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Abstract. In multi-agent systems where sets of joint actions (JAs) are generated,
tools are needed to evaluate these sets #liclemtly allocate resources for the
many JAs. To address evaluation, we introdiemtimality as a metric that cap-
tures desirable properties of diversity and relative quality. Our main contribution
is a method to utilize local interaction structure to obtain bounds on cardinalities
of k-optimal JA sets. Bounds help choose the appropriate ledebptimality for
settings with fixed resources and help determine appropriate resource allocation
for settings where a fixed level &foptimality is desired. In addition, our bounds

for 1-optimal JA sets also apply to the number of pure-strategy Nash equilibria in
a graphical game of noncooperative agents.

1 Introduction

We consider a multi-agent system that generates a set of joint actions (JAs). The out-
come for a single joint action (JA), a combination of individual actions, can be captured
by a DCOP [1] or cost network [2] in cooperative domains and by graphical games [3] in
noncooperative domains. These models decompose the system into a fixed interaction
and reward structure. While we focus on the team setting where each JA in a set con-
sumes resources, we also establish connections to settings with self-interested agents.
Motivating cooperative domains include a team of troops that generate many sorties
which consume supplies, a team of rescue units that generate many potential plans (for
a disaster rescue commander) which consume human decision time, or a team of UAVs
that generate many trajectories (for surveying or imaging) which consume film or fuel.
JA sets can be (i) a sequence of JAs to execute or (ii) a set of choices, but in either case,
they consume resources as a function of set size.

Most work in DCOPs and similar methods generates a single JA with high absolute
reward, but reward alone is a poor metric for domains with JA sets, as it often yields
clustered solutions. Clustering is undesirable, as diversity (tferdihce among JAs) is
a key property for evaluating JA sets [4], e.g., commanders want varied options. How-
ever, diversity alone is undesirable, as we want to ensure a level of relative quality (each
JA is best among a group of similar JAs and cannot be improved by simple changes).
We define a metrid-optimality, that naturally captures diversity and relative quality: a
k-optimal JA has the highest reward within a neighborhood of J&srilig from it by
at mostk individual actionsk-optimality quantifies the neighborhood in which a local
optimum is optimal. Ak-optimal JA set (a collection df-optimal JAs) then guarantees
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Fig. 1. A depiction of the advantages of tighter bounds

a level of relative quality (each JA is better than all JAs in a neighborhood of riggius
and diversity (JAs in the set must be separated by at kaastividual actions).

Because each JA consumes resources, and the number of generated JAs may not
be knowna priori, resource allocation is a critical problem. Unfortunately, we cannot
predict this number because the exact rewards in our domains are not known in advance.
For example, supplies need to be allocated to troops executing multiple sorties before
exact humbers and locations of adversaries are known. However, reward-independent
bounds can be obtained on the siz&afptimal JA sets (i.e. to safely allocate enough
supplies). First, we identify a mapping to coding theory yielding bounds independent of
both reward and team interaction structure. We then provide, as our main contribution,
a method to use the interaction structure (e.g., DCOP graph of arbitrary arity) to obtain
significantly tighter bounds. We establish a connection to noncooperative settings by
proving that our bounds for 1-optimal JAs also apply to the number of pure-strategy
Nash equilibria in a graphical game.

Finding tighter bounds is useful in two ways: (i) If a particular levekafptimality
is desired, bounds indicate the maximum resource requirement fok-aptimal JA
set. Thus, tighter bounds provide savings by allowing fewer resources to be allacated
priori while ensuring enough for attoptimal JAs. Figure 1(a) shows, via a hypothetical
example, how the tighter bourgs indicates that is suficient for all k-optimal JAs,
yielding resource savings of — r, over usingg;. (i) If resource availability is fixed,
tighter bounds help us choose an appropriate lev&tabtimality. If k is too low, we
may exhaust our resources on bad solutions (similar JAs with poor relative quality).
In contrast, (because few&roptimal JAs can exist ak increases), ik is too high,
resources that could be spent on additional JAs are guaranteed to go unused. Tighter
bounds provide a more accurate measure of guaranteed waste and thus, allow a more
appropriaték to be chosen. In Figure 1(b), under hypothetical resource lethed Tooser
boundg; hides the resource waste guaranteed when used. This waste is revealed
by 3, indicating thak, reduces guaranteed resource waste.

