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Abstract

The paper develops a Gentzen-style framework for reasoning about basic notions of
social choice theory as preference relations and choice functions. First, it aims at
providing an inferentialist account of the meaning of such notions in terms of the
inference rules governing their use in formal derivations: to this end it is shown
how to formulate the axioms of preference relations (reflexivity, completeness, etc.)
and choice functions (Sen’s properties α and β, etc.) by means of introduction
and elimination rules of natural deduction. The second aim is to provide a logical
calculus in which derivations can be automatically generated: a cut and contraction-
free sequent system is then introduced and it is shown how the fundamental property
of eliminability of the cut rule allows to search systematically for derivations.

Since many properties of order relations have an immediate interpretation in terms
of preference, order-theoretic notions have played a central role in social choice theory.
Traditionally, such properties are formulated in the language of predicate logic (with or
without identity) and presented as axioms of Hilbert-style calculi. Since axiomatic theories
are difficult to use in practice to derive theorems from axioms and consequently to regiment
the proofs in ordinary mathematics, we present the first-order theory of preference relation
as calculus based on rules of inference, following the tradition originated with Genzten [2].
In the first part of the paper we heavily rely on [4] where several calculi of sequents for
order theories have been presented. Unlike orders in mathematics, preferences in social
choice theory are intrinsically multi-agent notions: although it makes sense to think of an
option as preferred to another one, it is far more interesting to say that each agent in a
group has a preference and to see what happen whens their preferences are combined into a
collective one. Secondly, preference are choice-guiding, i.e they must allow agents to choose
the best options. Although we will be focusing mostly (Sections 1 and 2) on the second issue
by providing a proof-theoretic account of the connection between preferences and choices,
in the last section we show how to extend the framework to collective preference.

Individual Preference Relations

Regardless of whether taken as primitive or defined, there are three most important order-
theoretic notions that provide an account of preference relations.

x > y x is strictly preferred to y (or, x is better than y)
x ∼ y x and y are indifferent (or, x and y are equally good)
x > y x is weakly preferred to y (or, x is at least good as y)

If weak preference is taken to be primitive then strict preference and indifference will be
defined as follows:

x > y =df x > y and y � x
x ∼ y =df x > y and y > x

Alternatively, we could take both > and ∼ as primitive and define > as their union, i.e.
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x ∼ y =df x > y or x > y

Usually, formal simplicity is preferred to conceptual clarity and therefore > is taken as the
only primitive relation. In the standard theory of orders, > is assumed to be a partial order,
i.e. a reflexive (x > x), transitive (x > y and y > z implies x > z), and antisymmetric
(x > y and y > x implies x = y) binary relation. However, the latter does not correspond to
any intuitively acceptable property of preference relation because it makes perfectly sense
to think of two equally good distinct alternatives, i.e. x ∼ but x 6= y which contradicts
antisymmetry. Therefore, we shall assume that > is only reflexive and transitive, a preorder.
These properties will be given as rules of natural deduction [2].

x > x

x > y y > z

x > z

In most applications it turns out to be useful to assume that > is complete, i.e. either x > y
or y > x holds. This corresponds to the following rule (with ϕ an arbitrary formula)

x > y
(i)

....
ϕ

y > x
(i)

....
ϕ

ϕ (i)

The label (i) denotes that the formulas below the inference line are discharged, i.e. the
conclusion does not depend on them. Also the meanings of the defined relations > and ∼
are given inferentially. For each notion, an introduction rule makes explicit the conditions
under which x > y or x ∼ y can be concluded.

x > y y � x

x > y
x > y y > x

x ∼ y

Conversely, elimination rules specify what can be concluded from x > y or x ∼ y. Elimina-
tion rules presented here are in a general form (also called “parallel”in [7]) . The standard
(or “serial”in [7]) rules are special cases when ϕ and the discharged formula coincide.

x > y

x > y
(i)

....
ϕ

ϕ (i)
x > y

y � x
(i)

....
ϕ

ϕ (i)
x ∼ y

x > y
(i)

....
ϕ

ϕ (i)
x ∼ y

y > x
(i)

....
ϕ

ϕ (i)

From the fact that > is a preorder (together with the definition of > and ∼ in terms of
>) it follows that (i) > is an irreflexive, asymmetric and transitive; (ii) ∼ is an equivalence
relation; (iii) > and ∼ are incompatible. One of the properties we shall use in the next and
that can be easily derived is the equivalence of x > y and y ≯ x which essentially depends
on the the completeness of >.

