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Abstract. In multi-agent systems where sets of joint actions (JAs) are generated,
tools are needed to evaluate these sets and efficiently allocate resources for the
many JAs. To address evaluation, we introducek-optimality as a metric that cap-
tures desirable properties of diversity and relative quality. Our main contribution
is a method to utilize local interaction structure to obtain bounds on cardinalities
of k-optimal JA sets. Bounds help choose the appropriate level ofk-optimality for
settings with fixed resources and help determine appropriate resource allocation
for settings where a fixed level ofk-optimality is desired. In addition, our bounds
for 1-optimal JA sets also apply to the number of pure-strategy Nash equilibria in
a graphical game of noncooperative agents.

1 Introduction

We consider a multi-agent system that generates a set of joint actions (JAs). The out-
come for a single joint action (JA), a combination of individual actions, can be captured
by a DCOP [1] or cost network [2] in cooperative domains and by graphical games [3] in
noncooperative domains. These models decompose the system into a fixed interaction
and reward structure. While we focus on the team setting where each JA in a set con-
sumes resources, we also establish connections to settings with self-interested agents.
Motivating cooperative domains include a team of troops that generate many sorties
which consume supplies, a team of rescue units that generate many potential plans (for
a disaster rescue commander) which consume human decision time, or a team of UAVs
that generate many trajectories (for surveying or imaging) which consume film or fuel.
JA sets can be (i) a sequence of JAs to execute or (ii) a set of choices, but in either case,
they consume resources as a function of set size.

Most work in DCOPs and similar methods generates a single JA with high absolute
reward, but reward alone is a poor metric for domains with JA sets, as it often yields
clustered solutions. Clustering is undesirable, as diversity (the difference among JAs) is
a key property for evaluating JA sets [4], e.g., commanders want varied options. How-
ever, diversity alone is undesirable, as we want to ensure a level of relative quality (each
JA is best among a group of similar JAs and cannot be improved by simple changes).
We define a metric,k-optimality, that naturally captures diversity and relative quality: a
k-optimal JA has the highest reward within a neighborhood of JAs differing from it by
at mostk individual actions;k-optimality quantifies the neighborhood in which a local
optimum is optimal. Ak-optimal JA set (a collection ofk-optimal JAs) then guarantees
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Fig. 1.A depiction of the advantages of tighter bounds

a level of relative quality (each JA is better than all JAs in a neighborhood of radiusk)
and diversity (JAs in the set must be separated by at leastk individual actions).

Because each JA consumes resources, and the number of generated JAs may not
be knowna priori, resource allocation is a critical problem. Unfortunately, we cannot
predict this number because the exact rewards in our domains are not known in advance.
For example, supplies need to be allocated to troops executing multiple sorties before
exact numbers and locations of adversaries are known. However, reward-independent
bounds can be obtained on the size ofk-optimal JA sets (i.e. to safely allocate enough
supplies). First, we identify a mapping to coding theory yielding bounds independent of
both reward and team interaction structure. We then provide, as our main contribution,
a method to use the interaction structure (e.g., DCOP graph of arbitrary arity) to obtain
significantly tighter bounds. We establish a connection to noncooperative settings by
proving that our bounds for 1-optimal JAs also apply to the number of pure-strategy
Nash equilibria in a graphical game.

Finding tighter bounds is useful in two ways: (i) If a particular level ofk-optimality
is desired, bounds indicate the maximum resource requirement for anyk-optimal JA
set. Thus, tighter bounds provide savings by allowing fewer resources to be allocateda
priori while ensuring enough for allk-optimal JAs. Figure 1(a) shows, via a hypothetical
example, how the tighter boundβ2 indicates thatr2 is sufficient for all k̂-optimal JAs,
yielding resource savings ofr1 − r2 over usingβ1. (ii) If resource availability is fixed,
tighter bounds help us choose an appropriate level ofk-optimality. If k is too low, we
may exhaust our resources on bad solutions (similar JAs with poor relative quality).
In contrast, (because fewerk-optimal JAs can exist ask increases), ifk is too high,
resources that could be spent on additional JAs are guaranteed to go unused. Tighter
bounds provide a more accurate measure of guaranteed waste and thus, allow a more
appropriatek to be chosen. In Figure 1(b), under hypothetical resource level ˆr, the looser
boundβ1 hides the resource waste guaranteed whenk1 is used. This waste is revealed
by β2, indicating thatk2 reduces guaranteed resource waste.

