

Some Funny Complexity Results for Judgment Aggregation

Wojtek Jamroga, University of Luxembourg (joint work with Marija Slavkovik)

ESSLLI @ Duesseldorf, August 16, 2013

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Duesseldorf, 16/08/13 1/26

<u>Outline</u>

1 Introduction

- 2 Distance-Based Judgment Aggregation
- 3 Complexity: Bad News
- 4 Positive Results

5 Conclusions

Outline

1 Introduction

- 2 Distance-Based Judgment Aggregation
- 3 Complexity: Bad News
- 4 Positive Results
- 5 Conclusions

Introduction

- It is often convenient to ascribe mental attitudes to groups of agents
- Examples: opinion of the government, belief of a religious group, goal of a company

collective of agents \longrightarrow collective agent

Judgment Aggregation

Similar to preference aggregation & voting

- Two approaches to judgment aggregation:
- Idealistic: specify postulates and prove impossibility
- Pragmatic: use a reasonably good procedure
- In the latter case, complexity is important!

Distance-Based Judgment Aggregation

- Distance-based judgment aggregation defines the collective opinion as a well-behaved compromise between individual opinions
- Aggregation rules must be "well behaved" mathematically
- Does that imply that they are well-behaved computationally?

Distance-Based Judgment Aggregation

- Distance-based judgment aggregation defines the collective opinion as a well-behaved compromise between individual opinions
- Aggregation rules must be "well behaved" mathematically
- Does that imply that they are well-behaved computationally?
- Not necessarily...

<u>Outline</u>

1 Introduction

- 2 Distance-Based Judgment Aggregation
- 3 Complexity: Bad News
- 4 Positive Results

5 Conclusions

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Judgment Aggregation

Definition (Judgment aggregation)

Let *N* be a finite set of agents, $A \subseteq \mathcal{L}$ a finite agenda of issues from a propositional language $\mathcal{L}, \mathcal{C} \subseteq \mathcal{L}$ a finite set of admissibility constraints, and *T* a set of truth values.

Judgment sets (*JS*) are consistent and admissible combinations of opinions on issues from \mathcal{A} , that is, all $js : \mathcal{A} \to T$ such that there is a valuation $v \in PV$ with: (i) $val_v(\varphi) = js(\varphi)$ for every $\varphi \in \mathcal{A}$, and (ii) $val_v(\psi) = 1$ for every $\psi \in \mathcal{C}$.

A judgment profile is a collection of |N| judgment sets, one per agent.

A judgment aggregation rule $\nabla : JS^{|N|} \to \mathcal{P}(JS) \setminus \{\emptyset\}$ aggregates opinions from all the agents into a collective judgment set (or sets).

Example: Guarding Robots

3 robots are guarding a building, and have just observed a person. Each robot must assess whether the person is authorized to be there (proposition *auth*), if it has malicious intent (*mal*), and whether to classify the event as dangerous intrusion (*intr*). Additionally, it is assumed that a non-authorized person with malicious intent implies intrusion: $\neg auth \land mal \rightarrow intr$.

Example: Guarding Robots

3 robots are guarding a building, and have just observed a person. Each robot must assess whether the person is authorized to be there (proposition *auth*), if it has malicious intent (*mal*), and whether to classify the event as dangerous intrusion (*intr*). Additionally, it is assumed that a non-authorized person with malicious intent implies intrusion: $\neg auth \land mal \rightarrow intr$.

	auth	mal	intr
robot 1	1	1	0
robot 2	0	0	0
robot 3	0	1	1
majority	0	1	0

Note that the most obvious aggregation rule (majority) results in an inadmissible judgment set.

Distance-Based Aggregation

Definition (Distance-based judgment aggregation)

A distance-based aggregation rule looks for a collective opinion that does not stray too much from the individual judgments:

 $\nabla_{d,aggr}(jp) = \operatorname{argmin}_{js \in JS} \left\{ aggr \left(d(js, jp[1]), \dots, d(js, jp[|N|]) \right) \right\},\$

where d is a distance metric, and aggr an aggregation function.

