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Majoritarianism

To fix ideas, cursory definition of “Majoritanism”as normative view
of judgement aggregation / social choice:

Principle that the “most widely shared”view should prevail

Grounding MAJ requires resolving two types of questions?
1 The Analytical Question:
What is “the most widely shared”view?

on complex issues, there may be none (total indeterminacy), or only a
set of views can be identified as more or less predominant (partial
indeterminacy)

2 The Normative Question:
Why should the most widely shared view prevail?

may invoke principles of democracy, self-governance, political stability
etc.
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Here we shall focus on analytical question:
What is Majority Rule without a Majority?

stay agnostic about normative question

in practice, many institutions seem to adopt majoritarian procedures

prima facie case for majoritarian committments,

but not clear how deep it is.
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Framework I

standard JA framework:
individuals (voters) and the group hold judgments on a set of
interdependent issues (“views”)

K set of issues
X ⊆ {±1}K set of feasible views
x ∈ X particular views (“sets of judgments”) on x ∈ X .

shall describe anonymous profiles of views by measures µ ∈ ∆ (X )

allow profiles to be real-valued

(X , µ) “JA problem”
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Framework II
Example: (Preference Aggregation over 3 Alternatives)

A = {a, b, c}
K = {ab, bc, ca}

The ranking abc corresponds to (1, 1,−1), etc.
Thus X =: X prA given by

{±1}K \{(1, 1, 1), (−1,−1,−1)}.

preference aggregation problem as judgment aggregation problem:
about competing views re how group should rank/choose

not: as welfare aggregation problem:
about ‘adding up’info about what is good for each individual into
what is “good overall”.
MAJ makes much less sense for WA than JA.
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Framework III
Systematic criteria to select among views in JA problems described by
aggregation rules

Aggregation rule F : (X , µ) 7→ F (X , µ) ⊆ X .
will consider different domains

X frequently fixed

leave domain unspecified for now to emphasize single-profile issue:
what views are majoritarian in the JA problem (X , µ)?
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The Program: Criteria for Majoritarianism

1 Plain Majoritarianism
2 Condorcet Consistency

transfer from voting literature

3 Condorcet Admissibility

defines MAJ per se

NehPivPup 2011

4 Supermajority Effi ciency

MAJ plus Issue Parity

5 Additive Majority Rules

MAJ plus Issue Parity plus cardinal tradeoffs.
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Majority Rule in the Presence of a Majority

Axiom
(Plain Majoritarianism)

If µ (x) > 1
2 , then F (X , µ) = {x}.

view as definitional:
If reject Plain M, simply reject Majoritarianism.

Evident Problem: premise rarely satisfied if K > 1.
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Condorcet Consistency I

Useful piece of notation

µ̃k : = ∑
x∈X

xkµ (x)

= µ(x : xk = 1)− µ(x : xk = −1)

E.g.: If 57% affi rm proposition k at µ, µ̃k = 0.14

M(x , µ) := {k ∈ K : xk µ̃k ≥ 0}
those issues in which x aligned with majority
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Condorcet Consistency II
Condorcet Consistency: if majority judgment on each issue is
consistent, this is the majority view.

Maj(µ) := {x ∈ {±1}K :M(x , µ) = K}

Axiom (Condorcet Consistency)

If Maj(µ) ∩ X 6= ∅, then F (X , µ) ⊆ Maj(µ).

Obvious Limitation: “Condorcet Paradox” in JA

Maj(µ) ∩ X = ∅, unless X median space

median space: all ‘minimally inconsistent subsets’have cardinality 2.
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Condorcet Admissibility I

Condorcet Set (NPP 2011):

x ∈ Cond(X , µ) iff, for no y ∈ X , M(v , µ) )M(x , µ).

Axiom
Condorcet Admissibility F (X , µ) ⊆ Cond(X , µ).

Claim in NPP 2011: this captures normative implications of
Majoritarianism per se.

Problem: outside median-spaces, Cond(X , µ) can easily be large.
But: additional considerations may favor some Condorcet admissible
views over another

here: refine Cond based on considerations of “parity” among issues.
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Supermajority Effi ciency I

Premise: Majoritarianism plus Issue Parity

Issue Parity: “each issue counts equally”

sometimes, Parity may be justified by symmetries of judgment space X

e.g. preference aggregation, equivalence relations

but Parity has broader applicability
Parity not always plausible, e.g. truth-functional aggregation
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Supermajority Effi ciency II

Example: (Preference Aggregation over 3 Alternatives)

A = {a, b, c}
X = X prA ; (3-Permutahedron)

K = {ab, bc, ca}

µ (a � b) = 0.75;
µ (b � c) = 0.7;
µ (c � a) = 0.55
Cond(X , µ) = {abc, bca, cab}.