x > y

y > x
(2)

x � y
(1)

x � y
(1)

⊥
y ≯ x

(2)
x > y

(2)

y ≯ x

y > x
(2)

x � y
(1)

y > x

⊥
x > y

(1)

x > y
(2)

More relevantly to the interpretation of order relation as preferences, we have the principles
isolated by A. Sen [6]. For instance, the derivation below correspond to the validity of Sen’s



PI principle.

x > y x > y
(1)

x > y
(1)

y ∼ z y > z
(2)

y > z
(2)

x > z

y ∼ z y > z
(3)

y > z z > x
(5)

y > x

x > y y � x
(4)

y � x
(4)

⊥
z � x

(5)

x > z

It is standard to present these properties as axioms of an axiomatic theory based on some
standard Hilbert calculus for predicate logic. An attractive feature of Hilbert systems is
modularity: axioms can be added or omitted in a component-wise fashion. However, main-
taining modularity is problematic when one deals with systems based on rules of inference,
since the fundamental properties of the system may be irremediably lost in presence of new
axioms. The situation is more clear in calculi of sequents than in natural deduction. In
sequent calculus, some extension of a well-behaved system by a new axiom may result into
one that fails to satisfy the cut-elimination theorem. Consider Gentzen’s LK calculus for
first order logic [2]. His celebrated theorem of cut elimination establishes that the rule of
cut

Γ⇒ ∆, ϕ ϕ,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆′,∆
Cut

is eliminable in LK, i.e. all the sequents provable with cut can be also proved without it.
Suppose we now want to extend LK with sequents corresponding to the properties of ∼
being an equivalence relation. The most natural solution is to allow derivations to start
with the following initial sequents

⇒ x ∼ x , x ∼ y ⇒ y ∼ x and x ∼ y, y ∼ z ⇒ x ∼ z

However, such “axiomatic sequents” make cut elimination fail: there is a sequent that is
indeed derivable, but not without the use of cut.

x ∼ y ⇒ y ∼ x y ∼ x, x ∼ z ⇒ y ∼ z
x ∼ y, x ∼ z ⇒ y ∼ z Cut

A possible way out is to consider inference rules instead of axiomatic sequents.

x ∼ x⇒
⇒

y ∼ x⇒
x ∼ y ⇒

x ∼ z ⇒
x ∼ y, y ∼ z ⇒

Rules and axioms are deductively equivalent, i.e. the axiomatic sequents are derivable in the
presence of the rules, and the rules are admissible in the presence of the axiomatic sequents.
The difference is that using the rules the sequent x ∼ y, x ∼ z ⇒ y ∼ z has a cut-free
derivation.

y ∼ z ⇒ y ∼ z
y ∼ x, x ∼ z ⇒ y ∼ z
x ∼ y, x ∼ z ⇒ y ∼ z

A natural question is: what class of axioms can be rearranged into inference rules while
preserving cut-elimination? In other words, what axiomatic theories can be formulated
as cut-free systems of rules? The idea of inferentializing axioms of mathematical theories
has been variously developed by many authors, but for the purposes of this paper we are
mostly interested in the one presented for order theories in [4]. Let P and Q denote atomic
formulas of the form x > y, x > y and x ∼ y. In classical logic we have that every
quantifier-free formula is equivalent to some formula in conjunctive normal form, that is,



to a conjunction of disjunctions of atomic formulas or negation of atomic formulas. Each
conjunct is then of the form ¬P1∨ . . .∨¬Pm∨Q1∨ . . .∨Qn and it is classically equivalent to
P1 ∧ . . .∧Pm → Q1 ∨ . . .∨Qn Special cases are when m = 0, where the implication reduces
to Q1 ∨ . . .∨Qn, and when n = 0 where it is ¬(P1 ∧ . . .∧Pm). The universal closure of this
implication is called a regular formula and corresponds to scheme of the form

