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Abstract. This paper is concerned with designing architectures for ra-
tional agents. In the proposed architecture, agents have belief bases that
are theories in a multi-modal, higher-order logic. Belief bases can be
modified by a belief acquisition algorithm that includes both symbolic,
on-line learning and conventional knowledge base update as special cases.
A method of partitioning the state space of the agent in two different
ways leads to a Bayesian network and associated influence diagram for
selecting actions. The resulting agent architecture exhibits a tight inte-
gration between logic, probability, and learning. This approach to agent
architecture is illustrated by a user agent that is able to personalise its
behaviour according to the user’s interests and preferences.

1 Introduction

Our starting point is the conventional view that an agent is a system that takes
percept sequences as input and outputs actions [9, p.33]. Naturally enough, on its
own, this barely constrains the agent architectures that would be feasible. Thus
we add a further constraint that agents should act rationally, where a rational
agent is defined as follows [9, p.36]:

“For each possible percept sequence, a rational agent should select an
action that is expected to maximise its performance measure, given the
evidence provided by the percept sequence and whatever built-in knowl-
edge the agent has”.

Various specific rationality principles could be used; we adopt the well-known
principle of maximum expected utility [9, p.585] (namely, a rational agent should
choose an action that maximises the agent’s expected utility). This implies that,
for the intended applications, it is possible for the agent designer to specify util-
ities for all states (or, at least, the agent has some means of acquiring these
utilities). The proposed architecture includes a decision-theoretic component in-
volving utilities and Bayesian networks that implements the principle of maxi-
mum expected utility.

Another major component of the architecture is a model of the environment
(or, at least, a model of enough of the environment in order to be able to ef-
fectively select actions). This model has two parts: state and beliefs. The state
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records some information that helps the agent mitigate the well-known problems
that arise from partial observability. The beliefs are random variables defined on
the state; evidence variables assist in the selection of actions and result vari-
ables assist in the evaluation of the utility of states. Beliefs are expressed in a
multi-modal, higher-order logic.

Implicit in the concept of rationality is the notion that agents should make
every effort to acquire whatever information is needed for action selection. This
implies that agents should have a learning component that allows them to im-
prove their performance (which includes adapting to changing environments).
The proposed architecture incorporates a learning component for exactly this
purpose.

The resulting agent architecture exhibits a tight integration between logic,
probability, and learning. In the terminology of [9, p.51], agents employing this
architecture are model-based, utility-based, learning agents.

An outline of this paper is as follows. The next section provides a brief
introduction to beliefs and their acquisition. Section 3 describes the approach to
agent architecture. Section 4 describes an application of the agent architecture
to a user agent that is able to personalise its behaviour according to the user’s
interests and preferences.

2 Beliefs

This section contains a brief introduction to belief bases and the logic in which
these are expressed. We employ the logic from [5] which is a multi-modal version
of the higher-order logic in [4] (but leaving out polymorphism); much more detail
about the logic is contained in these two works.

Definition 1. An alphabet consists of three sets:

1. A set T of type constructors.
2. A set C of constants.
3. A set V of variables.

Each type constructor in T has an arity. The set T always includes the type
constructors 1 andΩ both of arity 0. 1 is the type of some distinguished singleton
set and Ω is the type of the booleans. Each constant in C has a signature.
The set V is denumerable. Variables are typically denoted by x, y, z, . . . . For
any particular application, the alphabet is assumed fixed and all definitions are
relative to the alphabet.

Types are built up from the set of type constructors, using the symbols →
and ×.

Definition 2. A type is defined inductively as follows.

1. If T is a type constructor of arity k and α1, . . . , αk are types, then T α1 . . . αk
is a type. (For k = 0, this reduces to a type constructor of arity 0 being a
type.)
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2. If α and β are types, then α→ β is a type.
3. If α1, . . . , αn are types, then α1×· · ·×αn is a type. (For n = 0, this reduces

to 1 being a type.)

The set C always includes the following constants.

1. (), having signature 1 .
2. =α, having signature α→ α→ Ω, for each type α.
3. > and ⊥, having signature Ω.
4. ¬, having signature Ω → Ω.
5. ∧, ∨, −→, ←−, and ←→, having signature Ω → Ω → Ω.
6. Σα and Πα, having signature (α→ Ω)→ Ω, for each type α.