2 k-optimality

We introduce the notion of ak-optimal joint actionas a metric that captures both relative
quality and diversity when selecting JA sets. The fitness ofk-optimality for evaluating
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Fig. 2.Generating JA sets under various metrics

JA sets is illustrated in Figure 2, which shows a deployment of troops where each unit
can advance or hold. Decision-support agents (assigned to each unit) coordinate to gen-
erate multiple sortie plans to be executed. Using reward alone as a metric to generate
a JA set leads to a cluster of near-identical solutions (essentially, all troops hold). Us-
ing diversity alone (ensuring all JAs differ by more than two actions) leads to a JA set
where many JAs can be improved with deviations of only two agents (shown by the
arrows). Withk-optimality (k=2), we generate a set of diverse JAs (all troops hold;
front advances, rear holds; front holds, rear advances; all advance) where no JA can be
improved with a two-agent deviation.

We begin with our model of the multi-agent team problem. For a set of agents
I := {1, . . . , I }, the ith agent takes actionai ∈ Ai . We denote the joint action of a
subgroup of agentsS ⊂ I by aS := ×i∈Sai ∈ AS whereAS :=

�
i∈SAi and the joint

actions (JAs) of the entire multi-agent team bya = [a1 · · · aI ] ∈ AwhereA :=
�

i∈IAi .
The team reward for taking a particular JA,a, is an aggregation of the rewards obtained
by subgroups in the team:

R(a) =
∑
S∈S

RS(a) =
∑
S∈S

RS(aS)

whereS is a minimal subgroup that generates a reward (or incurs a cost) in an n-ary
DCOP or cost network (i.e. a constraint),S is the collection of all such minimal sub-
groups for a given problem andRS(·) denotes a function that mapsAS to�. By mini-
mality, we mean that the reward componentRS cannot be decomposed further:∀S ∈ S,
RS(aS) , RS1(aS1) +RS2(aS2) for anyRS1(·) : AS1 → �, RS2(·) : AS2 → �, S1,S2 ⊂ I

s.t. S1 ∪ S2 = S, S1,S2 , ∅. It is important to express the team reward in minimal
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form to accurately represent the dependencies and independencies among agents. Thus,
S ⊆ P(I) (whereP(·) denotes the power set) captures these local interactions.

To evaluate JA sets, specifically JAs with respect to each other, we need notions of
neighborhood and distance among JAs. For two JAs,a andã, we define the following
terms. Thedeviating groupis

D(a, ã) := {i ∈ I : ai , ãi},

the set of agents whose individual actions differ. Thedistanceis

d(a, ã) := |D(a, ã)|

where| · | denotes the cardinality of the set. Therelative rewardis

∆(a, ã) := R(a) − R(ã) =
∑

S∈S:S∩D(a,ã),∅

[R(aS) − R(ãS)] .

We assume every subgroupG has a unique optimal (subgroup) joint actiona∗G for any
contextaGC (if G ⊂ I whereG , ∅ andG , I, then∃ a∗G ∈ AG s.t. R(a∗G; aGC) >
R(aG; aGC) for all aG , a∗G; GC denotes the complement of setG). This assumption is
natural for any domain where rewards come from precise measurements, and is com-
mon in related work on bounds and estimates for numbers of local optima [5] and Nash
equilibria [6, 7]. Given the above, we can now classifya as ak-optimal joint actionif

∆(a, ã) > 0 ∀ã s.t d(a, ã) ≤ k.

Every JA can be given ak, identifying the size of the neighborhood where it is locally
optimal. A collection ofk-optimal JAs will be mutually separated by a distance greater
than k as they each have the highest reward within a radius ofk. Thus, a higherk-
optimality of a collection implies a greater level of relative reward and diversity. Let
Ak = {a ∈ A : ∆(a, ã) > 0 ∀ã s.t d(a, ã) ≤ k} be the set of allk-optimal JAs. It is
straightforward to showAk+1 ⊆ Ak.

