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Abstract

We prove a re�ned version of Shelah's theorem of the Arrow property. Let Cr(A) be
the set of all choice functions de�ned on the r-element subsets of a �nite set A. Then
any non-empty proper symmetric subset D of the set Cr(A) has the Arrow property

whenever |A| ≥ 5 and r ≥ 3. We also describe all symmetric sets D ⊂ Cr(A) that

have the Arrow property if either r = 2, or r = 3 and |A| = 4.

1 Introduction

Arrow's impossibility theorem (see [1], 1950) states that among aggregation rules meeting
some natural criteria there exists no rule that preserves the set of all rational choice
functions. Several proofs of Arrow's theorem have been proposed, using various techniques:
combinatorial ([1], see also [2]), topological (see [3]), model-theoretic (see [4]). Some
approaches lead to generalizations of Arrow's theorem, and to some related results. In [5]
(2005) a problem of preservation by aggregation rules of arbitrary symmetric sets of choice
functions (not necessarily rational ones) is considered, and the impossibility theorem is
proved under some additional conditions. In the present paper we remove those conditions.
We consider as very promising the clonal approach used in [5]. It can be further developed
and used for solving other related problems, and in particular for obtaining "positive"
results (i.e. "possibility theorems") in some speci�c cases.

Let A be a �nite set of alternatives. For any natural number r we denote by the symbol
[A]r the set of all r-element subsets of A. The symbol C(A) denote the set of all choice
functions on the set A and the symbol Cr(A) denote the set of restrictions of all functions
c ∈ C(A) to [A]r. In other terms, c ∈ Cr(A) i�

c ∈ [A]rA and c(p) ∈ p for all p ∈ [A]r.

A function c ∈ Cr(A) is called rational if there is a linear order < on A such that

c(q) = max q,

i.e. (∀x ∈ q)x = c(q) ∨ x < c(q), for all q ∈ [A]r.
A function c ∈ Cr(A) (rational or non-rational) may represent individual preferences or

an individual behavior(see [5], [6]). Shelah gives the following natural examples of non-
rational choice functions: c(q) is the second largest element in q according to some ordering,
or c(q) is the median element of q (assume |q| is odd) according to some ordering.

If some partial order ≺ is de�ned on a set of alternatives, then a natural example of
a non-rational (in general) choice function is provided by a function that relates every set
q ∈ [A]r to an element c(q) ∈ q, which is not dominated by other elements from q, i.e.

(∀x ∈ q) c(q) ⊀ x.

A set D ⊆ Cr(A) is called symmetric if for all function c ∈ D and permutation σ ∈ SA
the function cσ de�ned by

(∀p ∈ [A]r) cσ(p) = σ−1c(σp)



belongs to D.
Every symmetric set D ⊆ Cr(A) can be characterized as a class of all functions c ∈ Cr(A)

satisfying some condition Θ, where Θ is a closed formula built by applying logical connectives
and quanti�ers to elementary formulas of the form

c({xi0 , xi1 , . . . , xir−1
}) = xij ,

where 0 ≤ j < r and ik = il → k = l (0 ≤ k, l < r). Informally this means that a symmetric
set D ⊆ Cr(A) represents a set of individual behaviors coordinated by the same "common
principle".

For any natural number n ≥ 1 a function f : (Cr(A))n → Cr(A) is called an (n-ary)
aggregation rule. The set of all aggregation rules is denoted by the symbol O(A, r).

De�nition 1.1. An aggregation rule f : (Cr(A))n → Cr(A) is normal if for any p ∈ [A]r

there is a function fp : pn → p such that

1. f(c0, c1, . . . , cn−1)(p) = fp(c0(p), c0(p), . . . , cn−1(p)) for all c0, c1, . . . , cn−1 ∈ Cr(A),

2.
∨

0≤i<n
fp(a0, a1, . . . , an−1) = ai for all a0, a1, . . . , an−1 ∈ p.

Item 1 of De�nition 1.1 means that the aggregation rule f has the IIA property (Indepen-
dence of Irrelevant Alternatives), and item 2 is slightly stronger than the Pareto e�ciency
of the aggregation rule f (if r = 2 then item 2 can be replaced by the condition fp(a, a) = a
for all a ∈ p; this is equivalent to the Pareto e�ciency of f).