Q1, P1, . . . , Pm,Γ⇒ ∆ . . . Qn, P1, . . . , Pm,Γ⇒ ∆

P1, . . . , Pm,Γ⇒ ∆

Notice that the rule scheme is cumulative in the sense that it has the principal formulas
P1, . . . , Pm repeated in the premises. We assume that rules following the regular rule scheme
are added to a variant of the system LK, known in [8] as G3c, in which all the structural
rules, including weakening and contraction, are admissible. It is possible to prove that
the resulting system is still cut free and all the structural rules are admissible (see [4] for
details). In practice, the regular rule scheme specializes into many rules, depending on the
context of application. In our case, all the properties of preference relations we encountered
so far are regular formulas; reflexivity of > is just a regular formula with m = 0, whereas
for irreflexivity of > we have n = 0. Therefore the fact that > is a complete preorder is
formulated as

x > x,Γ⇒ ∆

Γ⇒ ∆
Ref>

x > z, x > y, y > z,Γ⇒ ∆

x > y, y > z,Γ⇒ ∆
Trans>

x > y,Γ⇒ ∆ y > x,Γ⇒ ∆

Γ⇒ ∆
Compl>

Notice that the set of rules is redundant since reflexivity can be derived from completeness.
However, we assume it as primitive. The same system for the first-order theory of linear
orders has been introduced by S. Negri and J. von Plato and called in [4] GLO. Since many
concepts of social choice theory, like Pareto optimality, are traditionally expressed by using
both weak and strict preference, we depart from [4] and introduce rules for > and ∼ as well.
Consider the definition of > first. In one direction of the equivalence we have that if x > y
then x > y and y � x. By propositional reasoning we can arrange this axiom in such a
way that it corresponds to two inference rules following the regular rule scheme. In greater
detail we have

x > y → (x > y ∧ y � x) ≡
(x > y → x > y) ∧ (x > y → y � x) ≡
(x > y → x > y) ∧ (x > y → (y > x→ ⊥)) ≡
(x > y → x > y) ∧ ((x > y ∧ y > x)→ ⊥)

Each conjunct is an instance of a regular formula and thus it gets converted by applying
the method into the following inference rules.

x > y, x > y,Γ⇒ ∆

x > y,Γ⇒ ∆
>1

x > y, y > x,Γ⇒ ∆
>2

In the other direction of the definition fo >, we have that if both x > y and y � x then
x > y.

(x > y ∧ y � x)→ x > y ≡
x > y → (y � x→ x > y) ≡
x > y → (¬y � x ∨ x > y) ≡
x > y → (y > x ∨ x > y)



And this gives the rule

y > x, x > y,Γ⇒ ∆ x > y, x > y,Γ⇒ ∆

x > y,Γ⇒ ∆
>3

Once again, we can prove that > is a strict order, i.e. a irreflexive, asimmetric and transitive.
The derivations are better understood if read from the root to the leaves since they have
been specifically designed to systematically search for formal derivations.

x > x, x > x⇒
>2

x > x⇒ >1

⇒ x ≯ x

y > x, x > y, y > x⇒
>2

x > y, y > x⇒ >1

x > y ⇒ y ≯ x

z > y, x > z, x > y, y > z, x > y, y > z ⇒ x > z
>2

z > x, x > z, x > y, y > z, x > y, y > z ⇒ x > z x > z, x > y, y > z, x > y, y > z ⇒ x > z

x > z, x > y, y > z, x > y, y > z ⇒ x > z
>3

x > y, y > z, x > y, y > z ⇒ x > z
x > y, y > z ⇒ x > z

>1

The defintion of ∼ does not involve negation and it is rather easy to find regular sequent
rules for that.

x ∼ y, x > y, y > x,Γ⇒ ∆

x > y, y > x,Γ⇒ ∆
∼1

x > y, y > x, x ∼ y,Γ⇒ ∆

x ∼ y,Γ⇒ ∆
∼2

Thus, ∼ is easily proved to be an equivalence relation

x ∼ x, x > x, x > x⇒ x ∼ x
x > x, x > x⇒ x ∼ x

∼1

x > x⇒ x ∼ x
⇒ x ∼ x

y ∼ x, x > y, y > x, x ∼ y ⇒ y ∼ x
x > y, y > x, x ∼ y ⇒ y ∼ x

∼1

x ∼ y ⇒ y ∼ x ∼2

x ∼ z, z > x, x > z, x > y, y > x, y > z, z > y, x ∼ y, y ∼ z ⇒ x ∼ z
z > x, x > z, x > y, y > x, y > z, z > y, x ∼ y, y ∼ z ⇒ x ∼ z