Example 1.Figure 3 is a binary DCOP in which agents choose actions from{0,1}, with
rewards shown for the two constraints (minimal subgroups)S = {{1,2}, {2,3}}. The JA
a = [1 1 1] is 1-optimal because any single agent who deviates reduces the team reward.
However, [1 1 1] is not 2-optimal because if the group{2,3} deviated, making the JA
ã = [1 0 0], team reward would increase from 16 to 20. The optimal JA,a∗ = [0 0 0] is
k-optimal for allk ∈ {0,1,2,3}.�

3 Bounds onk-optimal joint actions

Bounds on|Ak| can yield resource savings in domains where a particular level ofk-
optimality is desired, and can help determine the appropriate level ofk-optimality to
prevent guaranteed resource waste in fixed-resource settings. To find upper bounds on
the number ofk-optimal JAs, we discovered a correspondence to coding theory [8].
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Finding the maximum possible number ofk-optimal JAs can be mapped to finding the
maximum number of codewords in a space ofqI words where the minimum distance
between any two codewords isd = k + 1. We can map words to JAs and codewords to
k-optimal JAs as follows: A joint actiona taken byI agents each with an action space of
cardinalityq is analogous to a word of lengthI from an alphabet of cardinalityq. The
distanced(a, ã) can then be interpreted as a Hamming distance between two words.
Then, if a is k-optimal, andd(a, ã) ≤ k, thenã cannot also bek-optimal because that
implies the subgroupD(a, ã) has two optimal (subgroup) joint actions to the context
D(a, ã)C, violating our assumption. Thus, any twok-optimal JAs must be separated by
distance greater thank.

Three well-known bounds on codewords are Hamming1:

βH = qI/

bk/2c∑
n=0

(
I
n

)
(q− 1)n

 ,
Singleton:

βS = qI−k,

and Plotkin:

βP =
⌊ k+ 1
k+ 1− (1− q−1)I

⌋
[8]. Thus, |Ak|, the number ofk-optimal JAs for a givenI andq, can be bounded by
βHS P := min{βH , βS, βP}. For example, to find a reward-independent bound on the num-
ber of 1-optimal JAs for three agents withq = 2, (e.g., the system in Figure 3), we
obtainβHS P= 4, without knowingR12 andR23 explicitly.

4 Graph-based exclusivity for multi-agent teams

The βHS P bound is the same for a given (I , k,q), regardless of how the team reward
is decomposed among subgroups of agents (i.e., the bound is the same for allS). For

1 For evenk. For oddk, with q = 2,βH(I , k,q) = βH(I −1,q, k−1) can be used to obtain a tighter
bound. [8]
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instance, the bound on 1-optimal JAs for Example 1 (βHS P = 4 from the previous
section) ignored that agent 1 does not interact directly with agent 3 and yields the same
result independent of graph structure. However, taking local interactions (as captured
by S) into account can significantly tighten the bounds on{|Ak|}

I
k=1. In the previous

analysis, pairs of JAs were mutually exclusive ask-optimal (only one of two could be
k-optimal) if they were separated by a distance ofk or less. We now show how some
JAs separated by a distance of greater thank must be mutually exclusive ask-optimal.

We defineDG(a, ã) := {i ∈ G : ai , ãi} andV(G) := ∪S∈S:G∩S,∅S. Intuitively,
DG(a, ã) is the set of agents within the subgroupG who have chosen different actions
betweena andã, andV(G) is the set of agents (including those inG) who are a member
of some minimal subgroupS ∈ S that contains a member ofG (e.g.,G and the agents
who share a constraint with some member ofG). Then,V(G)C is the set of all agents
whose contribution to the team reward is independent of the actions ofG.

Proposition 1. Let a∗ ∈ Ak and ã ∈ A be an assignment for which d(a∗, ã) > k. If
∃G ⊂ I, G , ∅ for which |G| ≤ k and DV(G)(a∗, ã) = G, thenã < Ak.

Proof. Givena∗, ã, andG with the properties stated above, we have that∀a : d(a∗,a) ≤
k, ∆(a∗,a) > 0. If a is defined such thatai = ãi for i ∈ V(G) andai = a∗i for i < V(G),
thenD(a∗,a) = G andd(a∗,a) ≤ k which implies∆(a∗,a) =∑

S∈S:S∩D(a∗,a),∅

RS(a∗S) − RS(aS) =
∑

S∈S:S∩G,∅

RS(a∗S) − RS(aS) =∑
S∈S:S∩G,∅

RS(a∗S) − RS(ãS) > 0.