2 k-optimality

We introduce the notion ofleoptimal joint actioras a metric that captures both relative
quality and diversity when selecting JA sets. The fithedsoptimality for evaluating
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Fig. 2. Generating JA sets under various metrics

JA sets is illustrated in Figure 2, which shows a deployment of troops where each unit
can advance or hold. Decision-support agents (assigned to each unit) coordinate to gen-
erate multiple sortie plans to be executed. Using reward alone as a metric to generate
a JA set leads to a cluster of near-identical solutions (essentially, all troops hold). Us-
ing diversity alone (ensuring all JAsftér by more than two actions) leads to a JA set
where many JAs can be improved with deviations of only two agents (shown by the
arrows). Withk-optimality (k=2), we generate a set of diverse JAs (all troops hold;
front advances, rear holds; front holds, rear advances; all advance) where no JA can be
improved with a two-agent deviation.

We begin with our model of the multi-agent team problem. For a set of agents
I = {1,...,1}, thei™ agent takes actios, € A;. We denote the joint action of a
subgroup of agentS c 7 by ag := Xjcsa € As whereAs = X5 A and the joint
actions (JAs) of the entire multi-agent teameby [a; - - - a] € AwhereA = X7 A;.
The team reward for taking a particular His an aggregation of the rewards obtained
by subgroups in the team:

R@ = ) Rs(a) = ) Rs(as)

SeS SeS

whereS is a minimal subgroup that generates a reward (or incurs a cost) in an n-ary
DCOP or cost network (i.e. a constraing),is the collection of all such minimal sub-
groups for a given problem ariRk(-) denotes a function that map%s to R. By mini-
mality, we mean that the reward componBgtcannot be decomposed furthés € S,
Rs(as) Ea Rsl(asl) + Rsz(asz) for anyRSl(') : ﬂ31 - R, RSz(') : ﬂSZ - R, 8,81
st.S1US,; =S, S1,S, # 0. Itis important to express the team reward in minimal
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form to accurately represent the dependencies and independencies among agents. Thus,
S ¢ P(7) (whereP(-) denotes the power set) captures these local interactions.

To evaluate JA sets, specifically JAs with respect to each other, we need notions of
neighborhood and distance among JAs. For two 3femda, we define the following
terms. Thedeviating grougs

D(ad):={iel:a+al,
the set of agents whose individual action§eati Thedistances
d(a, &) := |D(a, )|

where| - | denotes the cardinality of the set. Tiedative rewardis

428 =R@-R@= ),  [R@s)-REs).
SeS:SND(a,8)+0

We assume every subgro@has a unique optimal (subgroup) joint actigin for any
contextage (if G ¢ 7 whereG # 0 andG # I, thend ag € Ag s.t. R(ag; age) >

R(ag; age) for all ag # ag; GC denotes the complement of €8}. This assumption is
natural for any domain where rewards come from precise measurements, and is com-
mon in related work on bounds and estimates for numbers of local optima [5] and Nash
equilibria [6, 7]. Given the above, we can now classifgs ak-optimal joint actionif

4A(a,8) >0VvVa s.t d(a d) <k

Every JA can be given l, identifying the size of the neighborhood where it is locally
optimal. A collection ofk-optimal JAs will be mutually separated by a distance greater
thank as they each have the highest reward within a radiuk. dthus, a highek-
optimality of a collection implies a greater level of relative reward and diversity. Let
Ac=f{aeA:4(a8 >0Vv¥a st d(ad) < k} be the set of alk-optimal JAs. It is
straightforward to show,; C Ax.