The intended meaning of =α is identity (that is, =α x y is > iff x and y are
identical), the intended meaning of > is true, the intended meaning of ⊥ is false,
and the intended meanings of the connectives ¬, ∧, ∨, −→,←−, and←→ are as
usual. The intended meanings of Σα and Πα are that Σα maps a predicate to
> iff the predicate maps at least one element to > and Πα maps a predicate to
> iff the predicate maps all elements to >.

Definition 3. A term, together with its type, is defined inductively as follows.

1. A variable in V of type α is a term of type α.
2. A constant in C having signature α is a term of type α.
3. If t is a term of type β and x a variable of type α, then λx.t is a term of

type α→ β.
4. If s is a term of type α→ β and t a term of type α, then (s t) is a term of

type β.
5. If t1, . . . , tn are terms of type α1, . . . , αn, respectively, then (t1, . . . , tn) is a

term of type α1 × · · · × αn (for n ≥ 0).
6. If t is a term of type Ω and i ∈ {1, . . . ,m}, then �i t is a term of type Ω.

Terms of the form (Σα λx.t) are written as ∃αx.t and terms of the form
(Πα λx.t) are written as ∀αx.t (in accord with the intended meaning of Σα and
Πα). A formula of the form �iϕ is interpreted as ‘agent i believes ϕ’.

An important feature of higher-order logic is that it admits functions that
can take other functions as arguments and thus has greater expressive power for
knowledge representation than first-order logic. This fact is exploited throughout
the architecture, in the use of predicates to represent sets and in the predicate
rewrite systems used for learning, for example.

In applications there are typically many individuals that need to be repre-
sented. For example, with agent applications, the state is one such individual.
With logic as the representation language, (closed) terms represent individuals.
In [4], a class of terms, called basic terms, is identified for this purpose. The
inductive definition of basic terms comes in three parts. The first part uses data
constructors to represent numbers, lists, and so on. The second part uses ab-
stractions to represent sets, multisets, and so on. The third part uses tuples
to represent vectors. The class of basic terms provides a rich class of terms for
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representing a variety of structured individuals. We use basic terms to represent
individuals in the following.

As shown in [4], and also [5], a functional logic programming computational
model can be used to evaluate functions that have equational definitions in the
logic. Furthermore, [5] provides a tableau theorem-proving system for the multi-
modal, higher-order logic.

In [6], a method of belief acquisition is introduced for belief bases that are
theories in the logic. The belief acquisition algorithm includes both symbolic,
on-line learning and conventional knowledge base update as special cases. The
key idea of the algorithm is to introduce two languages, the training language
and the hypothesis language. By carefully controlling these lanaguges it is pos-
sible to have belief acquisition that at one extreme directly incorporates new
beliefs into the belief bases (as for a conventional knowledge base update algo-
rithm) and at the other extreme is a conventional learning algorithm that learns
definitions of functions that generalise to new individuals. The algorithm itself
is a (somewhat generalised) decision-list learning algorithm, as introduced in [8].
Thus definitions of functions in belief bases are (logical forms of) decision lists.

The basic idea for the use of the logic is that each agent in a multi-agent
system has its own belief base that consists of formulas of the form �iϕ (for agent
i). Also agents can have access to the belief bases of other agents by means of
interaction axioms which are schemas of the form

�iϕ −→ �jϕ,

whose intuitive meaning is that ‘if agent i believes ϕ, then agent j believes ϕ’.
In addition, while not illustrated in this paper, standard modal axioms such as
T , D, B, 4, and 5 can be used for any modality �i , depending on the precise
nature of the beliefs in the belief base of agent i. The tableau theorem-proving
system in [5] can prove theorems that involve these standard modal axioms and
interaction axioms.

Finally, note that while one could use the logic for specification of agents (as in
[10], for example), this is not what is proposed here. Instead, we use the logic for
expressing actual belief bases of agents, and theorem proving and computation
involving these belief bases is an essential component of the implementation of
agents.