We denote the set of all normal aggregation rules f : (Cr(A))n → Cr(A) by the symbol
N (A, r).

De�nition 1.2. An aggregation rule f : (Cr(A))n → Cr(A) is called

� simple if f is normal and fp does not depend on p, i.e.

(∀p, q ∈ [A]r)(∀a ∈ pn ∩ qn)fp(a) = fq(a);

� dictatorial (or monarchical) if f is a projection, i.e.

(∃j ∈ {0, 1, . . . n− 1})(∀c0, c1, . . . , cn−1 ∈ Cr(A))f(c0, c1, . . . , cn−1) = cj .

Any normal aggregation rule f ∈ N (A, 2) is simple. Also any dictatorial aggregation rule
is normal and simple. We denote the set of all dictatorial aggregation rules f : (Cr(A))n →
Cr(A) by the symbolM(A, r).

Remark 1.3. We call an aggregation rule f : (Cr(A))n → Cr(A) is almost normal (or IIA-
aggregation rule) if for any p ∈ [A]r there is a function fp : pn → p such that only condition 1
of De�nition 1.1 holds. Let f is almost normal and simple in the sense of De�nition 1.2 (with
"normal" replaced by "almost normal"). Then if r < |A|, the condition 2 of De�nition 1.1
holds, i.e. f is normal.

Let D ⊆ Cr(A) and f ∈ O(A, r). We say that f preserves D and D is preserved under
f if

f(c1, c2, . . . , cn) ∈ D for all c1, c2, . . . , cn ∈ D.

The set of all f ∈ O(A, r) that preserves D ⊆ Cr(A) is denoted by the symbol PolD and the
set of all D ⊆ Cr(A) that is preserved under f ∈ O(A, r) is denoted by the symbol Inv f .



For any F ⊆ O(A, r) and any D ⊆ P (Cr(A)) the symbol InvF denotes the set
⋂
f∈F

Inv f ,

and the symbol PolD denotes the set
⋂

D∈D
PolD. Obviously,

PolCr(A) = Pol∅ = Pol{∅,Cr(A)} = O(A, r) and InvM(A, r) = P (Cr(A)).

Let R2(A) be the set of all rational function c ∈ C2(A). Arrow's impossibility theorem
(see [1]) asserts that if |A| ≥ 3 then any normal aggregation rule with preserves R2(A) is
dictatorial, i.e. PolR2(A) ∩N (A, 2) =M(A, 2).

De�nition 1.4. A set D ⊆ Cr(A) has the Arrow property if PolD ∩N (A, r) =M(A, r).

In paper [5] S. Shelah proved that Arrow's theorem can be extended to the case when
the individual choices are not rational in a very general setting:

Theorem 1.5. There are natural numbers r1, r2 (e.g. r1 = r2 = 7) such that for any
natural number r, r1 ≤ r ≤ |A| − r2, any non-empty proper symmetric subset D of the set
Cr(A) has the Arrow property.

We proved that if |A| ≥ 5 this theorem is true if r1 = 3 and r2 = 0. Conversely, if either
r = 2, or r = 3 and |A| = 4, then there are non-empty proper symmetric subsets D of the
set Cr(A) which do not have the Arrow property. We describe all such sets D. Therefore
we give a complete description of all symmetric D ⊆ Cr(A) which have the Arrow property
(if either |A| ≤ 2 or r ≤ 1, Theorem 1.5 holds trivially).

Remark 1.6. In a more general situation, individual preferences can be represented by
choice functions c de�ned on the entire set P (A) \ {∅}. In the context of our considerations
this general case can be easily reduced to a "particular" one (that is, when c ∈ Cr(A)) by
considering restrictions c � [A]r, 1 ≤ r ≤ |A|, without creating any new e�ect.

2 Main theorem

Let |A| = 4 and let K be the Klein four-group. For any sets p, q ∈ [A]3 there is only one
permutation σp,q ∈ K for which q = σp,q(p). We denote by the symbol CK3 (A) the set of all
function c ∈ C3(A) such that

c(q) = σp,qc(p) for all p, q ∈ [A]3.

It is easy to check that CK3 (A) is the non-empty proper symmetric subset of the set Cr(A).
The set CK3 (A) is preserved under any simple binary function f ∈ N (A, 3) satisfying the
condition

σfq(a) = fσq(σa) for all q ∈ [A]3, a ∈ q2 and σ ∈ K.