∼1

x > z, x > y, y > x, y > z, z > y, x ∼ y, y ∼ z ⇒ x ∼ z
x > y, y > x, y > z, z > y, x ∼ y, y ∼ z ⇒ x ∼ z

x ∼ y, y ∼ z ⇒ x ∼ z ∼2

To complete the picture, we also have that > and ∼ are incompatible, i.e. if x > y then
x � y.

x > y, y > x, x > y, x ∼ y ⇒
x > y, x ∼ y ⇒
x > y ⇒ x � y

Let GPR be the sequent calculus GPO of [4] for the first-order theory of linear order
plus the rules corresponding to the definitions of > and ∼.

Theorem. In GPR weakening, contraction and cut are admissible.

Proof. Since all the new rules of GPR follow the regular rule scheme, the result is a corollary
of Theorem 2.1. in [4].



When the structural rules are admissible, it is possible to search systematically formal
derivations in GPR. To see whether a given sequent Γ ⇒ ∆ is derivable it is enough to
put Γ⇒ ∆ at the root of a derivation tree and apply systematically all the rules that may
have Γ ⇒ ∆ as the conclusion. Therefore, cut elimination paves the way to automated
deduction and this might be significant to the project of computational choice theory (see
[1]). Moreover, the system GPR can be used to prove decidability results. Indeed, the
first-order theory of linear orders is decidable as proved in [3] by showing that the set of non-
theorems is recursively enumerable. A decidability result for the universal fragment is given
in [4], Cor. 6.4. using sequent calculi and it is conjectured that the general decision problem
reduces to that of the universal fragment. Besides the computational and decidability issues,
the rules of GPR allows allow to isolate the purely logical part of a derivation from the
mathematical one. Indeed, the rules for preference relations are logic-free, in the sense
that only atomic preference formulas occur as principal in them. Thus, at each step of a
derivation in GPR one knows whether the conclusion has been derived by purely logical
reasoning or whether it follows from the properties of preference.

Choice Functions

While preferences are usually represented as binary relations, choices are represented by
functions. Although conceptually independent from preferences, choice functions must be
defined in such a way that agents confronted with multiple options choose according to their
preferences. On the other hand, it is also natural to think that most preferred alternatives
will presumably chosen. Formally, let X be a finite and ℘(X) be the power-set of X. A
function c : ℘(X) −→ ℘(X) is said to be a choice function whenever for all A ∈ ℘(X),

(a) c(A) ⊆ A

(b) if A 6= ∅ then c(A) 6= ∅

These requirements seem to be minimal. To guarantee that choice will be not only possible
but also rational, two extra constraints are often considered in the literature and are known
as Sen’s α and β principles (see [6], p. 17):

(α) If x ∈ B ⊆ A and x ∈ c(A), then x ∈ c(B)

(β) If B ⊆ A and x, y ∈ c(B) then x ∈ c(A) if and only if y ∈ c(A).

Intuitively, according to α the choice does not change when not chosen options are removed,
whereas β says that if two options are chosen from a set then when we move to a larger set
of options it must not be the case that one is chosen and the other one is not. Thus, choices
can be defined without referring to preference. An alternative approache consists into the
definition of choices in terms of preferences. Given a set A of alternatives, a choice function
c and a preference relation > it is possible to consider the choice set induced by > and to
write c> when

c>(A) = {x ∈ A | x > y for all y ∈ A}

Inferentially, the corresponding rules are

x ∈ A

y ∈ A
(i)

....
x > y

x ∈ c>(A)
(i)

x ∈ c>(A)

x ∈ A
x ∈ c>(A) y ∈ A

x > y



In the introduction rule the variable y must not occur free in any assumption on which
y ∈ A depends. Choice sets must not be confused with maximal sets, defined as the set
of alternatives in A such that there does not exist any better alternative. A set is then
maximal when

m>(A) = {x ∈ A | y ≯ x for all y ∈ A}

Consequently, the rules for m> are

x ∈ A

y ∈ A
(i)