Example 1.Figure 3 is a binary DCOP in which agents choose actions {fd}, with
rewards shown for the two constraints (minimal subgrodps) {{1, 2}, {2, 3}}. The JA
a=[111]is 1-optimal because any single agent who deviates reduces the team reward.
However, [1 1 1] is not 2-optimal because if the grd@p3} deviated, making the JA

a =[10 0], team reward would increase from 16 to 20. The optimalJAs; [0 0 0] is
k-optimal for allk € {0,1, 2, 3}.00

3 Bounds onk-optimal joint actions

Bounds on|Ay| can yield resource savings in domains where a particular levii of
optimality is desired, and can help determine the appropriate leveloptimality to
prevent guaranteed resource waste in fixed-resource settings. To find upper bounds on
the number ok-optimal JAs, we discovered a correspondence to coding theory [8].
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Fig. 3. DCOP example

Finding the maximum possible numberlebptimal JAs can be mapped to finding the
maximum number of codewords in a spacejbfvords where the minimum distance
between any two codewordsds= k + 1. We can map words to JAs and codewords to
k-optimal JAs as follows: A joint actioataken byl agents each with an action space of
cardinalityq is analogous to a word of lengthfrom an alphabet of cardinality. The
distanced(a, &) can then be interpreted as a Hamming distance between two words.
Then, ifais k-optimal, andd(a, &) < k, thend cannot also b&-optimal because that
implies the subgrou(a, &) has two optimal (subgroup) joint actions to the context
D(a, &)°, violating our assumption. Thus, any twepptimal JAs must be separated by
distance greater thdn

Three well-known bounds on codewords are Hamrhing

n=0

W2l
Ph = q'/(z (n)(q— 1)”],
Singleton:

Bs=d7%
and Plotkin:

k+1 J

fo=licizamam

[8]. Thus, |A«l, the number ok-optimal JAs for a giverl andq, can be bounded by
Busp = Min{By, Bs, Bp}. For example, to find a reward-independent bound on the num-
ber of 1-optimal JAs for three agents with= 2, (e.g., the system in Figure 3), we
obtainBysp = 4, without knowingR;, andRy3 explicitly.

4 Graph-based exclusivity for multi-agent teams

The Bysp bound is the same for a giveih, k, g), regardless of how the team reward
is decomposed among subgroups of agents (i.e., the bound is the sameSjorFalt

1 For everk. For oddk, with g = 2, 84(l, k, g) = Bu(I — 1, g, k— 1) can be used to obtain a tighter
bound. [8]
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instance, the bound on 1-optimal JAs for ExampleBise = 4 from the previous
section) ignored that agent 1 does not interact directly with agent 3 and yields the same
result independent of graph structure. However, taking local interactions (as captured
by 8S) into account can significantly tighten the bounds{ml},'(zl. In the previous
analysis, pairs of JAs were mutually exclusivekasptimal (only one of two could be
k-optimal) if they were separated by a distancekafr less. We now show how some
JAs separated by a distance of greater tharust be mutually exclusive &soptimal.

We defineDg(a,8) = {i € G : & # &} andV(G) := Uscs.ens-0S- Intuitively,
Dg(a, @) is the set of agents within the subgroBpyho have chosen fierent actions
betweera andd, andV(G) is the set of agents (including thoseG)who are a member
of some minimal subgrou$ € S that contains a member & (e.g.,G and the agents
who share a constraint with some membeG)f Then,V(G)® is the set of all agents
whose contribution to the team reward is independent of the actio@s of

Proposition 1. Let & € A and& € A be an assignment for whichai,d) > k. If
3G c 1, G # 0 for which|G| < k and By(g)(a*, &) = G, thena ¢ Ax.