Example: Guarding Robots

	auth	mal	intr
robot 1	1	1	0
robot 2	0	0	0
robot 3	0	1	1

Take
$$aggr = \sum$$
, $d = d_H$

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Distance-Based Aggregation

Definition (Distance metric)

A distance over X is a function $d : X \times X \to \mathbb{R}^+ \cup \{0\}$ such that: (minimality) d(x, y) = 0 iff x = y, (symmetry) d(x, y) = d(y, x), and (triangle inequality) $d(x, y) + d(y, z) \ge d(x, z)$.

Two well known distances over $\{0,1\}^m$ are: the Hamming distance d_H , and the drastic distance d_D

Distance-Based Aggregation

Definition (Distance metric)

A distance over X is a function $d : X \times X \to \mathbb{R}^+ \cup \{0\}$ such that: (minimality) d(x,y) = 0 iff x = y, (symmetry) d(x,y) = d(y,x), and (triangle inequality) $d(x,y) + d(y,z) \ge d(x,z)$.

Two well known distances over $\{0,1\}^m$ are: the Hamming distance d_H , and the drastic distance d_D

Definition (Aggregation function)

An aggregation is a function $aggr: (\mathbb{R}^+)^n \to \mathbb{R}^+$ such that: (minimality) $aggr(0^n) = 0$, and (monotonicity) if $x \leq y$, then $aggr(\dots, x, \dots) \leq aggr(\dots, y, \dots)$.

Well known aggregators are: min, max, sum, and product.

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Outline

1 Introduction

- 2 Distance-Based Judgment Aggregation
- 3 Complexity: Bad News
- 4 Positive Results

5 Conclusions

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Complexity of winner set verification

Definition (winner set verification)

WINVER $_{\nabla}$ is the decision problem defined as follows:

Input: Agents N, agenda A, constraints C, judgment profile $jp \in JS^{|N|}(A, C)$, and judgment set $js \in JS(A, C)$;

Output: *true* if $js \in \nabla(jp)$, else *false*.

Complexity of winner set verification

Definition (winner set verification)

WINVER $_{\nabla}$ is the decision problem defined as follows:

Input: Agents N, agenda A, constraints C, judgment profile $jp \in JS^{|N|}(A, C)$, and judgment set $js \in JS(A, C)$;

Output: *true* if $js \in \nabla(jp)$, else *false*.

What is the complexity of WINVER?

Bad News

Theorem

There is a distance which is not Turing computable.

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Duesseldorf, 16/08/13 15/26

<u>Proof.</u> We construct the Turing distance d_{TR} as follows. First, we assume a standard encoding of Turing machines in binary strings; we use TM(X) to refer to the machine represented by the string of bits $X \in \{0,1\}^m$. We also assume by convention that strings starting with 0 or ending with 1 represent only machines that always halt (e.g., some TM's with only accepting states).

Let halts(X) = 0 if the TM(X) halts, and 1 otherwise. Now, for any $js, js' \in \{0,1\}^m$, we take

 $d_{TR}(js, js') = d_D(js, js') + halts(h(js, js')),$

where d_D is the drastic distance, and h(js, js') is the Hamming sequence for (js, js').

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Bad News

<u>Proof ctd.</u> We check that d_{TR} is a distance metric:

1
$$d_{TR}(js, js) = d_D(js, js) + halts(0^m) = 0;$$

2
$$d_{TR}(js, js') = 0 \Rightarrow d_D(js, js') = 0 \Rightarrow js = js';$$

- 3 $d_{TR}(js, js') = d_{TR}(js', js)$: straightforward;
- **4** Triangle inequality: the nontrivial case is $js \neq js' \neq js''$, then $d_{TR}(js, js') + d_{TR}(js', js'') \ge 2 \ge d_{TR}(js, js'')$.

For incomputability, we observe that TM(X) halts iff $d_{TR}(X, 0^{|X|}) \leq 1$.

Bad News

Theorem

There is a distance and an aggregation function for which WINVER is undecidable.

<u>Proof.</u> We construct a reduction from the halting problem. Given is a representation $X \in \{0, 1\}^m$ of a Turing machine (same assumptions on the encoding). We take $d = d_{TR}$, $aggr = \sum$.