....
y ≯ x

x ∈ m>(A)
(i)

x ∈ m>(A)

x ∈ A
x ∈ c>(A) y ∈ A

y ≯ x

As above, the introduction rule must satisfy the variable condition y must not occur free
in any assumption on which y ∈ A depends. Although it is immediately true that if a set
of alternatives in A is chosen then it is also maximal, in general it is not true that what
we choose is a maximal set. For instance if B = {x, y} with x � y and y � x, there is no
reason to choose x over y, or viceversa, therefore c>(B) = ∅. However, when > is assumed
to be complete then maximal and choice sets coincide. To see this consider the following
derivation where the steps marked by ? from x > y to y ≯ x, and from y ≯ x to x > y has
been proved to be derivable at the beginning.

x ∈ c>(A)
(2)

x ∈ A
(2)

x ∈ c>(A)
(2)

y ∈ A
(1)

x > y

y ≯ x
?

x ∈ m>(A)
(1)

c>(A) ⊆ m>(A)
(2)

x ∈ m>(A)
(2)

x ∈ A

x ∈ m>(A)
(2)

y ∈ A
(1)

y ≯ x

x > y
?

x ∈ c>(A)
(1)

m>(A) ⊆ c>(A)
(2)

c>(A) ⊆⊇ m>(A)

We now want to introduce maximal sets and choice sets into the sequent calculus in a more
regimented way. We extend the language with two binary predicates M(x,A) and C(x,A).
Intuitively, M(x,A) denotes that x is maximal in A, whereas C(x,A) says that x is best in
A. We have

M(x,A) =df x ∈ A ∧ ∀y(y ∈ A→ y ≯ x)
C(x,A) =df x ∈ A ∧ ∀y(y ∈ A→ x > y)

From the definition of M(x,A) we have that a formula of the form M(x,A) can be derived
if x ∈ A can be derived and y ≯ x can be derived from y ∈ A, for an arbitrary y. This gives
a rule of the form

Γ⇒ ∆, x ∈ A y ∈ A, y > x,Γ⇒ ∆

Γ⇒ ∆,M(x,A)

where y does not occur in the conclusion, i.e. is not in Γ,∆ and it is different from x.
This eigenvariable condition reflects the role of the universal quantifier in the definition of
M(x,A). The corresponding left rules are found consequently,

x ∈ A,M(x,A),Γ⇒ ∆

M(x,A),Γ⇒ ∆ M(x,A), y ∈ A, y > x,Γ⇒ ∆



The reasoning to find rule for C(x,A) is analogous and we obtain

Γ⇒ ∆, x ∈ A y ∈ A,Γ⇒ ∆, x > y

Γ⇒ ∆,C(x,A)

x ∈ A,C(x,A),Γ⇒ ∆

C(x,A),Γ⇒ ∆

x > y,C(x,A), y ∈ A,Γ⇒ ∆

C(x,A), y ∈ A,Γ⇒ ∆

We can prove that all the best elements are maximal. i.e.

x ∈ A⇒ x ∈ A
C(x,A)⇒ x ∈ A

x > y,C(x,A), y ∈ A, y > x⇒
C(x,A), y ∈ A, y > x⇒

C(x,A)⇒ M(x,A)

The other direction requires the completeness of >.

x ∈ A,M(x,A) ⇒ x ∈ A

M(x,A) ⇒ x ∈ A

x > y,M(x,A), y ∈ A ⇒ x > y

x > y,M(x,A), y ∈ A ⇒ x > y y > x,M(x,A), y ∈ A ⇒ x > y

y > x,M(x,A), y ∈ A ⇒ x > y

M(x,A), y ∈ A ⇒ x > y

M(x,A) ⇒ C(x,A)

At this point we need to be sure that properties of choice functions are satisfied. Notice
that set-theoretic operations are implicitly taken as abbreviations for the standard logical
ones.

B ⊆ A =df ∀y(y ∈ B → y ∈ A)
x ∈ B ⊆ A =df x ∈ B ∧B ⊆ A

Consequently, the rules for ⊆ are derivable from the logical ones and they will be freely used
to shorten the derivations. The main result is to prove that c> satisfies α and β. In our
system of natural deduction that means that the following inference rules must be derivable.

x ∈ B ⊆ A x ∈ c>(A)

x ∈ c>(B)
α>

B ⊆ A x ∈ c>(B) y ∈ c>(B)

x ∈ c>(A)↔ y ∈ c>(A)
β>

Consider the three following derivations of α> and β>.

x ∈ B ⊆ A
x ∈ B

x ∈ c>(A)

x ∈ B ⊆ A
B ⊆ A y ∈ B

(1)

y ∈ A
x > y

x ∈ c>(B)
(1)

