) = ℓq(y , x , x) = y

for all q ∈ [A]2 and x , y ∈ q.



Main theorem

The main theorem states that there is no other "special cases".

Theorem
Let A be a finite set, r a natural number, and D a non-empty
proper symmetric subset of the set Cr (A). Then the set D
does not has the Arrow property if and only if one of the
following conditions holds:

1. r = 2, |A| equals 0 or 1 (mod 4), and D = C0
2(A),

2. r = 2, |A| equals 0 or 3 (mod 4), and D = C1
2(A),

3. r = 2, |A| = 0 (mod 4), and D = C0
2(A) ∪ C1

2(A),

4. r = 3, |A| = 4, and D = CK3 (A).



Outline of proof



Basic observations

We use the basic concepts of a clone. In universal algebra, a
clone ℱ on a set X is a set of functions f : X n → X , n < 𝜔,
such that

1. ℱ contains all the projections 𝜋mi : Xm → X (1 ≤ m < 𝜔,
1 ≤ i ≤ m), de�ned by

𝜋mi (x1, x2, . . . , xm) = xi for all x1, x2, . . . , xm ∈ X

2. ℱ is closed under superposition: if f , g1, g2 . . . , gm ∈ ℱ
and f is m-ary, and gj is n-ary for every j , then the
function h : X n → X , de�ned by
h(x1, x2, . . . , xn) =

= f (g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ X , is in ℱ .



Basic observations

Proposition

1. The set 𝒩 (A, r) is a clone on Cr (A).

2. For any set D ⊆ Cr (A) the set PolD is a clone on Cr (A).

3. For any clone ℱ ⊆ 𝒩 (A, r) and any set p ∈ [A]r the set
{fp : f ∈ ℱ} is a clone on p.

4. Let D be a symmetrical subset of C(A, r) and
ℱ = PolD ∩𝒩 (A, r). Then the following condition
holds:

(*) for all n-ary function f ∈ ℱ and all permutation 𝜎 ∈ SA
the function f 𝜎 defined by

(∀p ∈ [A]r ) (∀a ∈ pn) f 𝜎p (a) = 𝜎−1f𝜎p(𝜎a)

belongs to ℱ .



Basic observations

Thus we can consider Shelah theorem as a special result of
theory of closed classes of discrete functions (also called
functions of k-valued logic).
Some results related to this theory are relevant to our studies.
References.
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Basic observations

The theory of closed classes of discrete functions uses the
following concepts.
The set of all �nitary function on A is denoted by 𝒪(A).
A n-ary function f ∈ 𝒪(A) preserves (or is a polymorphism of)
a m-ary predicate P ⊆ Am if for any sequence of m-tuple

(a11, a12, . . . , a1m),
(a21, a22, . . . , a2m),

. . . . . . . . .,
(a21, a22, . . . , a2m)

belonging to P , the m-tuple

f (a11, a21, . . . , an1), f (a12, a22, . . . , an2), . . . , f (a1m, a2m, . . . , anm)

belong to P .



Basic observations

The set of all functions f ∈ 𝒪(A) which preserve a predicate
P is denoted by PolP , and the set of all predicates
P ∈ ⋃︀

n<𝜔

𝒫(An) which is preserved under a function f is

denoted by Inv f .
For any set ℱ ⊆ 𝒪(A) and P ⊆ ⋃︀

n<𝜔

𝒫(An) we denote

Invℱ =
⋂︁
f ∈ℱ

Inv f , PolP =
⋂︁
P∈P

PolP .

Remark.

The pair (Inv,Pol) is a Galois connection between the
Boolean lattices of 𝒫(𝒪(A)) and 𝒫(

⋃︀
n<𝜔

𝒫(An)).

The set ℱ ⊆ 𝒪(A) is Galois-closed i� ℱ is a clone.



Steps of proof

The main idea of our proof is characterizing the set of all
unary predicate P ∈ Invℱ for any clone ℱ ⊆ 𝒩 (A, r) which
satis�es condition (*) (next we call this clones Shelah clones).
We will illustrate our method by the outline of proof of the
following weaker version of Main Theorem:

Theorem
Let A be a finite set, |A| ≥ 5, r a natural number, r ≥ 3, and
D a non-empty proper symmetric subset of Cr (A). Then any
simple aggregation rule in PolD is dictatorial.