If â is defined such that ˆai = a∗i for i ∈ V(G) andai = ãi for i < V(G), thenD(ã, â) = G
andd(ã, â) ≤ k, and∆(ã, â) =∑

S∈S:S∩D(ã,â),∅

RS(ãS) − RS(âS) =
∑

S∈S:S∩G

RS(ãS) − RS(âS) =∑
S∈S:S∩G

RS(ãS) − RS(a∗S) < 0,

thus,ã < Ak. �
Intuitively, if a JAa∗ is k-optimal, then every subgroup of agents of sizek or less has

picked the best subgroup joint action for their context, so any other JA within a distance
k of a∗ contains a suboptimal subgroup joint action for their context. Since agents are
typically not fully connected to all other agents, therelevant contexta subgroup faces
is not the entire set of other agents. Thus, the subgroup and its relevant context form
a view (captured byV(G)) that is not the entire team. We consider the case where a
JA ã hasd(a∗, ã) > k. We also have groupG of sizek within whose viewV(G), G are
the only deviators betweena∗ andã (although agents outside the view must also have
deviated). We then show that ˜a contains a suboptimal subgroup joint action for a group
G of sizek or less and thus, cannot bek-optimal, i.e. if the group chosea∗G instead of
ãG under its relevant contextV(G) \G for ã, then team reward would increase.
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Fig. 4. Exclusivity graphs for 1-optimal JAs for Example 1, with sample maximum independent
sets shaded.

To explain the significance of Proposition 1 to bounds, we introduce the notion of
an exclusivity relation E⊂ I which captures the restriction that if deviating group
D(a, ã) = E, then at most one ofa and ã can bek-optimal. An exclusivity relation
set for k-optimality, Ek ⊂ P(I), is a collection of such relations that limits|Ak|, the
number of JAs that can bek-optimal in a reward-independent setting (otherwise every
JA could bek-optimal). The setEk defines anexclusivity graph Hk where each node
corresponds uniquely to one of allqI JAs. Edges are defined between pairs of JAs,a
and ã, if D(a, ã) ∈ Ek. The size of the maximum independent set (MIS) ofHk, the
largest subset of nodes such that no pair defines an edge, gives an upper bound on|Ak|.
Naturally, an expandedEk would imply a more connected exclusivity graph and thus a
tighter bound on|Ak|.

Without introducing graph-based analysis,βHS P for eachk provides a bound on the
MIS of Hk whenEk =

⋃
E⊂I:1≤|E|≤k E. This setEk captures only the restriction that

no two JAs within a distance ofk can both bek-optimal. The significance of Propo-
sition 1 is that it provides additional exclusivity relations for JAs separated by dis-
tance greater thank, which arise only because we considered interaction structure (e.g.,
DCOP graph). This graph-based exclusivity relation set is

Ẽk =
⋃

E⊂I:1≤|E|≤k

⋃
F∈P(V(E)C)

[E ∪ F]

which is a superset ofEk. Additional relations exist because multiple exclusivity rela-
tions (

⋃
F∈P(V(E)C)[E ∪ F]) appear the same to the subgroupE because of its reduced

view V(E).
Consider Example 1, but with unknown rewards on the links. Here, the exclusiv-

ity relation set for 1-optimal JAs without considering interaction structure isE1 =

{{1}, {2}, {3}} which leads to the exclusivity graph in Figure 4(a) whose MIS implies a
bound of 4. The exclusivity relation set for 1-optimal JAs when considering interaction
structure is̃E1 = {{1}{2}, {3}, {1,3}} which leads to the exclusivity graph in Figure 4(b)
whose MIS implies a bound of 2. The setẼ1 includes{1,3} due to the realization that
agents 1 and 3 are not connected.
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5 Graph-based exclusivity for Nash equilibria

Our graph-based bounds can be extended beyond agent teams to noncooperative set-
tings. It is possible to employ the same exclusivity relations for 1-optimal JAs to bound
the number of pure-strategy Nash equilibria in a graphical game using any of our bounds
for |A1|. Bounds on Nash equilibria [6] are useful both for design and analysis of mech-
anisms as they predict the maximum number of outcomes of a game.