Proof. Givena*, & andG with the properties stated above, we have ¥t d(a*, @) <
k, 4(a",a) > 0. If ais defined such tha; = & fori € V(G) anda, = a’ fori ¢ V(G),
thenD(a*, a) = G andd(a*, a) < k which implies4(a*, a) =

Rs(as) - Rs(as) = > Rs(as) - Rs(as) =

SeS:SnD(a*,a)#0 SeS:SNG#0

D, Rs(as)-Rs(Es)>0.

SeS:SNG#0

If ais defined such tha; = a7 fori € V(G) anda; = & fori ¢ V(G), thenD(&,8) = G
andd(& &) < k, and4(&, &) =

Rs(8s) - Rs(8s) = ) Rs(ds) - Rs(as) =
SeS:SND(a,8)#0 SeS:SNG

D Rs(&s) - Rs(as) <0,

SeS:SNG

thus,d¢ A.. m

Intuitively, if a JAa* is k-optimal, then every subgroup of agents of dize less has
picked the best subgroup joint action for their context, so any other JA within a distance
k of a* contains a suboptimal subgroup joint action for their context. Since agents are
typically not fully connected to all other agents, tledevant context subgroup faces
is not the entire set of other agents. Thus, the subgroup and its relevant context form
a view (captured by/(G)) that is not the entire team. We consider the case where a
JA & hasd(a*, &) > k. We also have grou@ of sizek within whose viewV(G), G are
the only deviators betweeat andd (although agents outside the view must also have
deviated). We then show thatcdntains a suboptimal subgroup joint action for a group
G of sizek or less and thus, cannot keoptimal, i.e. if the group chosa; instead of
3c under its relevant context(G) \ G for &, then team reward would increase.
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(a)

Fig. 4. Exclusivity graphs for 1-optimal JAs for Example 1, with sample maximum independent
sets shaded.

To explain the significance of Proposition 1 to bounds, we introduce the notion of
an exclusivity relation Ec 7 which captures the restriction that if deviating group
D(a, &) = E, then at most one ad and & can bek-optimal. An exclusivity relation
setfor k-optimality, &« c P(1), is a collection of such relations that limitay|, the
number of JAs that can Heoptimal in a reward-independent setting (otherwise every
JA could bek-optimal). The se€y defines arexclusivity graph | where each node
corresponds uniquely to one of afl JAs. Edges are defined between pairs of 3As,
and g, if D(a,@) € &. The size of the maximum independent set (MIS)Hyf the
largest subset of nodes such that no pair defines an edge, gives an upper bfAghd on
Naturally, an expandeflx would imply a more connected exclusivity graph and thus a
tighter bound onAy|.

Without introducing graph-based analysigs p for eachk provides a bound on the
MIS of Hy when&y = Uecr1<g<k E- This set& captures only the restriction that
no two JAs within a distance & can both bek-optimal. The significance of Propo-
sition 1 is that it provides additional exclusivity relations for JAs separated by dis-
tance greater thak which arise only because we considered interaction structure (e.qg.,
DCOP graph). This graph-based exclusivity relation set is

E = U U [EVUF]
EcI:1<|E|<k FeP(V(E)C)

which is a superset dfy. Additional relations exist because multiple exclusivity rela-
tions (Urepv(gc)[E U F]) appear the same to the subgrdipecause of its reduced
view V(E).

Consider Example 1, but with unknown rewards on the links. Here, the exclusiv-
ity relation set for 1-optimal JAs without considering interaction structur&;is=
{{1},12}, {3}} which leads to the exclusivity graph in Figure 4(a) whose MIS implies a
bound of 4. The exclusivity relation set for 1-optimal JAs when considering interaction
structure isS; = {{1}42}, {3}, {1, 3}} which leads to the exclusivity graph in Figure 4(b)
whose MIS implies a bound of 2. The s&t includes{l, 3} due to the realization that
agents 1 and 3 are not connected.
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5 Graph-based exclusivity for Nash equilibria

Our graph-based bounds can be extended beyond agent teams to noncooperative set-
tings. It is possible to employ the same exclusivity relations for 1-optimal JAs to bound
the number of pure-strategy Nash equilibria in a graphical game using any of our bounds
for |Ay|. Bounds on Nash equilibria [6] are useful both for design and analysis of mech-
anisms as they predict the maximum number of outcomes of a game.