Steps of proof

Definition 5.

Let Q be a �nite set. A function f ∈ 𝒪(A) preserves a set of
function D ⊆ QA if f preserves the predicate

PD = {(d(q1), d(q2), . . . , d(q|Q|)) : d ∈ D}

for some enumeration of Q: Q = {q1, q2, . . . , q|Q|}.

We will write D ∈ Inv f instead of PD ∈ Inv f .
Remark.

A function f ∈ 𝒪(A) preserves a set of function D ⊆ QA i� for
all d1, d2, . . . , dn ∈ D the function f (d1, d2, . . . , dn) is in D.



Steps of proof

For any simple n-ary function f ∈ 𝒪(A, r) and set
ℱ ⊆ 𝒮(A, r) we denote

f − = {g ∈ 𝒪(A) : (∀p ∈ [A]r ) g � pn = fp}, ℱ− =
⋃︀
f ∈ℱ

f −.

Proposition
For any D ⊆ Cr (A) and ℱ ⊆ S(A, r)

D ∈ Invℱ ↔ D ∈ Invℱ−

Remark.

In left part of this formula D is considered as an unary
predicate on Cr (A) and in right part as a set of functions
in [A]rA (i.e.

(︀
n

r

)︀
-ary predicate on A).



Steps of proof

Next we prove three theorems: Theorem on Shelah clones,
Preservation Theorem, and Theorem on symmetric sets
D ⊆ Cr (A).
Notation.

For any natural number n and set 𝒢 ⊆ 𝒪(A) we denote

An
r = {a ∈ An : | ran a| = r},

An
<r = {a ∈ An : | ran a| < r},

𝒢[n] = 𝒢 ∩ An

A.



Steps of proof
We say that a clone ℱ ⊆ 𝒪(A) satis�es condition

∆e
k , if there is a natural number i < k such that for any

a ∈ Ak
k and a ∈ ran a there is a function w ∈ ℱ[k] such

that
w(a) = a and w(b) = bi

for any sequence b = (b0, b1, . . . , br−1) ∈ Ak
<k ;

∆𝜕, if for any a ∈ A3
3 and a ∈ ran a there is a function

w ∈ ℱ[3] such that

w(a) = a and w(x , x , y) = w(x , y , x) = w(y , x , x) = x

for all x , y ∈ A;

∆2, if for any a,b ∈ A2
2, ran a ̸= ranb, and a ∈ ran a,

b ∈ ranb there is a function w ∈ ℱ[2] such that

w(a) = a,w(b) = b and w(x , x) = x for all x ∈ A.



Theorem on Shelah clones

Theorem
Let A be a finite set, |A| ≥ 5, and let r be a natural number,
3 ≤ r ≤ |A|.
Then for any Shelah clone ℱ ⊆ 𝒮(A, r), ℱ ̸= ℳ(A, r), the
clone ℱ− satisfies on of the conditions ∆2, ∆𝜕, ∆e

k for some
k, 3 ≤ k ≤ r .



Preservation theorem

Notation.

For any elements p, q ∈ Q, a, b ∈ A and permutation 𝜎 ∈ SA
we denote

H0(p, q, 𝜎) = {h ∈ QA : h(q) = 𝜎h(p)};
H1(p, q, a, b) = {h ∈ QA : h(p) = a ∨ h(q) = b};
H↔ = {H0(p, q, 𝜎) : p, q ∈ Q, p ̸= q, 𝜎 ∈ SA};
H= = {H0(p, q, Id) : p, q ∈ Q, p ̸= q}, where Id is the
identity permutation;

H∨ = {H1(p, q, a, b) : p, q ∈ Q, p ̸= q, a, b ∈ A}.