We begin with a set of noncooperative agentsI = {1, . . . I }, where theith agent’s
utility is

U i(ai ; a{I\i}) =
∑
Si∈Si

U i
Si

(ai ; a{Si\i})

which is a decomposition into an aggregation of component utilities generated from
minimal subgroups (only those agents affecting a particular component utility are in
the respective setSi). The notationai anda{G\i} refers to theith agent’s action and the
actions of the groupG with i removed, respectively. We refer toa as a joint action (JA),
with the understanding that it is composed of actions motivated by individual utilities.
Let the view of the ith agent in a noncooperative setting to beV(i) = ∪Si∈Si Si . The
deviating group with respect toG is: DG(a, ã) := {i ∈ G : ai , ãi}. Assuming every
player has a unique optimal response to its context, then ifa∗ is a pure-strategy Nash
equilibrium, andd(a∗,a) = 1, i = D(a∗,a), we know that

U i(a∗i ; a∗
{I\i}) > U i(ai ; a∗

{I\i})

anda is not a pure-strategy Nash equilibrium. However, applying the local interaction
of the game, captured by the sets{Si}, we get exclusivity relations between JAs with
distance greater than 1 as follows.

Proposition 2. If a∗ is a pure-strategy Nash equilibrium,ã ∈ A such that d(a∗, ã) > 1,
and∃i ∈ I such that DV(i)(a∗, ã) = i, thenã is not a pure-strategy Nash equilibrium.

Proof. We have

U i(ãi ; ã{I\i}) =
∑
Si∈Si

U i
Si

(ãi ; ã{Si\i}) =
∑
Si∈Si

U i
Si

(ãi ; a∗{Si\i}
)

<
∑
Si∈Si

U i
Si

(a∗i ; a∗{Si\i}
) =

∑
Si∈Si

U i
Si

(a∗i ; ã{Si\i}) = U i(a∗i ; ã{I\i}).

The first and last equalities are by definition. The second and third equalities are because
DV(i)(a∗, ã) = i. The inequality is becausea∗ is a pure-strategy Nash equilibrium. The
result is that ˜ai is not an optimal response to ˜a{I\i} and thus cannot be a pure-strategy
Nash equilibrium.�

Proposition 2 states thata∗ andã cannot both be Nash equilibria if∃i, DV(i)(a∗, ã) =
i, which is identical to the condition that prevents two JAs (in a team setting) from being
1-optimal. The commonality is that in both the cooperative and noncooperative settings,
agents have optimal actions for any given context, and in both settings there is a notion
of relevant context,V(i) \ i, which can be a subset of other agents{I \ i}. The difference
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Algorithm 1 for Symmetric Region Packing (SRP) bound

1: Ẽk =
⋃

E⊂I:1≤|E|≤k
⋃

F∈P(V(E)C)[E ∪ F]
2: a= [0 0 0]
3: |Ak| = 1
4: B(a) = ∪E∈Ẽk

f (a,E)
5: for all b ∈ B(a) do
6: B(b) = (∪E∈Ẽk

f (b,E)) \ (a∪ B(a))

7: Hk(b).addNodes(B(b))
8: for all b1,b2 ∈ B(b) do
9: if D(b1,b2) ∈ Ẽk then

10: Hk(b).addEdge(b1,b2)
11: end if
12: end for
13: Mb = |cliquePartition(Hk(b))|
14: |Ak| = |Ak| + 1/(1+ Mb)
15: end for
16: βS RP= (qI )/|Ak|

is that the views are generated in different manners:V(i) = ∪S∈S:i∩S,∅S in a cooperative
setting, whileV(i) = ∪Si∈Si Si in a noncooperative setting. Given the views, we can
generate the exclusivity relation set in the same manner,E1 =

⋃
i∈I

⋃
F∈P(V(i)C)[i∪F]. If a

noncooperative graphical game yields a particular exclusivity relation set, it defines the
same exclusivity graph as a cooperative multi-agent domain with the same exclusivity
relation set. Thus, the bound for the number of Nash equilibria for a noncooperative
graphical game is identical to the bound for 1-optimal JAs for a cooperative multi-agent
domain, if both share the same exclusivity relation setE1.