(The set of these functions is not equal toM(A, r)).

Table 1: A = {a, b, c, d}, CK3 (A) = {c0, c1, c2}, f ∈ PolCK3 (A) ∩N (A, 3)

q c0(q) c1(q) c2(q) fq a b c d
{a, b, c} a b c a a a c d
{a, b, d} b a d b b b c d
{a, c, d} c d a c a b c c
{b, c, d} d c b d a b d d



Let |A| ≥ 2, a ∈ A, i ∈ {0, 1} and c ∈ Cr(A). Let

Zc
a = {b ∈ A \ {a} : c({a, b}) = a},

W c
i = {a ∈ A : |Zc

a| = i (mod 2)},
Ci2(A) = {c ∈ C2(A) : W c

(1−i) = ∅}.

Remark 2.1. Any function c ∈ C2(A) may be represented by the tournament Γc = (A,E)
where E = {(a, b) ∈ A2 : a 6= b ∧ c({a, b}) = b}. The sets C0

2(A) and C1
2(A) are the sets of

all functions c ∈ C2(A) such that the indegree of any node of the tournament Γc is even
(respectively, odd).
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c ∈ C0
2(A), |A| = 5

We can prove the following proposition.

Proposition 2.2. 1. The sets C0
2(A) and C1

2(A) are symmetric,

2. C0
2(A) 6= ∅ i� n equals 0 or 1 (mod 4),

3. C1
2(A) 6= ∅ i� n equals 0 or 3 (mod 4),

4. C0
2(A) ∪ C1

2(A) 6= C2(A).

Each of the set C0
2(A), C1

2(A), C0
2(A)∪C1

2(A) is preserved, for example, under the (simple)
ternary function ` ∈ N (A, 2) de�ned by

`q(x, x, y) = `q(x, y, x) = `q(y, x, x) = y for all q ∈ [A]2 and x, y ∈ p.

.



Main Theorem. Let A be a �nite set, r a natural number, and D a non-empty proper
symmetric subset of the set Cr(A). Then the set D does not have the Arrow property if and
only if one of the following conditions holds:

1. r = 2, |A| equals 0 or 1 (mod 4), and D = C0
2(A),

2. r = 2, |A| equals 0 or 3 (mod 4), and D = C1
2(A),

3. r = 2, |A| = 0 (mod 4), and D = C0
2(A) ∪ C1

2(A),

4. r = 3, |A| = 4, and D = CK3 (A).

3 Outline of the proof

Our proof uses some ideas of paper [5] and some results and methods of universal algebra
and the theory of closed classes of discrete functions (see [7], [8], [10], [11]). In particular,
we largely use the Post classi�cation of closed classes of Boolean functions (see [8] or [9]).
We prove some of the auxiliary propositions in a more general form that is needed for
the proof of the Main Theorem. This does not make the proof more complicated but
can be used for further generalizations. Our proof can be substantially simpli�ed if con-
sidering only simple aggregation rules, or only the case of "impossibility": |A| ≥ 5 and r ≥ 3.

We use the basic concepts of a clone. In universal algebra, a clone F on a set X is a set
of functions f : Xn → X, n < ω, such that

1. F contains all the projections πmi : Xm → X (1 ≤ m < ω, 1 ≤ i ≤ m), de�ned by

πmi (x1, x2, . . . , xm) = xi for all x1, x2, . . . , xm ∈ X

2. F is closed under superposition: if f, g1, g2 . . . , gm ∈ F and f is m-ary, and gj is n-ary
for every j, then the function h : Xn → X, de�ned by
h(x1, x2, . . . , xn) =

= f(g1(x1, x2, . . . , xn), g2(x1, x2, . . . , xn), . . . , gm(x1, x2, . . . , xn))

for all x1, x2, . . . , xn ∈ X, is in F .

Proposition 3.1. 1. The set N (A, r) is a clone on Cr(A).

2. For any set D ⊆ P (Cr(A)) the set PolD (and the set PolD ∩ N (A, r)) is a clone on
Cr(A).

3. For any clone F ⊆ N (A, r) and any set p ∈ [A]r the set {fp : f ∈ F} is a clone on p.

4. Let D be a symmetrical subset of C(A, r) and F = PolD∩N (A, r). Then the following
condition holds:

(∗) for all n-ary function f ∈ F and all permutation σ ∈ SA the function fσ de�ned by

(∀p ∈ [A]r) (∀a ∈ pn) fσp (a) = σ−1fσp(σa),

belongs to F .