3 Agent Architecture

In this section, we describe the agent architecture.
We consider an agent situated in some environment that can receive percepts

from the environment and can apply actions to the environment. Thus the agent
can be considered to be a function from percepts to actions; an agent architecture
provides the definition of this function.

Let S denote the set of states of the agent. Included in a state may be
information about the environment or something that is internal to the agent.
It is also likely to include the agent’s current intention or goal, that is, what it
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is currently trying to achieve. The state may be updated as a result of receiving
a percept. For example, a user agent may change its intention due to a request
from the user.

As well as some state, the agent’s model includes its belief base, which can
also be updated. In the proposed architecture, belief bases have a particular
form that we introduce below motivated by the desire to make action selection
as effective as possible.

Let A denote the set of actions of the agent. Each action changes the current
state to a new state (possibly non-deterministically). The agent selects an action
that maximises the expected utility. Executing the action involves applying the
action to the environment and/or moving to a new state.

Summarising the description so far, here is a high-level view of the main loop
of the agent algorithm.

loop forever

get percept
update model
select action
put action.

We now concentrate on the action selection part of this loop. In practical ap-
plications, the set of states may be very large; in this case, it may be impractical
to try to select the action by explicitly dealing with all these states. An obvious
idea is to partition the state space so that the behaviour of an action is somehow
consistent over all the states in an equivalence class [1]. We exploit this idea in
what follows.

For that we will need some random variables. It will be helpful to be quite
precise about their definition. Random variables are functions; this fact and the
probability space that they are defined on will be important in the description of
the agent architecture. For simplicity and because it is the case of most interest
in applications, we confine the discussion to random variables that are discrete.

Definition 4. A random variable is a measurable function X : Ω → Ξ, where
(Ω,A, p) is a probability space and (Ξ,B) is a measurable space. The probability
measure X−1 ◦ p on B is called the distribution (or law) of X.

The probability space of interest here is the product space S×A×S which is
assumed to have some suitable σ-algebra and probability measure p(·, ·, ·) defined
on it. Intuitively, p(s, a, s′) is the probability that applying action a will result in
a transition from state s to state s′. By conditioning on states and actions, for
each state s ∈ S and action a ∈ A, a transition probability distribution p(· | s, a)
is obtained.

There are three projections defined on S×A×S. The first projection initial :
S ×A× S → S is defined by

initial(s, a, s′) = s,
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the second projection action : S ×A× S → A is defined by

action(s, a, s′) = a,

and the third projection final : S ×A× S → S is defined by

final(s, a, s′) = s′,

for each (s, a, s′) ∈ S×A×S. Each projection induces a probability measure on
their respective codomains that makes the codomains into probability spaces.

We will be interested in two different sets of random variables on S. These
are the evidence variables Ei : S → Vi (i = 1, . . . , n) and the result variables
Rj : S → Wj (j = 1, . . . ,m). Two sets of random variables can now be defined
on the probability space S × A × S, as follows. For each evidence variable Ei,
consider the random variable initial ◦Ei : S × A × S → Vi. Similarly, for each
result variable Rj , consider the random variable final ◦Rj : S × A × S → Wj .
Let X denote (initial ◦E1, . . . , initial ◦En, action,final ◦R1, . . . ,final ◦Rm). All
this can now be put together to obtain the random variable

X : S ×A× S → V1 × · · · × Vn ×A×W1 × · · · ×Wm,

which is illustrated in Figure 1. The distribution of X is given by X−1 ◦ p, where
p is the probability measure on S ×A× S.

S ×A× S

initial

����
��

��
��

��
��

�

action

��

final

��:
::

::
::

::
::

::

S

E1

����
��
��
��
��

En

��(
((

((
((

((
( S

R1



��
��
��
��
��

Rn

��)
))

))
))

))
)

V1 · · · Vn A W1 · · · Wm

Fig. 1. Evidence and result variables

In the following, we will refer to an element of V1 × · · · × Vn as an evidence
tuple and an element of W1 × · · · ×Wm as a result tuple.