Let $\mathcal{A} = \{p_1, \ldots, p_m\}$ consist of n unrelated atomic propositions, $\mathcal{C} = \emptyset$, and $jp = \{0^m, X\}$. Now, for $X = 1 \ldots 0$ (the other cases of X trivially halt), we have that TM(X) halts iff $js = 0^m, X$ are the only winners. This is because the aggregate scores of 0^m and X are 1 if TM(X) halts and 2 otherwise, and no score can be less than 1. Moreover, for all other candidates $Y \in \{0, 1\}^m$ the score is at least 2, and in particular for $Y = (1)^m$ it is always 2.

Suppose now that deciding WINVER terminates in finite time. Then, the halting of TM(X) could be verified by 2^m WINVER checks, i.e., also in finite time – which is a contradiction.

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Outline

1 Introduction

- 2 Distance-Based Judgment Aggregation
- 3 Complexity: Bad News
- 4 Positive Results
- 5 Conclusions

Positive Results

Theorem

If aggr and d are computable in polynomial time then WINVER for $\nabla_{d,aggr}$ is in $\mathbf{P}^{\mathbf{NP}[2]}$.

Theorem

If aggr and d are computable in polynomial time then WINVER for $\nabla_{d,aggr}$ is in $\mathbf{P}^{\mathbf{NP}[2]}$.

 $\mathbf{P}^{\mathbf{NP}[k]}$ is the class of problems solvable by a polynomial-time deterministic Turing machine asking at most k adaptive queries to an \mathbf{NP} oracle

For complexity freaks: $\mathbf{NP} \subseteq \mathbf{P}^{\mathbf{NP}[k]} \subseteq \mathbf{\Delta_2^P} = \mathbf{P}^{\mathbf{NP}}$

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Duesseldorf, 16/08/13 21/26

Algorithm: Winver(js, jp, N, A, C, d, aggr)

1 if *Consistent*(*js*, *A*, *C*) and not *ExistsBetter*(*js*, *jp*, *N*, *A*, *C*, *d*, *aggr*) then *return*(*true*) else *return*(*false*);

Oracle: Consistent(js, A, C)

- 1 guess a valuation $v \in PV$ for the atomic propositions in A;
- 2 if $val_v(\varphi) = js(\varphi)$ for every $\varphi \in \mathcal{A}$ and $val_v(\psi) = 1$ for every $\psi \in \mathcal{C}$ then return(true) else return(false);

Oracle: ExistsBetter(js, jp, N, A, C, d, aggr)

- 1 guess $js' \in JS$;
- **2** guess a valuation $v' \in PV$ for the atomic propositions in \mathcal{A} ;
- 3 if $val_{v'}(\varphi) = js'(\varphi)$ for every $\varphi \in \mathcal{A}$ and $val_{v'}(\psi) = 1$ for every $\psi \in \mathcal{C}$ and $aggr(d(js', jp[1]), \dots, d(js', jp[|N|])) < aggr(d(js, jp[1]), \dots, d(js, jp[|N|]))$ then return(true) else return(false);

Algorithm: Winver(js, jp, N, A, C, d, aggr)

Idea: ask the oracle if js is consistent and admissible and whether there is no set with a better score

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Duesseldorf, 16/08/13 22/26

Good News

For typical distances and aggregation functions, we get the following as a straightforward consequence:

Corollary

If $aggr \in \{\min, \max, \sum, \prod\}$ and $d \in \{d_H, d_D\}$ then WINVER for $\nabla_{d,aggr}$ is in $\mathbf{P}^{\mathbf{NP}[2]}$.

Outline

1 Introduction

- 2 Distance-Based Judgment Aggregation
- 3 Complexity: Bad News
- 4 Positive Results
- 5 Conclusions

Conclusions

- We explore complexity bounds for judgment aggregation based on minimization of aggregate distance
- Winner set verification for typical distance-based rules is NP-complete or slightly harder (couldn't be easier!)
- In the general case, the complexity can be as wild as you like (=undecidable)
- Standard structural conditions on distance and aggregation functions are not enough to tame complexity – constraints on computability were needed

Thank you for your attention!

Wojtek Jamroga · Complexity of Distance-Based Judgment Aggregation

Duesseldorf, 16/08/13 26/26