Preservation theorem

For any set H ⊆ QA, set Q ′ ⊆ Q, set B ⊆ A, element q ∈ Q
and natural number r we denote

H+
Q′ = {h ∈ QA : h � Q ′ ∈ H � Q ′};

H(q) = {h(q) : h ∈ H};
H+ = {h ∈ QA : (∀q ∈ Q) h(q) ∈ H(q)};
H−1(B) = {q ∈ Q : H(q) ∈ B};
H−1(< r) = {q ∈ Q : |H(q)| < r}.



Preservation theorem

Theorem
Let A, Q be a finite sets, ℱ be a clone on A and H be a
subset of QA. Let H ∈ Invℱ . Then,

1. if ℱ satisfies condition ∆e
k for some natural number

k ≥ 3, then there is a set H ⊆ H↔ such that
H = H+ ∩ H+

H−1(<k) ∩
⋂︀
H,

2. if ℱ satisfies condition ∆𝜕, then there is a set
H ⊆ H↔ ∪H∨ such that H = H+ ∩⋂︀

H,
3. if ℱ satisfies condition ∆2, then there is a set H ⊆ H=

such that H = H+ ∩⋂︀{H+
H−1(B) : B ∈ [A]2} ∩⋂︀

H.



Theorem on symmetric sets D ⊆ Cr(A)

Theorem
Let A be a finite set, |A| ≥ 5, and let r be a natural number,
2 ≤ r < |A|. Let D be a symmetric subset of Cr (A). Then
D ∩ H = ∅ for any H ∈ H↔ ∪H∨.

In other terms, in conditions of the Theorem, for any pair of
di�erent sets p, q ∈ [A]r there are two di�erent elements
a, b ∈ p and four function c1, c2, c3, c4 such that

c1(p) = c2(p) = a, c1(q) ̸= c2(q),

c3(p) = c4(p) = b, c3(q) ̸= c4(q).



Proof of the weaker version of Main Theorem

The weaker version of Main Theorem immediately follows
from the above theorems.
Really, in conditions of the theorem we have:

I D ∩ H = ∅ for any H ∈ H↔ ∪H∨ (from Theorem on
symmetric sets D ⊆ Cr (A)),

I D−1(< r) = ∅, D−1(B) = ∅ for any B ∈ [A]2 (obviusly),

I D = D+ = Cr (A) (from Theorem on Shelah clones and
Preservation theorem), a contradiction.



Corrolary: Impossibility theorem for symmetric class of

choice function



Impossibility theorem

Our Main Theorem is not formulated as an "impossibility
theorem", because it demonstrates that some of the sets of
choice functions do not satisfy the Arrow property. However,
by considering aggregation rules that satisfy some additional
condition, we can formulate a corollary that is an impossibility
theorem for all non-empty proper symmetric subsets D of the
set Cr (A).



Impossibility theorem

Proposition
Let A be a finite set. Let D be a non-empty proper symmetric
subset of the set C2(A). Let D do not has the Arrow property.
Then if |A| ≥ 5, the clone PolD∩𝒩 (A, r) is generated by the
normal (simple) function ℓ : (C2(A))3 → C2(A) defined by

ℓp(x , x , y) = ℓp(x , y , x) = ℓp(y , x , x) = y

for all p ∈ [A]2 and x , y ∈ p.

(A clone ℱ is generated by a function f ∈ 𝒪(X ) if ℱ is the
minimal clone on X which contains f ).



Impossibility theorem

We will call a normal aggregation rule f : (C2(A))n → C2(A)
conjectural, if there exist a set I ⊆ {0, 1, . . . , n − 1}, |I | is
odd, such that

fq(a0, a1, . . . , an−1) = aj ↔ |{i ∈ I : ai = aj}| is odd

for all q ∈ [A]2, a0, a1, . . . , an−1 ∈ q and j ∈ {0, 1, . . . , n − 1}.
Proposition
The clone ℱ on C2(A) generated by the function ℓ is the set
of all conjectural aggregation rules.



Impossibility theorem

Theorem
Let A be a finite set, |A| ≥ 5, and let D be a non-empty
proper symmetric subset of the set Cr (A) for some natural
number r . Then there exists no normal non-dictatorial and
non-conjectural aggregation rule f which preserves the set D.



Thank you!
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