We shall call a Shelah clone any clone F ⊆ N (A, r) which satis�es condition (∗). The main
idea of our proof is describing the set InvF for any Shelah clone F .

We prove some "preservation theorems" for clones F on the set Cr(A), satisfying the
conditions L∆∂ , L∆e

r (r ≥ 3), L∆2 è L∆2
+ which are de�ned hereafter; in a "simple" case

it will su�ce to consider only clones F on the set A that satisfy simpler conditions ∆∂ , ∆e
r

(r ≥ 3) and ∆2.
Then we prove a theorem on the structure of Shelah clones, which states that "almost

all" Shelah clones satisfy one of the above conditions.
Finally we prove a simple theorem on properties of symmetric classes D ⊆ Cr(A).
The Main Theorem will then be proven in the "impossibility" case (|A| ≥ 5 and r ≥ 3)

as an immediate consequence of the preceding theorems. The remaining cases are dealt
with separately. In addition to those previously proved theorems, we exploit some of the
intermediate results and additional considerations.

Preservation theorems
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ww
Main Theorem

Preservation theorems. These theorems relate and is of importance to the theory
of closed classes of discrete functions.

We will need the following de�nitions and notations. Let A be a �nite non-empty set.
For every natural n, elements a of the cartesian product An are considered as functions
a : {0, 1, . . . , n − 1} → A. We denote, as usually, the domain and the range of a function
a ∈ An by doma, respectivelly rana.

For any natural numbers n,m the set {a ∈ An : | rana| = m} is denoted by Anm. Let

An<m =
⋃
k<m

Ank , A
<n
<m =

⋃
k<m,l<n

Alk

for any n,m ∈ ω + 1. The set of all �nitary functions on a set X is denoted by the symbol
O(X). For any clone F ⊆ O(A) the symbol F[n] denote the set of all n-ary functions f ∈ F .

Let r be a natural number. We say that a clone F ⊆ O(A) satis�es condition

∆e
r, if there is a natural number i < r such that for any sequence a ∈ Arr and element
a ∈ rana there is a function w ∈ F[r] such that

w(a) = a and w(b) = bi for any sequence b = (b0, b1, . . . , br−1) ∈ Ar<r;

∆∂ , if for any sequence a ∈ A3
3 and element a ∈ rana there is a function w ∈ F[3] such

that

w(a) = a and w(x, x, y) = w(x, y, x) = w(y, x, x) = x for all x, y ∈ A;



∆2, if for any sequences a,b ∈ A2
2, rana 6= ranb, and elements a ∈ rana, b ∈ ranb there

is a function w ∈ F[2] such that

w(a) = a,w(b) = b and w(x, x) = x for all x ∈ A.

Let also Q be a �nite non-empty set. The set of all function h : Q→ A is denoted by the
symbol QA. Let H ⊆ QA and f ∈ O(A)[n]. We say that f preserves H and H is preserved
under f , if for all functions h0, h1, . . . , hn−1 ∈ H the function h de�ned by

h(q) = f(h1(q), h2(q), . . . , hn(q)) for all q ∈ Q,

belongs to H. We say that a set F ⊆ O(A) preserves H and H is preserved under F , if H
is preserved under any function f ∈ F .

We show that if a clone F ⊆ O(A) satis�es one of conditions ∆e
r, ∆∂ , ∆2 and preserves

some set H ⊆ QA, then the set H is a quite simple one.

For any elements p, q ∈ Q, a, b ∈ A and permutation σ ∈ SA we denote

H0(p, q, σ) = {h ∈ QA : h(q) = σh(p)};

H1(p, q, a, b) = {h ∈ QA : h(p) = a ∨ h(q) = b};

H↔ = {H0(p, q, σ) : p, q ∈ Q, p 6= q, σ ∈ SA};

H= = {H0(p, q, Id) : p, q ∈ Q, p 6= q}, where Id is the identity permutation;

H∨ = {H1(p, q, a, b) : p, q ∈ Q, p 6= q, a, b ∈ A}.