The distribution of X is illustrated in the influence diagram in Figure 2. Here
the Bayesian network given by the evidence and result variables is extended into
an influence diagram by adding the random variable action for the action selected
and a utility node to indicate that it is the result variables that contribute to
the utility. Each node in the Bayesian network has an associated (conditional)
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probability table (that is not shown in Figure 2). Note that, in general, it is
possible for there to be dependencies amongst the initial ◦Ei and amongst the
final ◦Rj .
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Fig. 2. Influence diagram

The evidence and result variables play an important role in action selection.
One can think of these as features of the states. However, each class of features
serves a different purpose. The evidence variables are chosen so as to assist
the selection of a good action, whereas the result variables are chosen so as to
provide a good evaluation of the resulting state. It will be convenient to insist
that included amongst the evidence variables are boolean random variables that
describe the pre-condition (if any) of each action.

These random variables will be functions with definitions in the belief base.
We can now be more precise about the definition of belief bases.

Definition 5. A belief base is a theory consisting of the definitions of the evi-
dence variables and (some of) the result variables.

The implication of this definition is that the belief base should contain the
definitions of the evidence variables, (some of) the result variables, and any
subsidiary functions used to define these, and that is all it need contain – there
is no other use for functions in the belief base. This fact provides strong guidance
during the design of the agent. Observations of the result variables will be needed
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but it will not be essential for the agent to know their (full) definitions. An
application for which the definition of a result variable is not known but for
which the variable can be adequately observed is given below.

At this point in the development we have entered the realm of graphical
probabilistic models. Over the last 20 years or so there has been a huge effort
to find efficient algorithms for doing all kinds of tasks such as marginalising,
conditioning, and learning in graphical probabilistic models with large numbers
of random variables. (See, for example, [3] and [7].) All of this work is directly
relevant to the agent context and we hope to exploit it in future. For the moment,
we are primarily interested in decision making which does not require the full
graphical model and the applications of current interest have small graphical
models anyway, so we simply make a few remarks below about this context. On
the other hand, a new problem is raised by the agent applications in that the
definitions of the random variables are generally changing and this leads to some
complications, as noted below, that deserve a deeper investigation.

By conditioning on the evidence variables and action variable in Figure 2, the
table in Figure 3 is obtained. There is a row in this table for every combination
of an evidence tuple together with an action, except that rows for which the
precondition (if any) of the action has value ⊥ are deleted. There is a column
under final ◦ (R1, . . . , Rm) for every result tuple. For each combination of evi-
dence tuple and action, there is an associated transition probability distribution
that gives, for each possible result tuple, the probability of reaching that result
tuple. The last row records the utilities for each result tuple. To compute the
expected utility EU(e, a) of action a applied to evidence tuple e, we proceed as
follows. Suppose that e and a appear together in the ith row of the table. Then
the expected utility is

EU(e, a) =
l1···lm∑
j=1

pi,j × uj .

final ◦ (R1, . . . , Rm)

initial ◦ (E1, . . . , En) action (w1,1, . . . , wm,1) (w1,2, . . . , wm,1) . . . (w1,l1 , . . . , wm,lm)

(v1,1, . . . v1,n) a1 p1,1 p1,2 . . . p1,l1···lm
(v2,1, . . . v2,n) a2 p2,1 p2,2 . . . p2,l1···lm

. . . . . . . . . . . . . . . . . .

(vk,1, . . . vk,n) ak pk,1 pk,2 . . . pk,l1···lm

u1 u2 . . . ul1···lm

Fig. 3. Influence diagram conditioned on the evidence and action variables

A policy for an agent is a mapping policy : S → A. The policy is extracted
from the conditioned influence diagram in the usual way. Given a state s, the
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action a selected by policy is the one for which EU((E1(s), . . . , En(s)), a) is a
maximum. The case when the state s is not known exactly but is given by a
distribution (the ‘belief state’ case [9]) is handled by the obvious generalisation
of this. This policy thus implements the principle of maximum expected utility.

The agent architecture exhibits a tight integration between logic and prob-
ability, since the random variables in the network have definitions given by the
logic. Furthermore, for agents in dynamic situations, the definitions of evidence
variables will need to be modified from time to time. In the first illustration of
the next section, we discuss a personalisation application for which there are
three evidence variables, one of which is learned and the other two are subject
to updating. In effect, the evidence variables are tailored to the interests and
preferences of the user and this will be seen to be essential for selecting good
actions.