6 Algorithms for graph-based bounds

As seen earlier, the local interaction structure in both cooperative and noncooperative
settings expands the exclusivity relation set fork-optimality. This set defines an ex-
clusivity graphHk whose maximum independent set (MIS) provides a bound for the
number of JAs which arek-optimal (or alternatively, Nash equilibria). Finding the size
of the MIS is NP-complete in the general case [9], so we investigated other techniques
to obtain an upper bound on|Ak|. We observe that any fully-connected subset (clique) of
Hk can contain at most onek-optimal JA. Therefore, the number of cliques in any clique
partitioning ofHk also provides an upper bound on|Ak|. We used the polynomial-time
FCLIQUE algorithm, shown [10] to outperform several other clique-partitioning algo-
rithms, to find clique partitionings with fewest cliques.

Another method that we developed (Algorithm 1) was the symmetric region packing
bound,βS RP, using a method analogous to sphere packing (the idea used to compute
the Hamming bound [8]), where eachk-optimal JA claims a region of the space of all
JAs (the nodes ofHk). Because these regions are constructed to be disjoint and have
identical volumes, dividing the space of all JAs by this volume yields a bound. Figure 5
showsβS RP computed for 1-optimal JAs for Example 1. We choose an arbitrary JA
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B([0 0 0]) = { [1 0 0], [0 1 0], [0 0 1], [1 0 1]
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Fig. 5.Computation ofβS RPfor Example 1

a ∈ A which we assume to bek-optimal (a = [0 0 0] in Figure 5), around which we
will construct a region claimed bya. Applying the exclusivity relations from̃Ek, we
can generate a setB(a) = ∪E∈Ẽk

f (a,E) where f (a,E) yields the JA that is excluded

from beingk-optimal bya andE. The first two rows of Figure 5 show̃E1 and the set
B([0 0 0]). Applying the exclusivity relations again for eachb ∈ B(a), and discarding
JAs already included ina or B(a), we can generate a setB(b) = ∪E∈Ẽk

f (b,E) which
contains all JAs that may also excludeb from beingk-optimal. In Figure 5, we apply
E1 to obtainB(b) for all b ∈ B(a) = {[1 0 0], [0 1 0], [0 0 1], [1 0 1]} where the grayed
out JAs are those discarded for being in{a} ∪ B(a). To ensure that the region thata
claims is disjoint from the regions claimed by otherk-optimal JAs,a should only claim
a fraction of eachb ∈ B(a). This can be achieved ifa shares eachb equally with all
otherk-optimal JAs that might excludeb. These additionalk-optimal JAs are contained
within B(b). However, not allb ∈ B(b) can actually bek-optimal as they might exclude
each other. If we construct a graphHk(b) with nodes for allb ∈ B(b) and edges formed
using Ẽk, and we findMb, the size of the MIS, thena can safely claim 1/(1 + Mb)
of b. We again use clique partitioning to safely estimateMb. In Figure 5,B([0 1 0])
leads to a three-node, three-edge exclusivity graph. By adding the values of 1/(1+Mb)
for all b ∈ B(a) (plus one for itself), we obtaina can safely claim a region of size 3,
which impliesβS RP= b23/3c = 2. Algorithm 1’s runtime is polynomial in the number
of possible JAs, which is a comparatively small cost for a bound that applies to every
possible instantiation of rewards to actions.
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7 Experimental results

To investigate the impact of graph-based analysis, we generated interaction graphs of
varying size and density. We started with complete graphs (all pairs of agents are con-
nected) where each node (agent) had a unique ID. Edges were removed one by one
by choosing the lowest-ID node and removing the edge between it and its lowest-ID
neighbor. Figure 6(a) shows theβHS P andβS RPbounds on they-axis fork-optimal JAs
for k ∈ {1,2,3,4} and I ∈ {7,8,9,10}. The x-axis plots the number of links removed,
δ, which identifies the interaction graph, givenI . While βHS P < βS RP for very dense
graphs,βS RPprovides significant gains for the vast majority of cases.