We begin with a set of noncooperative agefits: {1,...1}, where thaé™ agent’s
utility is

U'(aisani) = Z Us, (& asi)
SieS;

which is a decomposition into an aggregation of component utilities generated from
minimal subgroups (only those agent$eating a particular component utility are in
the respective s&f;). The notatiors; andag,j; refers to tha™ agent’s action and the
actions of the grouf® with i removed, respectively. We referaas a joint action (JA),
with the understanding that it is composed of actions motivated by individual utilities.
Let the view of the i'!" agent in a noncooperative setting to ¥6) = Uscs Si. The
deviating group with respect 8 is: Dg(a,8) = {i € G : & # &}. Assuming every
player has a unique optimal response to its context, thahig a pure-strategy Nash
equilibrium, andd(a*,a) = 1, i = D(a*, a), we know that

U'a; ) > U'ai ar)

anda is not a pure-strategy Nash equilibrium. However, applying the local interaction
of the game, captured by the s¢f}, we get exclusivity relations between JAs with
distance greater than 1 as follows.

Proposition 2. If a* is a pure-strategy Nash equilibriurg,e A such that ¢a*, a) > 1,
anddi € 7 such that Qg (a*, &) =i, thena is not a pure-strategy Nash equilibrium.

Proof. We have

'8 = ), Us(@Eiasa) = ) Us Gias,)
SiGSi SiESi
< DU @A) = ) Us @ As) = U@ &n)-

Si ESi Si ES‘

The first and last equalities are by definition. The second and third equalities are because
Dy(a*, &) = i. The inequality is becaus® is a pure-strategy Nash equilibrium. The
result is thata]” is not an optimal response #p1;; and thus cannot be a pure-strategy
Nash equilibriumm

Proposition 2 states that anda cannot both be Nash equilibriadf, Dyg(a’, &) =
i, which is identical to the condition that prevents two JAs (in a team setting) from being
1-optimal. The commonality is that in both the cooperative and noncooperative settings,
agents have optimal actions for any given context, and in both settings there is a notion
of relevant contexty (i) \ i, which can be a subset of other ageldts i}. The diference
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Algorithm 1 for Symmetric Region Packing (SRP) bound

11 & = Uecra<gisk Urepvec)[E U Fl
2:a=[000]

3 Al=1

4: B(@) = Ug.g, f(a E)
5: for all be B(a) do
6
7
8
9

B(b) = (Veeg, f(b, E)) \ (@U B(a))
Hy(b).addNodes8(b))
for all by, b, € B(b) do

if D(by,by) € & then

10: H_k(b).addEdgdﬂ, b_z)
11: end if
12: endfor

13: My = [cliquePartitionHy(b))|
14: (Al = 1Al +1/(1+ M)

15: end for

16: Bsre= (d')/IAl

is that the views are generated ifftdrent mannerd/(i) = Uscs:insz0S in a cooperative
setting, whileV(i) = Uses, Si in a noncooperative setting. Given the views, we can
generate the exclusivity relation set in the same ma@ies, Uic; Urepv(yc)[IVUF]- If a
noncooperative graphical game yields a particular exclusivity relation set, it defines the
same exclusivity graph as a cooperative multi-agent domain with the same exclusivity
relation set. Thus, the bound for the number of Nash equilibria for a noncooperative
graphical game is identical to the bound for 1-optimal JAs for a cooperative multi-agent
domain, if both share the same exclusivity relation&et

6 Algorithms for graph-based bounds

As seen earlier, the local interaction structure in both cooperative and noncooperative
settings expands the exclusivity relation set keoptimality. This set defines an ex-
clusivity graphHy, whose maximum independent set (MIS) provides a bound for the
number of JAs which ark-optimal (or alternatively, Nash equilibria). Finding the size

of the MIS is NP-complete in the general case [9], so we investigated other techniques
to obtain an upper bound &A|. We observe that any fully-connected subset (clique) of
Hy can contain at most orleoptimal JA. Therefore, the number of cliques in any clique
partitioning of Hk also provides an upper bound {#|. We used the polynomial-time
Fcrioue algorithm, shown [10] to outperform several other clique-partitioning algo-
rithms, to find clique partitionings with fewest cliques.