B ⊆ A
y ∈ c>(B)

y ∈ B
y ∈ A

y ∈ c>(B)

x ∈ c>(B)

x ∈ B
y > x

x ∈ c>(A)
(2)

z ∈ A
(1)

x > z

y > z

y ∈ c>(A)

x ∈ c>(A)→ y ∈ c>(A)
(2)

and

B ⊆ A x ∈ c>(B)

x ∈ A

x ∈ c>(B)

y ∈ c>(B)

y ∈ B
x > y

y ∈ c>(A)
(4)

z ∈ A
(3)

y > z

x > z

x ∈ c>(A)

y ∈ c>(A)→ x ∈ c>(A)
(4)



In sequent calculus GP with the new rule for choice and maximal sets, the properties α and
β can be easily formulated as sequents and proved to be derivable.

(α) x ∈ B ⊆ A,C(x,A)⇒ C(x,B)

(β′) B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ C(y,A)

(β′′) B ⊆ A,C(x,B),C(y,B),C(y,A)⇒ C(x,A)

We show that α, β′ and β′′are derivable using the rules for C. For α consider

x ∈ B,B ⊆ A,C(x,A)⇒ x ∈ B

x ∈ B,C(x,A), y ∈ B ⇒ x > y, y ∈ B

x > y, x ∈ B,B ⊆ A,C(x,A), y ∈ B, y ∈ A⇒ x > y

x ∈ B,B ⊆ A,C(x,A), y ∈ B, y ∈ A⇒ x > y

x ∈ B,B ⊆ A,C(x,A), y ∈ B ⇒ x > y

x ∈ B,B ⊆ A,C(x,A)⇒ C(x,B)

x ∈ B ⊆ A,C(x,A)⇒ C(x,B)

The property β is derivable similarly. We decompose the derivations for readability.

D1

B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y ∈ A
D2

z ∈ A,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y > z

B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ C(y,A)

The subderivation D1 is

y ∈ B,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y ∈ A, y ∈ B y ∈ A, y ∈ B,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y ∈ A
y ∈ B,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y ∈ A

B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y ∈ A

And D2 is

y > z, x > z, y > x, x ∈ B, z ∈ A,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y > z

x > z, y > x, x ∈ B, z ∈ A,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y > z

y > x, x ∈ B, z ∈ A,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y > z

x ∈ B, z ∈ A,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y > z

z ∈ A,B ⊆ A,C(x,B),C(y,B),C(x,A)⇒ y > z

The system GP extended by the rules for choice set and maximal set is cut-free and
preserves the structural properties.

Theorem. In GPR weakening, contraction and cut are admissible.

Proof. We only consider the case of an application of cut on C(x,A) principal on both the
premises of cut.

Γ⇒ ∆, x ∈ A y ∈ A,Γ⇒ ∆, x > y

Γ⇒ ∆,C(x,A)

x > y,C(x,A), y ∈ A,Γ′ ⇒ ∆′

C(x,A), y ∈ A,Γ′ ⇒ ∆′

Γ, y ∈ A,Γ′ ⇒ ∆′,∆

The derivation is converted into one with two cuts, the former on a shorter derivation, the
latter on a smaller formula.

y ∈ A,Γ⇒ ∆, x > y

Γ⇒ ∆,C(x,A) x > y,C(x,A), y ∈ A,Γ′ ⇒ ∆′

x > y, y ∈ A,Γ,Γ′ ⇒ ∆,∆′

y ∈ A, y ∈ A,Γ,Γ,Γ′ ⇒ ∆′,∆,∆

y ∈ A,Γ,Γ′ ⇒ ∆′,∆



Collective Preference

We now show how to extend individual preference to collective preference. Let B = {1 . . . n}
be a set of n agents. We consider the language of first-order logic with n binary predicates
>1, . . . ,>n; thus x >i y stands for preference of the ith element of B, and similarly for
>i and ∼i. It is also assumed that each x >i y is reflexive, transitive and complete. The
rules for preference relation indexed by agents are similar to those for >, > and ∼. The
role of index i becomes relevant when individual preferences are aggregate into a collective
one R. Intuitively, R is the preference of the group, or more generally denotes what the
entire society prefers. We may think of a collective choice rule as an inference rule of GPR
that allows one to derive as a conclusion properties of R assuming as premises properties of
>i. Following [6], traditional welfare economics is based on “Paretian” collective preference
relation according to which an alternative x is collectively better than y, denoted xPy when
all agent consider x as good as y but some strictly prefers x to y.