The approach taken here to agent architecture assumes that it is possible to
specify the utilities. Generally, assigning utilities to a very large number of states
in advance is a difficult task. However, with the right choice of result variables,
the task can become much easier; this is illustrated with the application in the
next section. The modelling challenge for the agent designer is to find result
variables so that all states that map to the same result tuple really do have the
same (or very similar) utility. Thus, in essence, the task is to find a good piecewise
constant approximation of the utility function. While not every application will
succumb to this approach, it seems that there is a sufficiently large subset of
agent applications which does and therefore the approach is useful.

Having settled on the actions, and evidence and result variables, and having
specified the utilities, the only other information needed to obtain a policy is
the collection of transition probability distributions p(. | e, a) in Figure 3. How
are these obtained? Essentially all that needs to be done is to observe triples
of the form (e, a, r), where e is an evidence tuple, a is an action, and r is the
corresponding result tuple. The observation of each such triple increments a
count kept at the corresponding entry in the table of transition probabilities.
More generally, r is not uniquely determined by e and a but is given by a
probability distribution. In this case, the increment is proportioned over the
result tuples according to this distribution. These counts can then be normalised
over each row to obtain a probability distribution.

Typically, the evidence values in an observation (e, a, r) are obtained from
some state using the definitions of the evidence variables Ei and the result values
are obtained either from some state using the definitions of result variables Rj
or from an oracle (the user, for example). Provided these definitions and/or the
oracle remain unchanged, the approach to obtaining the transition probability
distributions when the observations start from states or involves an oracle works
fine. However, in the general case, this assumption does not hold and it will be
necessary to do some recalculation of earlier observations. Later we give an appli-
cation where all the evidence variables change from time to time. Furthermore,
one of the result variables represents the user who may very well give different
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values for the result variable (simply because their interests and preferences have
changed). We consider each of these cases in turn.

Consider first the case that the definition of an evidence variable Ei changes.
This is handled by the belief acquisition algorithm. The aspect of this algo-
rithm that is relevant to the discussion here is that the definitions of acquired
functions are decision lists. When the function definition changes, there is some
distinguished decision node in the decision list above which the definition is
unchanged and below which it is changed. Each decision node of the decision
list contains the states that satisfy all the conditions down to that point in the
decision list. Thus when the definition of Ei changes, this distinguished node is
identified and all states that occur there have their Ei value recomputed. If the
new value is the same as the old, nothing needs to be done. If the new value
is different to the old, then the effect is to move (proportions of) an increment
from one or more positions in one row of the table of transition probabilities to
the corresponding positions in another row. Clearly it is easy to do the same for
several Ei’s that are changing at the same time.

Consider next the case when the definition of a result variable Rj changes. If
the definition of Rj is known to the agent then we can proceed similarly to the
preceding paragraph except that (proportions of) an increment are now moved
in the same row from some positions to others. The other case is when the value
of Rj is obtained from an oracle but its definition is unknown to the agent.
In this case, the agent must at least know the relevant state. Then it is only
necessary to check whether this state had been considered previously and, if so,
whether its Rj value is the same. If it is the same, nothing need be done. If it
is different, then an increment has to be moved appropriately along a row from
one position to another. It is easy enough to handle the case of several evidence
and result variables all changing at the same time.

4 Illustration

We now consider an illustration of the agent architecture. This is concerned
with applying machine learning techniques to building user agents that facili-
tate interaction between a user and the Internet. It concentrates on the topic
of personalisation in which the agent adapts its behaviour according to the in-
terests and preferences of the user. There are many practical applications of
personalisation that could exploit this technology.

This illustration is set in the context of an infotainment agent, which is a
multi-agent system that contains a number of agents with functionalities for
recommending movies, TV programs, music and the like, as well as information
agents with functionalities for searching for information on the Internet. Here we
concentrate on the TV recommender as a typical such agent. More detail (but
not the decision-theoretic discussion that follows) is given in [2].

A detailed description of the most pertinent aspects of the design of the
TV recommender is now given. The knowledge representation aspects of the
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TV recommender are presented first; these mainly concern the states, actions,
evidence variables, and result variables.