We now provide a concrete demonstration of the gains due to tighter bounds, de-
picted in Figure 1. Each plot in Figure 6(a) is marked with a bar that indicates the
resource savings from improved bounds for four interaction graphs with

(I , δ) = {(7,12), (8,15), (9,20), (10,24)}.

For example, consider a troops/sorties problem similar to that in Figure 2, but where the
interaction structure is defined by (I , δ) = (10,24). For a fixedk = 1, βHS P implies that
we must equip the troops with 512 supplies in order to ensure that all supplies are not
exhausted before all 1-optimal actions are executed. However,βS RP indicates a 15-fold
reduction to 34 supplies will suffice, yielding a savings of 478 supplies due to the use
of graph structure when computing bounds.

For each of the four interaction graphs (I , δ), Figure 6(b) showsβHS P and βS RP

(on a logarithmic scale) as a function ofk. Each plot is marked with a bar displaying
the guaranteed resource waste that is hidden byβHS P, which indicates thatk1 should
be chosen for a fixed resource level ˆr. Here,βS RP shows that choosingk2 will reduce
the number of supplies guaranteed to be wasted when the supply level is fixed at ˆr,
compared tok1, experimentally validating our motivation in Figure 1. For instance,
with interaction structure (I , δ) = (10,24), with supply level fixed at 18,βHS P suggests
that choosingk1 = 4 will avoid a guaranteed waste, because it believes that up to 18
sorties may be executed. However,βS RPstates that no more than 7 sortie plans can exist
for k1 = 4 revealing a guaranteed waste of at least 11 supplies ifk1 is chosen. It also
suggests thatk2 = 2 will reduce this guaranteed waste, while at the same time safely
ensuring that all supplies are not exhausted before all 2-optimal JAs (which include all
4-optimal JAs) are executed.

In Figure 7, we comparedβHS PandβS RPto the bound obtained by applying FCLIQUE,
βFCLIQUE. WhileβFCLIQUE is marginally better fork = 1,βS RPhas clear gains fork = 4.
Identifying the relative effectiveness of various algorithms that exploit our exclusivity
relation sets is clearly an area for future work.

8 Related work and conclusion

Our research on boundingk-optimal joint action sets in multi-agent domains is related
to estimating numbers of local optima in centralized local search and evolutionary com-
puting [5, 11]. The key difference is in the exploitation of constraint graph structure, not
harnessed in previous work, to bound the number of optima.
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Fig. 6.Comparisons ofβS RPvs.βHS P
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Fig. 7.Comparisons ofβS RP, βHS P andβFCLIQUE

Given that counting the number of Nash equilibria in a game with known payoffs
is #P-hard [12], bounds have been investigated for particular types of games [13, 6].
Graph structure is utilized in algorithms to expedite finding Nash equilibria for a given
graphical game with known payoffs [14, 3]. However, finding tight bounds on Nash
equilibria over all possible games on a given graph (i.e., reward-independent bounds)
remained an open problem.

Finally, despite the seeming similarity ofk-optimality tok-consistency [15] in cen-
tralized constraint satisfaction, the two concepts are entirely different, ask-consistency
refers to reducing the domains of subsets of variables to maintain internal consistency
in a satisfaction framework whilek-optimality refers to comparing fixed joint actions
where subsets of agents optimize with respect to an external context.

In this paper, (1) we have introducedk-optimality as a metric that captures the prop-
erties of diversity and relative quality which are desirable for evaluating JA sets. Finding
bounds onk-optimal JA sets is useful for resource allocation problems associated with
executing JA sets in sequence or presenting JA sets as options. (2) We discover a cor-
respondence to coding theory that yields a bound (βHS P) independent of reward and
graph structure. Our main contribution is (3) a method to exploit interaction structure to
obtain graph-based exclusivity relation sets which tighten reward-independent bounds.
(4) We also show that our method extends to noncooperative settings, as exclusivity re-
lation sets for 1-optimal JA sets can be used to find a reward-independent bound on the
number of pure-strategy Nash equilibria in a graphical game. Finally, (5) we develop
techniques for computing bounds (βS RP, βFCLIQUE) using the graph-based exclusivity
relation sets and (6) illustrate their utility on a diverse collection of interaction struc-
tures.
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