xRy =df

n∧
i=1

x >i y

xPy =df xRy ∧ ¬yRx

The above definitions may be formulated as inference rules of GPR as follows

Γ⇒ ∆, x >1 y · · · Γ⇒ ∆, x >n y

Γ⇒ ∆, xRy
RR

x >1 y, . . . , x >n y,Γ⇒ ∆

xRy,Γ⇒ ∆
LR

Γ⇒ ∆, xRy yRx,Γ⇒ ∆

Γ⇒ ∆, xPy
RP

xRy,Γ⇒ ∆, yRx

xPy,Γ⇒ ∆
LP

It is known that if there are at least two agents, the collective preference relation R derived
by the Pareto rules may fail to be complete, even if the all the corresponding individual are
so. In GPR this corresponds to the underivability of the sequent ⇒ xRy ∨ yRx. Moreover,
a counter example can read off from the failed proof-search procedure by considering all
the leaves that are at the same time not initial and that cannot by analyzed any further.
Moreover, with at least two agents, the decidability is lost, see [5]. In GPR it easy to see
the the proof-search procedure for ⇒ xRy ∨ yRx does not terminate. Weaker versions of
the Paretian collective preference may be obtained when P is defined as

xP ′y =df

n∧
i=1

x >i y

The rules are similar to those for R. For readability we limit ourselves to a two-agent set
B = {1, 2} and we derive that P ′ ⊆ P as follows.

x >1 y, x >1 y, x >2 y ⇒ x >1 y

x >1 y, x >2 y ⇒ x >1 y

x >2 y, x >1 y, x >2 y ⇒ x >2 y

x >1 y, x >2 y ⇒ x >2 y

x >1 y, x >2 y ⇒ xRy

x >1 y, x >2 y, y >1 x, y >2 x⇒
x >1 y, x >2 y, yRx⇒

x >1 y, x >2 y ⇒ xPy

xP ′y ⇒ xPy

It is also possible to formalize properties of voting procedure. In this case agents are assumed
to be individual voters and the alternatives they can vote for are thought as candidates. In
[5] the following formula captures the fact that the majority of agents prefer an alternative
x to y.



xMy =df

∨
A⊆B:|A|≥n

2

∧
i∈A

x >i y

Suppose now to have three agent, B = {1, 2, 3}. Then M is defined by

x > y =df (x >1 y ∧ x >2 y) ∨ (x >3 y ∧ x >1 y) ∨ (x >2 y ∧ x >3 y)

It is convenient to write x >ij y for x >i y ∧ x >j y; thus we have the following rules for
majority voting

Γ⇒ ∆, x >1 y Γ⇒ ∆, x >2 y

Γ⇒ ∆, x > y

Γ⇒ ∆, x >3 y Γ⇒ ∆, x >1 y

Γ⇒ ∆, x > y

Γ⇒ ∆, x >2 y Γ⇒ ∆, x >3 y

Γ⇒ ∆, x > y

x >12 y,Γ⇒ ∆ x >31 y,Γ⇒ ∆ x >23 y,Γ⇒ ∆

x > y,Γ⇒ ∆

Conclusion

The paper is a report on a work in progress and consequently there are many problems
for which a satisfactory solution is still unknown. Most notably, Section 2 left open the
question of decidability of GPR with rules for C and M operators, whereas Section 3 only
outlines the idea of a fully formal analysis of impossibility theorems in social choice theory.
Besides the issue of formalization (on which many approaches have been already developed,
see [1] and the bibliography therein), we are mostly concerned with a foundational issue. We
have seen that our rules make use of set-theoretic notions without assuming any particular
theory of sets. Therefore, we tacitly assumed that operations of sets can be reduced to the
logical ones. To what extent this reduction is indeed possible? What part of social choice
theory is genuinely set-theoretic and how to distinguish it from the purely logical one?
Since among the advantages of a proof-theoretic systematization of axiomatic theories there
is the possibility of keeping separated the mathematical content from the analytical one, it
would be interesting to see whether the method of proof analysis allow one the achieve this
separation for social choice theory.
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