Each Condorcet admissible ordering overrides one majority preference

Arguably, the ordering abc is the most widely supported (hence
“most majoritarian” ) since it overrides the weakest majority
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Supermajority Effi ciency III
Argument via “Supermajority Dominance”

compare abc to bca

abc has advantage over bca on ab (at 0.75 vs. 0.25);
bca has advantage over abc on ca (at 0.55 vs. 0.45);
since 0.75>0.55, abc supermajority dominates bca

dto. abc supermajority dominates cab
hence abc uniquely supermajority effi cient
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Supermajority Effi ciency IV

General idea: x supermajority dominates y at µ if it sacrifices smaller
majorities for larger majorities.

assumes that each proposition k ∈ K counts equally.

For any threshhold q ∈ [0, 1],

γµ,x (q) := #{k ∈ K : xk µ̃k ≥ q}.

x supermajority-dominates y at µ ( “x Bµ y” )

if, for all q ∈ [0, 1], γµ,x (q) ≥ γµ,y (q) , and,
for some q ∈ [0, 1], γµ,x (q) > γµ,y (q) .

for economists: note analogy to first-order stochastic dominance.
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Supermajority Effi ciency V

x is supermajority effi cient at µ ( “x ∈ SME (X , µ)” ) if, for no
y ∈ X , y Bµ x .

In example: SME (X , µ) = {abc}.
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Supermajority Determinacy I

In 3-permutahedron, for all µ ∈ ∆ (X ) , SME (X , µ) unique ‘up to
(non-generic) ties’

such spaces supermajority determinate

In paper, provide full characterization of supermajority-determinate
spaces

interesting examples beyond median spaces

Most spaces not supermajority determinate

E.g. permutahedron with #A>3
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Additive Majority Rules I

In general case, need to make tradeoffs between number and strength
of majorities overruled

systematic tradeoff criterion described by “additive majority rules”
main result provides axiomatic foundation based on SME
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Additive Majority Rules II

Aggregation Rules

Let X be a family of spaces

e.g. X = {X};
or X =all finite JA spaces.

Definition
An aggregation rule is a correspondence F :

⊔
X∈X(X ,∆ (X ))⇒

⊔
X∈X X

such that, for all X , µ ∈ ∆ (X ) F (X , µ) ⊆ X .

Often simplify F (X , µ) to F (µ)
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Additive Majority Rules III

Definition
An aggregation rule F is an additive majority rule if there exists a
function φ : [−1,+1]→∗R such that, for all X ∈ X and µ ∈ ∆ (X ) ,

Fφ (X , µ) = argmax
x∈X ∑

k∈K
φ (xk µ̃k ) .

∗R are the hyperreal numbers

extension of R containing infinites and infinitesimals
for now, focus on real-valued case
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Fφ (µ) := argmax
x∈X ∑

k∈K
φ (xk µ̃k ) .

key ingredient: gain function φ : [−1,+1]→ R

1 xk µ̃k “majority advantage” for x on issue k

2 φ (xk µ̃k ) is the alignment of x with µ on issue k;

by increasingness of φ, largest when xk = sgn(µ̃k );

hence Fφ tries to align group view with issue-wise majorities;
in particular, Fφ Condorcet consistent.

3 ∑k∈K φ (xk µ̃k ) measures overall alignment of x with profile µ

hence Fφ (µ) choses group view(s) x that is most representative for
distribution of individual views µ.
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this conceptual interpretation important complement to axiomatic
foundation.

underlines conceptual coherence and unity of intuitive, pre-formal
notion of “majoritarianism”

Fφ (µ) SME by increasingness of φ

W.l.o.g. φ odd, i.e. φ (r) = −φ (−r) for all r ∈ [−1,+1].
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Example
(Median Rule: φ = id);

Fmed (µ) := Fid (µ) = argmax
x∈X ∑

k∈K
xk µ̃k

maximizes total number of votes for x over all issues.

in preference aggregation: Kemeny rule

axiomatized by HP Young
— one of the (hidden) classics of social choice theory

widely studied as general-purpose aggregation rule
(Barthelemy, Monjardet, Janowitz, ...)