For any set H ⊆ QA, set Q′ ⊆ Q, set B ⊆ A, element q ∈ Q and natural number r we
denote

H+
Q′ = {h ∈ QA : h � Q′ ∈ H � Q′};

H(q) = {h(q) : h ∈ H};

H+ = {h ∈ QA : (∀q ∈ Q)h(q) ∈ H(q)} (=
⋂
{H+
{q} : q ∈ Q});

H−1(B) = {q ∈ Q : H(q) ∈ B};

H−1(< r) = {q ∈ Q : |H(q)| < r}.

Theorem 3.2. Let A, Q be a �nite sets. Let a clone F ⊆ O(A) preserve a non-empty set
H ⊆ QA. Then

1. if F satis�es condition ∆e
r for some natural number r ≥ 3, then there is a set H ⊆ H↔

such that
H = H+ ∩H+

H−1(<r) ∩
⋂
H,

2. if F satis�es condition ∆∂ , then there is a set H ⊆ H↔ ∪H∨ such that

H = H+ ∩
⋂
H,

3. if F satis�es condition ∆2, then there is a set H ⊆ H= such that

H = H+ ∩
⋂
{H+

H−1(B) : B ∈ [A]2} ∩
⋂
H.



Then we consider clones on subsets of the set QA (this portion of the proof can be
skipped in the "simple" case).

Let C ⊆ QA. We say that a function f ∈ O(C) preserves a set H ⊆ C and a set H is
preserved under a function f , if for all functions h0, h1, . . . , hn−1 ∈ H the function

h = f(h1, h2, . . . , hn)

belong to H. We say that a set F ⊆ O(C) preserves a set H and a set H is preserved
under a set F , if H is preserved under any function f ∈ F . In other terms, F preserves H
i� H is a support of some subalgebra of algebra (C;F).

A function f ∈ O(C)[n] is almost normal if for any q ∈ Q there is a function fq : C(q)→
C(q) such that

f(h0, h1, . . . , hn−1)(q) = fq(h0(q), h1(q), . . . , hn−1(q))

for all h0, h1, . . . , hn−1 ∈ C and q ∈ Q.
We denote the set of all almost normal functions f ∈ O(C) by the symbol AN (C).

Obviously, AN (C) is a clone on C. For any clone F ⊆ AN (C) and q ∈ Q the set
{fq : f ∈ F} is denoted by Fq. The set Fq is a clone on C(q).

A function f ∈ AN (C)[n] is simple if

fp(a) = fq(a) for all p, q ∈ Q and a ∈ (C(p))n ∩ (C(q))n.

We say that a clone F ⊆ AN (C) is simple if any function f ∈ F simple. We denote by the
symbol SIM the condition "clone F is simple".

For clones F ⊆ AN (C) we can de�ne "local analogs" of the de�nitions introduced above
for clones F ⊆ O(A). We say that a clone F ⊆ AN (C) satis�es condition

L∆e
r, if there is a natural number i < r such that for any q ∈ Q, a ∈ (C(q))rr and a ∈ rana

there is a function w ∈ F[r] such that

wq(a) = a and wp(b) = bi for any p ∈ Q and b = (b0, b1, . . . , br−1) ∈ (C(p))r<r;

L∆∂ , if for any q ∈ Q, a ∈ (C(q))33 and a ∈ rana there is a function w ∈ F[3] such that

wq(a) = a and wp(x, x, y) = wp(x, y, x) = wp(y, x, x) = x for all p ∈ Q and x, y ∈ C(p);

L∆2, if for any p, q ∈ Q, a ∈ (C(p))22, b ∈ (C(q))22, rana 6= ranb, a ∈ rana, b ∈ ranb there
is a function w ∈ F[2] such that

wp(a) = a,wq(b) = b and ws(x, x) = x for all s ∈ Q and x ∈ C(s).

We will also formulate a condition in some sense dual to the condition L∆2
2. For any

natural number n the disjoint union of the family {(C(q))n : q ∈ Q} is denoted by the
symbol C〈n〉, i.e.

C〈n〉 =
⋃
q∈Q

({q} × (C(q))n).