Another method that we developed (Algorithm 1) was the symmetric region packing
bound,Bsrp Using a method analogous to sphere packing (the idea used to compute
the Hamming bound [8]), where eakkoptimal JA claims a region of the space of all
JAs (the nodes oHy). Because these regions are constructed to be disjoint and have
identical volumes, dividing the space of all JAs by this volume yields a bound. Figure 5
showspBsrp computed for 1-optimal JAs for Example 1. We choose an arbitrary JA
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51:{ {1}7 {2}7 {3}, {173} }
B([000))={ [100], [010], [001], [101] }
& =1 B(100) [B(010) [B(001]) [B(101]

{1}, [101] 00 1]
{2}, [011] [111]
{3}, [00 0] [100]
{1,3}} [100] [111]
Hi(b)
(exclusivity @
subgraph)
My = 1 1 1 1
1/(1+Mp)=| 1/2 1/2 1/2 1/2

Fig. 5. Computation ofssgpfor Example 1

a € A which we assume to beoptimal @ = [0 0 Q] in Figure 5), around which we
will construct a region claimed bg. Applying the exclusivity relations frongy, we
can generate a s@&(a) = Ugg f(a E) where f(a, E) yields the JA that is excluded

from beingk-optimal bya andE. The first two rows of Figure 5 sho@, and the set
B([0 0 0]). Applying the exclusivity relations again for eablke B(a), and discarding
JAs already included im or B(a), we can generate a sBfb) = Ueeg, f (b, E) which
contains all JAs that may also excluddrom beingk-optimal. In Figure 5, we apply
&1 to obtainB(b) for all b € B(a) = {[1 0 0],[0 1 0],[0 0 1],[1 O 1]} where the grayed
out JAs are those discarded for being{& U B(a). To ensure that the region that
claims is disjoint from the regions claimed by ottkeoptimal JAs,a should only claim
a fraction of eactb € B(a). This can be achieved & shares eacbh equally with all
otherk-optimal JAs that might exclude These additionaf-optimal JAs are contained
within B(b). However, not alb € B(b) can actually bé-optimal as they might exclude
each other. If we construct a graph(b) with nodes for alb € B(b) and edges formed
using &, and we findMy, the size of the MIS, thea can safely claim A1 + My)
of b. We again use clique partitioning to safely estimitg In Figure 5,B([0 1 0])
leads to a three-node, three-edge exclusivity graph. By adding the valug4 ef W)
for all b € B(a) (plus one for itself), we obtaia can safely claim a region of size 3,
which impliesBsrp = [2°/3] = 2. Algorithm 1’s runtime is polynomial in the number

of possible JAs, which is a comparatively small cost for a bound that applies to every

possible instantiation of rewards to actions.
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7 Experimental results

To investigate the impact of graph-based analysis, we generated interaction graphs of
varying size and density. We started with complete graphs (all pairs of agents are con-
nected) where each node (agent) had a unique ID. Edges were removed one by one
by choosing the lowest-ID node and removing the edge between it and its lowest-1D
neighbor. Figure 6(a) shows tjsgsp andBsrpbounds on thg-axis fork-optimal JAs
fork € {1,2,3,4} andl € {7,8,9, 10}. The x-axis plots the number of links removed,
&, which identifies the interaction graph, givenWhile Bysp < Bsrpfor very dense
graphsBsrpprovides significant gains for the vast majority of cases.