Axiomatized in master/companion paper NPiv 2011/13
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Here: leave φ open

φ describes how issue-wise majorities are traded off depending on their
size.

well-illustrated with homogeneous rules Hd := Fφd , with

φd (r) = sgn (r) |r |d .
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A One-Parameter Family

φd (r) = sgn (r) |r |d .
d = 1 median rule
d > 1 inverse-S-shape; consensus-oriented:

priority to respect large majorities.

d < 1 S-shape: breadth-oriented

priority to respect as many majorities as possible.

One majority of size 2r balances 2d majorities of size r .

E.g. with r = 2, a 70% supermajority balances 4 60% majorities.

Limiting cases:

d → ∞ refinement of Ranked Pairs rule
d → 0 refinement of Slater rule
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Hyperreal-Valued Gain Functions I

other simple rules satisfy SME

Example

(Leximax) xLµy if there exist q such that γµ,x (q) = γµ,y (q) for all
q > q, and γµ,x (q) > γµ,y (q) .

Flex max(X , µ) := {x ∈ X : for no y ∈ X , xLµy}

Looks non-additive, but can be described by allowing φ to be
hyperreal-valued.

Indeed, intuitively Flex max = limd→∞ Hd ;
hyperreals allow to state

Flex max = limH
limd→∞ d
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Hyperreal-Valued Gain Functions II
hyperreals ∗R :

1 linearly ordered: can maximize
2 group: can add

all that’s needed for additive separable representation

3 contains R
4 bonus: usual rules for arithmetic

1 field: can multiply and divide
2 hyperreal field: can exponentiate

5 potential diffi culty: no sups and infs in general
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Hyperreal-Valued Gain Functions III

Example
Flexmin = Fφd , with d any infinite hyperreal ω > 0.

For verification, note that r > s > 0 implies rω > nsω for all n ∈N.
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Axiomatic Foundation I

Need additional normative axiom: Decomposition

Natural setting: domains X closed under Cartesian products.

Axiom
(Deomposition) For any If X1,X2 ∈ X :
F (X1 × X2, µ) = F (X1,marg1µ)× F (X2,marg2µ)

Interpretation: in the absence of any logical interconnection, the
optimal group view can be determined by combining optimal group
views in each component problem.

“optimal” could mean different things in different context; here
“optimal”= “most majoritarian”, “most widely supported”

Klaus Nehring and Marcus Pivato () Majority Rule ESSLLI August 13, 2013 30 / 34



Axiomatic Foundation II
We will present two representation theorems

1 Narrow domain: fixed finite population and a fixed judgment space

real-valued representation suffi cient

2 Wide domains: variable population and variable judgment spaces.

the general, hyper-realvalued representation becomes indispensable.

(1) is key building block for (2).
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Axiomatic Foundation III
Decomposable Extensions

Let 〈X 〉 :=
⊔
n∈N X

n,

with X n :=
X × X × ...× X︸ ︷︷ ︸
(n times)

Interpretation: 〈X 〉 consists of the combination of multiple instances of
the same (isomorphic) judgment problem X with different views of the
individuals in each instance
e.g. preference aggregation over ` alternatives.

Given F on X , there exists unique separable aggregation rule G = F ∗

on 〈X 〉 such that G (X , ·) = F
F ∗ is the decomposable extension of F
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Axiomatic Foundation IV
Fixed Population, Fixed Space

anonyomous profiles generated from W voters:

∆W (X ) := { 1
N

N

∑
i=1

δxi : xi ∈ X for all i}

dto. ∆W (X)

Theorem
Let X be any judgment space, N ∈N a fixed number of voters, and F be
any aggregation rule on ∆N (X ). Then the decomposable extension of F is
SME if and only if there exists a real-valued gain-function φ such that
F ⊆ Fφ.
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Axiomatic Foundation V
Variable Population, Variable Spaces

Theorem
Let X be any domain of judgment spaces closed under Cartesian
products, and F any decomposable aggregation rule on ∆ (X).

1 F is SME if and only if there exists a hyperrealvalued gain function φ
such that F ⊆ Fφ.
In this case, for every X ∈ X, there exists a dense open set
OX ⊆ ∆ (X ) such that, for all µ ∈ OX ,

#Fφ (X , µ) = 1, and thus F (X , µ) = Fφ (X , µ) .
2 If F is continuous (uhc), then F = Fφ.
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