First we introduce the types that will be needed and the data constructors
corresponding to these types. We will need several standard types: Ω (the type of
the booleans), Nat (the type of natural numbers), Int (the type of integers), and
String (the type of strings). Also List denotes the (unary) list type constructor.
Thus, if α is a type, then List α is the type of lists whose elements have type α.

We introduce the following type synonyms.

State = Occurrence × Status
Occurrence = Date × Time × Channel
Date = Day ×Month ×Year
Time = Hour ×Minute
Title = String
Subtitle = String
Duration = Minute
Synopsis = String
Program = Title × Subtitle ×Duration × (List Genre)× Classification × Synopsis
Year = Nat
Month = Nat
Day = Nat
Hour = Nat
Minute = Nat
Text = List String .

The data constructors for the type Status are as follows.

Unknown,Yes,No : Status.

The meaning of Unknown is that a recommendation (about a program having
a particular occurrence) hasn’t yet been made, Yes means that it has a positive
recommendation, and No means that it has a negative recommendation.

Here are the data constructors for the types Channel , Genre, and Classification.

ABC ,Adventure 1 ,Animal Planet ,Arena,Biography ,BBC World ,
...

TCM ,Tech TV ,Travel ,TV1 ,UK TV ,W ,World Movies : Channel

ActionAdventureGroup,Adult ,Animals,Animated ,Art ,ArtsMusicLiving ,
...

War ,Watersports,Weather ,Western,WesternGroup,Wrestling : Genre

Y7 ,Y ,G ,MA,M14 ,M ,NA : Classification.

59



There are 49 channels, 115 genres and 7 classifications.
There is a type Action with data constructors given by

RecommendYes,RecommendNo : Action.

The action RecommendYes is a positive recommendation, while RecommendNo is
a negative recommendation. The action RecommendYes takes a state (o,Unknown),
where o is some occurrence, and produces the new state (o,Yes). Similarly, the
action RecommendNo takes a state (o,Unknown) and produces the new state
(o,No).

In the following, the definitions of various functions will appear. These are
(mainly) in the belief base of the TV agent. To indicate that they are beliefs of
the TV agent, the necessity modality �t is used. Thus, if ϕ is a formula, then
the meaning of �tϕ is that ‘ϕ is a belief of the TV agent’. Other agents in the
multi-agent system have their own necessity modality; for example, the modality
for the diary agent is �d . There is also a base of common beliefs accessible to
all the agents for which the necessity modality is �. Interaction axioms allow
one agent to access the beliefs of another agent [5]. So, for example, there are
interaction axioms that allow the TV agent to access the beliefs of the diary
agent and also the common beliefs.

There are three projections on State ×Action ×State. The first projection is

initial : State ×Action × State → State
�t ∀States. ∀Actiona. ∀States

′.

((initial (s, a, s′)) =State s).

The second projection is

action : State ×Action × State → Action
�t ∀States. ∀Actiona. ∀States

′.

((action (s, a, s′)) =Action a).

The third projection is

final : State ×Action × State → State
�t ∀States. ∀Actiona. ∀States

′.

((final (s, a, s′)) =State s
′).

Now we turn to the evidence variables. To define these, a number of subsidiary
functions are needed and so we start there.

The agent has access via the Internet to a TV guide (for the next week or
so) for all channels. This database is represented by a function tv guide having
signature

tv guide : Occurrence → Program.
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Here the date, time and channel information uniquely identifies the program
and the value of the function is (information about) the program itself. The TV
guide consists of (thousands of) facts like the following one.

�t ((tv guide ((20, 7, 2004), (20, 30),ABC )) =Program

(“The Bill”, “”, 50, [Drama],M ,

“Sun Hill continues to work at breaking the people smuggling operation”)).

This fact states that the program on 20 July 2004 at 8.30pm on channel ABC has
title “The Bill”, no subtitle, a duration of 50 minutes, genre drama, a classifica-
tion for mature audiences, and synopsis “Sun Hill continues to work at breaking
the people smuggling operation”.

There are a number of simple subsidiary functions that are defined as follows.
Note that the definition of the function add is in the base of common beliefs and
hence uses the modality �.

proj Occurrence : State → Occurrence
�t ∀Occurrenceo. ∀Statuss.