We now provide a concrete demonstration of the gains due to tighter bounds, de-
picted in Figure 1. Each plot in Figure 6(a) is marked with a bar that indicates the
resource savings from improved bounds for four interaction graphs with

(1,6) = {(7,12),(8,15), (9, 20), (10, 24)}.

For example, consider a trogpsrties problem similar to that in Figure 2, but where the
interaction structure is defined bl §) = (10, 24). For a fixeck = 1, Byspimplies that

we must equip the troops with 512 supplies in order to ensure that all supplies are not
exhausted before all 1-optimal actions are executed. Howeyggindicates a 15-fold
reduction to 34 supplies will stice, yielding a savings of 478 supplies due to the use
of graph structure when computing bounds.

For each of the four interaction graphls ), Figure 6(b) showgnsp and Bsrp
(on a logarithmic scale) as a function kfEach plot is marked with a bar displaying
the guaranteed resource waste that is hiddefgyp, which indicates thak; should
be chosen for a fixed resource leveHere,srp shows that choosink, will reduce
the number of supplies guaranteed to be wasted when the supply level is fixed at ~
compared td, experimentally validating our motivation in Figure 1. For instance,
with interaction structurel (6) = (10, 24), with supply level fixed at 1&sp suggests
that choosingg = 4 will avoid a guaranteed waste, because it believes that up to 18
sorties may be executed. Howeygtrpstates that no more than 7 sortie plans can exist
for ky = 4 revealing a guaranteed waste of at least 11 suppliesi# chosen. It also
suggests that, = 2 will reduce this guaranteed waste, while at the same time safely
ensuring that all supplies are not exhausted before all 2-optimal JAs (which include all
4-optimal JAs) are executed.

In Figure 7, we comparggls pandBs rpto the bound obtained by applying foue,
BecLioue- While BecLigue is marginally better fok = 1, Bsrphas clear gains fd¢ = 4.
Identifying the relative fectiveness of various algorithms that exploit our exclusivity
relation sets is clearly an area for future work.

8 Related work and conclusion

Our research on boundidgoptimal joint action sets in multi-agent domains is related
to estimating numbers of local optima in centralized local search and evolutionary com-
puting [5, 11]. The key dference is in the exploitation of constraint graph structure, not
harnessed in previous work, to bound the number of optima.
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Given that counting the number of Nash equilibria in a game with knownffsayo
is #P-hard [12], bounds have been investigated for particular types of games [13, 6].
Graph structure is utilized in algorithms to expedite finding Nash equilibria for a given
graphical game with known paiis [14, 3]. However, finding tight bounds on Nash
equilibria over all possible games on a given graph (i.e., reward-independent bounds)
remained an open problem.

Finally, despite the seeming similarity kfoptimality tok-consistency [15] in cen-
tralized constraint satisfaction, the two concepts are entiréligrdnt, ak-consistency
refers to reducing the domains of subsets of variables to maintain internal consistency
in a satisfaction framework whilk-optimality refers to comparing fixed joint actions
where subsets of agents optimize with respect to an external context.

In this paper, (1) we have introduckeptimality as a metric that captures the prop-
erties of diversity and relative quality which are desirable for evaluating JA sets. Finding
bounds ork-optimal JA sets is useful for resource allocation problems associated with
executing JA sets in sequence or presenting JA sets as options. (2) We discover a cor-
respondence to coding theory that yields a boyigs ) independent of reward and
graph structure. Our main contribution is (3) a method to exploit interaction structure to
obtain graph-based exclusivity relation sets which tighten reward-independent bounds.
(4) We also show that our method extends to noncooperative settings, as exclusivity re-
lation sets for 1-optimal JA sets can be used to find a reward-independent bound on the
number of pure-strategy Nash equilibria in a graphical game. Finally, (5) we develop
techniques for computing bound8skr BrcLioue) using the graph-based exclusivity
relation sets and (6) illustrate their utility on a diverse collection of interaction struc-
tures.
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