For any clone F ⊆ AN (C) and sequences (p,a), (q,b) ∈ C〈n〉 we will say that F



� separates (p,a) from (q,b), if there is a natural number k and sequence c ∈ (C(p))k

such that for any sequence d ∈ (C(q))k and elements a ∈ rana and b ∈ ranb there is
a function w ∈ F[n+k] such that

wp(ac) = a,wq(bd) = b and ws(xx . . . x) = x for any s ∈ Q, x ∈ C(s)

� separates (p,a) and (q,b) if F separates (p,a) from (q,b) or (q,b) from (p,a).

We say that a clone F ⊆ AN (C) satis�es condition

L∆2
+, if there is a set Λ ⊆ Q2 such that

1. for any non-empty P ( Q there is a pair (p, q) ∈ Λ such that p ∈ P and q /∈ P ,
2. for any pair (p, q) ∈ Λ and sequences a ∈ (C(p))22, b ∈ (C(q))22 the clone F separates
pa and qb.

Theorem 3.3. Let A, Q be a �nite sets and C ⊆ QA. Let a clone F ⊆ AN (C) preserve a
non-empty set H ⊆ C. Then

1. if F satis�es condition L∆e
r for some natural number r ≥ 3, then there is a set H ⊆ H↔

such that
H = H+ ∩H+

H−1(<r) ∩
⋂
H,

2. if F satis�es condition L∆∂ , then there is a set H ⊆ H↔ ∪H∨ such that

H = H+ ∩
⋂
H,

3. if F satis�es condition L∆2 ∧ SIM, then there is a set H ⊆ H= such that

H = H+ ∩
⋂
{H+

H−1(B) : B ∈ [A]2} ∩
⋂
H.

4. if F satis�es condition L∆2
+, then H = H+.

Theorem on Shelah clones. We will use the following notations.
The set of all projections on a set X is denoted by E(X). For any clone F ⊆ O(X),

F 6= E(X), the natural number r(F) is de�ned by

r(F) = min{n < ω : F[n] 6= E[n]}.

Let r(F) = ω if F = E(X).
Let C ⊆ QA. For any clone F ⊆ AN (C) the natural number r+(F) is de�ned by

r+(F) = min{r(Fq) : q ∈ Q}.

Obviously, r(F) ≤ r+(F) and r(F) = r+(F) if F is simple.
The function f ∈ AN (C)[n] is called normal if

fq(a) ∈ rana for all q ∈ Q and a ∈ (C(q))n.

We denote by the symbol N (C) the set of all normal function f ∈ AN (C). We shall write
N (A, r) instead of N (Cr(A)) (see Section 1).

Theorem 3.4. Let A be a �nite set, |A| ≥ 2, and let r be a natural number, 2 ≤ r ≤ |A|.
Let F be a Shelah clone on Cr(A) and r(F) < ω. Then 2 ≤ r(F) ≤ max{r, 3}, and



1. if r(F) ≥ 4, then the clone F satis�es condition L∆e
r(F);

2. if r(F) = 3, then the clone F satis�es one of conditions L∆e
3, L∆∂ ;

3. if r(F) = 2 and r+(F) ≥ 3, then the clone F satis�es conditions L∆2
+;

4. if r(F) = r+(F) = 2 and |A| ≥ 5, then the clone F satis�es one of conditions L∆2
+,

L∆2 ∧ SIM.

For the case r(F) ≥ 3 our proof is based on a lemma that relates the clone F to some
Post class. Here is a simple variation of the lemma.

The Post class of all 0- and 1-preserving self-dual Boolean functions is denoted by D1

(see [8] or [9]). Let X is a set and Π is a subclass of D1. For every natural number n and
function π ∈ Π[n] the function πX : Xn

≤2 → X is de�ned by

πX(a) = σ−1π(σa) for all a ∈ An≤2,

where σ is an arbitrary injective mapping from rana to {0, 1}. We denote

ΠX = {πX : π ∈ Π}.

Let F is a clone on X. For any natural number r we denote

F〈r〉 =
⋃
n<ω

{f � Xn
<r : f ∈ F[n]}.

Lemma 3.5. Let F be a clone on X and r(F) ≥ 3. Then

1. there is a Post class Π ⊆ D1 such that F〈3〉 = ΠX ;

2. if r(F) ≥ 4 then F〈r(F)〉 = E(X)〈r(F)〉.