((proj Occurrence (o, s)) =Occurrence o).

period : Occurrence → Date × Time × Time
�t ∀Dated. ∀Timet. ∀Channelc.

((period (d, t, c)) =Date×Time×Time

(d, t, (add (t, (proj Duration (tv guide (d, t, c))))))).

add : Time ×Duration → Time
� ∀Hourh. ∀Minutem. ∀Durationd.

((add ((h,m), d)) =Time

((60× h+m+ d) div 60, (60× h+m+ d) mod 60)).

proj Duration : Program → Duration
�t ∀Titlet. ∀Subtitlet

′. ∀Durationd. ∀(List Genre)g. ∀Classificationc. ∀Synopsiss.

((proj Duration (t, t′, d, g, c, s)) =Duration d).

The belief base of the TV recommender includes the function
user tv time acceptable which has a definition that is obtained by belief ac-
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quisition and would look something like the following.

user tv time acceptable : Date × Time × Time → Ω

�t ∀Dated. ∀Timet. ∀Timet
′.

((user tv time acceptable (d, t, t′)) =Ω

if (weekday d) ∧ ((proj Hour t) ≥ 20) ∧ ((proj Hour t
′) ≤ 23) then >

else if ¬(weekday d) ∧ ((proj Hour t) ≥ 12) ∧ ((proj Hour t
′) ≤ 25) then >

else ⊥).

This definition states that the user is willing to watch programs that start be-
tween 8pm and 11pm on weekdays and between midday and 1am on weekends.
This information is obtained rather directly from the user by the belief acquisi-
tion algorithm.

The belief base of the TV recommender also includes the function
user likes tv program which has a definition that is obtained by belief acqui-
sition (in this case, machine learning since the function learned generalises) and
would look something like the following.

user likes tv program : Program → Ω

�t ∀Programx.

((user likes tv program x) =Ω

if (proj Title ◦ (=Title “NFL Football”) x) then >
else if (proj (List Genre) ◦ (listExists1 genre ◦ (< 0)) x) then ⊥
else if (proj Title ◦StringToText ◦ (listExists1 (=String “sport”)) x) then >
else if (proj (List Genre) ◦ (listExists1 (=Genre Current Affairs)) x) then ⊥
else if (proj Title ◦ (=Title “2004 ICC Championship Trophy”) x) then >
else if (proj Synopsis ◦StringToText ◦ (listExists1 (=String “american”)) x) then >

...
else ⊥).

Much more detail on how this function is learned is contained in [2].
Another subsidiary function needed is user diary free that has signature

user diary free : Date × Time × Time → Ω.

The definition of this function is in the belief base of the diary agent. The TV
agent has access to this definition because of an interaction axiom that makes
the belief base of the diary agent accessible to the TV agent.

We can now define the evidence variables.
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The first evidence variable is

ultp : State → Ω

�t ∀Statex.

((ultp x) =Ω

(proj Occurrence ◦ tv guide ◦ user likes tv program x)).

This evidence variable is intended to indicate whether or not the user likes a
program (irrespective of whether or not the user would be able to watch it).

The second evidence variable is

udiary : State → Ω

�t ∀Statex.

((udiary x) =Ω

(proj Occurrence ◦ period ◦ user diary free x)).

This evidence variable is intended to indicate whether or not the user’s diary is
free during the time that the program is on.

The third evidence variable is

uaccept : State → Ω

�t ∀Statex.

((uaccept x) =Ω

(proj Occurrence ◦ period ◦ user tv time acceptable x)).

This evidence variable is intended to indicate whether or not the user is willing
to watch television at the time the program is on.

The intuition is that the three evidence variables are features that together
can reasonably be used by the TV agent to make recommendations for the user.

Next we turn to the result variables.
The first result variable is the function

user : State → Ω

which models the user as an oracle about occurrences of programs. Given a
state, user returns > if the user intends to watch the program whose occurrence
is in the first component of the state; otherwise, user returns ⊥. Of course, the
definition of user is not available to the agent. But it can observe values for this
function by asking the user.

The second result variable is

recomm : State → Status
�t ