The Game Of Life	Pre-Decision	Learning	COMMUNICATION
000	000	000000	000000

The Game of Life, Decision & Communication

Roland Mühlenbernd

THE GAME OF LIFE	Pre-Decision	Learning	COMMUNICATION
000	000	000000	000000

OVERVIEW

- 1. Introduction: The Game Of Life
- 2. Pre-Decision
- 3. Learning
- 4. Communication

THE GAME OF LIFE	Pre-Decision	Learning	COMMUNICATION
•00	000	000000	000000

GAME OF LIFE'S RULES OF NATURE

- 1. *under-population:* any alive cell with fewer then two alive neighbor cells dies
- 2. *surviving:* any alive cell with two or three alive neighbor cells lives on to the next generation
- 3. *overcrowding:* any alive cell with more than three alive neighbor cells dies
- 4. *reproduction:* any dead cell with exactly three alive neighbors becomes an alive cell

THE GAME OF LIFE	Pre-Decision	LEARNING	COMMUNICATION
000	000	000000	000000

GAME OF LIFE'S RULES OF NATURE

Play the Game of Life on http://www.bitstorm.org/gameoflife/

or

http://www.denkoffen.de/Games/SpieldesLebens/

THE GAME OF LIFE	PRE-DECISION	LEARNING	COMMUNICATION
00•	000	000000	000000

DECREASING OCCUPATION SHARE

Figure : The number of alive cells decreases from initially around 1225 (25%) to finally 158 (3.2%) on average over 15 runs (70x70 grid).

The Game Of Life	PRE-DECISION	Learning	COMMUNICATION
000	•00	000000	000000

THE NON-DETERMINISTIC *n*-DIE GAME

- P1: Initialization
 - 1. Create a list of all alive cells in a random order
- P2: Sacrifice Decision
 - 2. Delete successively all cells with *n* neighbors
- P3: Rules of Nature
 - 3. Apply the rules of nature of the game of life

THE GAME OF LIFE	PRE-DECISION	Learning	COMMUNICATION
000	000	000000	000000

The Game Of Life	Pre-Decision	LEARNING	COMMUNICATION
000	000	●00000	000000

FROM SITUATIONS TO ACTIONS

- Set of states $T = \{t_1, t_2, t_3, t_4, t_5, t_6, t_7, t_8\}$
- Set of situations Γ = {γ = ⟨t_i, t_j⟩|t_i ∈ T is the state of an alive cell c, t_j ∈ T the state of an alive neighbor cell of c}
- Set of actions $A = \{a_{die}, a_{stay}\}$

	$\begin{array}{c} X \\ \langle t_2, t_2 \rangle \end{array}$	$\begin{array}{c} X \\ \langle t_2, t_3 \rangle \end{array}$
	$X \\ \langle t_3, t_1 \rangle$	
$\begin{array}{c} X \\ \langle t_1, t_3 \rangle \end{array}$		

000 00000 00000 000000	The Game Of Life	Pre-Decision	LEARNING	COMMUNICATION
	000	000	00000	000000

REINFORCEMENT LEARNING

Reinforcement learning account $RL = \{\sigma, \Omega\}$

- response rule $\sigma \in (\Gamma \to \Delta(A))$
- ► update rule Ω: if action *a* is successful in situation *γ*, then increase the probability *σ*(*a*|*γ*)
- ► an action *a* is considered as successful, if and only if OS_a > OS_{¬a}

The Game Of Life	Pre-Decision	LEARNING	COMMUNICATION
000	000	00000	000000

The $n \times m$ -Die Learning Game

- P1: Initialization
 - 1. Initialize an RL account for Γ and A
- P2: Sacrifice Decision
 - 2. For all $c_i \in C$:
 - 2.1 pick randomly a neighbor $c_i \in N_i$ and request its state t_m
 - 2.2 play action *a* via response rule $\sigma(a|\langle t_n, t_m \rangle)$, where t_n is the state of c_i
 - 2.3 if $a = a_{die}$ delete cell c_i , RL update Ω
- P3: Rules of Nature
 - 3. Apply the rules of nature of the game of life

The Game Of Life	Pre-Decision	LEARNING	COMMUNICATION
000	000	000000	000000

RESULTS

- ▶ the average occupation share over all runs is 17.6% (862 cells)
- ► the average occupation share of successful runs is 28.4% (1392 cells), for failed runs 1.4% (69 cells)

The Game Of Life	Pre-Decision	LEARNING	COMMUNICATION
000	000	000000	000000

RESULTS

Definition (Neighbor treatment rules)

For the $n \times m$ -die learning game a successful strategy can be characterized by the following two rules:

- 1. Sacrifice if your neighbor has exactly 4 neighbors.
- 2. Never sacrifice if your neighbor has less than 4 neighbors.

The Game Of Life	Pre-Decision	Learning	COMMUNICATION 000000
000	000	00000●	

BUT...

"In our opinion, the property of *access restriction to direct neighborhood information* is an important requirement for all following pre-games since this property reflects the spatial character of the rules of nature of the game of life. We denote this requirement as the *local information rule*."

	$\begin{array}{c} X \\ \langle t_2, t_2 \rangle \end{array}$	$\begin{array}{c} X \\ \langle t_2, t_3 \rangle \end{array}$
	$\begin{array}{c} X \\ \langle t_3, t_2 \rangle \end{array}$	
$egin{array}{c} X \ \langle t_1,t_3 angle \end{array}$		

SIGNALING GAMES

A signaling game $SG = \langle (S, R), T, M, A, U \rangle$ is

- ► played between a sender *S* and a receiver *R*
- *S* has private information state $t \in T$
- *S* sends a message $m \in M$
- *R* responds with a choice of action $a \in A$
- $U: T \times A \rightarrow \mathbb{R}$ defines the success of communication

The Game Of Life	Pre-Decision	Learning	COMMUNICATION
000	000	000000	00000

THE *n*-MESSAGES SIGNALING GAME

- P1: Initialization
 - 1. Create a RL account for the signaling game $SG_n = \langle (S, R), T, M, A, U \rangle$ with *n* messages
- P2: Sacrifice Decision
 - 2. For all $c_i \in C$:
 - 2.1 pick randomly a neighbor $c_j \in N_i$ and make a state request for its state t
 - 2.2 c_i sends a message $m \in M$ via response rule $\sigma(m|t)$
 - 2.3 c_i plays action $a \in A$ via response rule $\sigma(a|m)$
 - 2.4 if $a = a_{die}$ delete cell c_i , RL-update Ω
- P3: Rules on Nature
 - 3. Apply the rules of nature of the game of life

THE GAME OF LIFE	Pre-Decision	Learning	COMMUNICATION
000	000	000000	000000

RESULTING SUCCESSFUL STRATEGIES

The Game Of Life	Pre-Decision	LEARNING	COMMUNICATION
000	000	000000	000000

RESULTS

- Always one "death message", but often multiple "survive messages" and unused messages
- ► Successful strategies realize "Neighbor treatment rules"
- Strong tendency for $\langle t_5, a_{stay} \rangle$ and $\langle t_6, a_{die} \rangle$
- The rate for learning a successful strategy increases with the number of messages

THE GAME OF LIFE	Pre-Decision	LEARNING	COMMUNICATION
000	000	000000	000000

Outlook

- ► How do rules of nature affect evolving signaling systems? → Experiments with changed rules of nature
- General question: how do signaling strategies evolve under selective pressure determined by environmental / nature rules?

THE GAME OF LIFE	Pre-Decision	LEARNING	COMMUNICATION
000	000	000000	000000

Thanks for attention!