We then use some simple properties of Post classes Π ⊆ D1. There are only four Post
classes O1, D1, D2 and L4 (in Post's notation) of 0- and 1-preserving self-dual Boolean
functions. They are respectively generated by the functions x, xy ∨ xz ∨ yz, xy ∨ yz ∨ xz
and x⊕ y ⊕ z.

The cases r(F) = 2 ∧ SIM and r(F) = 2 ∧ r+(F) ≥ 3 present no di�culties.
In case r(F) = r+(F) = 2∧¬SIM we prove that F separates pa and qb for all p, q ∈ [A]r,

p 6= q, a ∈ p22.

Theorem on symmetric sets D ⊆ Cr(A).

Theorem 3.6. Let A be a �nite set and r a natural number, 2 ≤ r < |A|. Let D be a
symmetric subset of Cr(A). Then one of the following conditions holds:

1. |A| = 3, r = 2 and D = C1
2(A);

2. |A| = 4, r = 3 and D = CK3 (A);

3. D ∩H = ∅ for any H ∈ H↔ ∪H∨.

From theorems 3.6, 3.4 and 3.3 the case of "impossibility" of the Main Theorem can be
easily inferred.

Theorem 3.7. Let A be a �nite set and r a natural number. Let D be a non-empty proper
symmetric subset of the set Cr(A). Then if |A| ≥ 5 and r ≥ 3, the set D have the Arrow
property.



Case r = 2. The proof starts with the following proposition.

Proposition 3.8. Let a non-empty proper symmetric subset D of the set C2(A), |A| < ω,
do not have the Arrow property. Then the set D is preserved under the normal (simple)
function ` : (C2(A))3 → C2(A) de�ned by

`q(x, x, y) = `q(x, y, x) = `q(y, x, x) = y for all q ∈ [A]2 and x, y ∈ p.

.

If |A| ≥ 5, this Proposition follow from Theorems 3.6, 3.4, 3.3, Lemma 3.5 and the
structure of classes Π ⊆ D1 (in case |A| ∈ {3, 4}, additional arguments).

Then we use the properties of linear structures over Z2.

Case |A| = 4 and r = 3. This case is rather di�cult (though it can be investigated
by using an appropriate look-up computer program).

The set CK3 (A) is preserved under any normal simple binary function f ∈ N (A, 3)
satisfying the condition

σfq(a) = fσq(σa) for all q ∈ [A]3, a ∈ q2 and σ ∈ K.

To prove that no other cases, we show that clone F satis�es one of the conditions L∆e
3,

L∆∂ , L∆2
+ and L∆2 ∧ SIM. Then it remains to use Theorems 3.6 and 3.3.

4 Concluding remarks

The Main Theorem and impossibility theorems. Our Main Theorem is not for-
mulated as an "impossibility theorem", because it demonstrates that some of the sets of
choice functions do not satisfy the Arrow property. However, by considering aggregation
rules that satisfy some additional condition, we can formulate a corollary that is an impos-
sibility theorem for all non-empty proper symmetric subsets D of the set Cr(A).

Proposition 4.1. Let A be a �nite set. Let D be a non-empty proper symmetric subset
of the set C2(A). Let D do not have the Arrow property. Then if |A| ≥ 5, the clone
PolD ∩ N (A, r) is generated by the normal (simple) function ` : (C2(A))3 → C2(A) de�ned
by

`p(x, x, y) = `p(x, y, x) = `p(y, x, x) = y for all p ∈ [A]2 and x, y ∈ p.

(A clone F is generated by a function f ∈ O(X) if F is the minimal clone on X which
contains f).

We will call a normal aggregation rule f : (C2(A))n → C2(A) conjectural, if there exist a
set I ⊆ {0, 1, . . . , n− 1}, |I| is odd, such that

fq(a0, a1, . . . , an−1) = aj ↔ |{i ∈ I : ai = aj}| is odd

for all q ∈ [A]2, a0, a1, . . . , an−1 ∈ q and j ∈ {0, 1, . . . , n− 1}.

Proposition 4.2. The clone F on C2(A) generated by the function ` from Proposition 4.1
is the set of all conjectural aggregation rules.

Therefore, the following impossibility theorem is true:

Theorem 4.3. Let A be a �nite set, |A| ≥ 5, and let D be a non-empty proper symmetric
subset of the set Cr(A) for some natural number r. Then there exists no normal non-
dictatorial and non-conjectural aggregation rule f which preserves the set D.



Obviously, this theorem remains true if the condition of being "non-conjectural" is re-
placed with a stronger condition of being "monotone".

A normal aggregation rules f : (Cr)
n → Cr is called monotone if

{i < n : ai = a} ⊆ {i < n : bi = a} → (fq(a) = a→ fq(b) = a)

for all q ∈ [A]r, a = (a0, a1, . . . , an−1),b = (b0, b1, . . . , bn−1) ∈ qn and a ∈ rana ∩ ranb.
We should also note that Main Theorem provides yet another proof of the classical

Arrow's impossibility theorem.

Applications and further development of the method. The Shelah's clonal ap-
proach can be used for solving further problems of the social choice theory. We believe it is
appropriate for researching into the following type of questions:

• Given a non-empty symmetric set of preferences D ⊆ Cr(A) and an aggregation
rule f : (Cr(A))n → Cr(A), �nd all sets D′ ⊆ D belonging to Inv f (including non-
symmetric ones).

To solve this problem means to answer the following question: what kind of "agreements"
should be reached by the vote participants in order for their collective choice to be kept
within the limits of the set D?

We can suggest one good example. LetA = {a, b, c}; consider the set R2(A) of rational
choice functions c ∈ C2(A), and a function maj : (C2(A))2k+1 → C2(A) which is the majority
rule, i.e.

majq(a) = a↔ |{i < 2k + 1: ai = a}| > k

for all q ∈ [A]2, a = (a0, a1, . . . , an−1) ∈ qn and a ∈ rana. Then the set Ra<b = {c ∈
R : c({a, b})} = b} and the set Rb<a = {c ∈ R : c({a, b})} = a} are preserved by the rule
maj.

Really, Ra<b = {r0, r1, r2} where

q r0(q) r1(q) r2(q)
{a, b} b b b
{b, c} c b b
{a, c} c c a

Let (c0, c1, . . . , c2k) ∈ (Ra<b)
2k+1 and Ij = {i < 2k + 1: ci = rj}, j ∈ {0, 1, 2}.

If |Ij | > k for some j ∈ {0, 1, 2}, we have

maj(c0, c1, . . . , c2k) = rj .

Conversely, |Ij ∪ Ij′ | > k for all j, j′ ∈ {0, 1, 2}, j 6= j′, and we have

|{i < 2k + 1: ci({b, c}) = b}| > k, |{i < 2k + 1: ci({a, c}) = c}| > k,

and, so,
maj(c0, c1, . . . , c2k) = r1.

For Rb<a analogously.

c b b c a a

b

OO

c

OO

a

OO

a

OO

c

OO

b

OO

Ra<b a

OO
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a

KS

FF

c
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FF

b
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b
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XX

c

OO

XX
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By applying our above-formulated theorems, we can generalize this example in order to
obtain some "anti-Arrow" theorem.

Application of the method in a more general context may consist in the following. We
could hopefully expand our Main Theorem to the case when preferences are functions
h : Q → A on some set Q of "Situations" (see Theorems 3.2 and 3.3). Given that,
"Situations" here could be understood as sets B ∈ [A]r bearing some additional structure,
e.g. sequences b ∈ A<k with ranb = B, or multisets, or graphs with vertices from B, or
weighting functions µ : B → R, where R is the set of real numbers, etc.

Yet other generalization of our method would consist in studying "imprecise" preferences,
represented as functions d : [A]r → [A]t, where d(q) ⊆ q for all q ∈ [A]r. Here, (simple)
aggregation rules could be functions f : ([A]t)n → [A]t for which

f(B0, B1, . . . Bn−1) ⊆
⋃

0≤i<n

Bi

for all B0, B1, . . . , Bn−1 ∈ [A]t.
The de�nition of "aggregation rule f preserving a set of preferences D" can be introduced

here in a natural way, and the clone e�ect takes place.

Question. Let PN (A, r) denote the set of all almost normal aggregation rules f ∈
O(A, r) (see Remark 1.3) that satisfy the unanimity condition:

2′. fp(a, a, . . . , a) = a for all p ∈ [A]r and a ∈ p.

Would then the Main Theorem (or at least the theorem 3.7) hold, if the Arrow property is
understood as the condition PolD ∩ PN (A, r) =M(A, r))?

The "simple" case follows by Main Theorem.
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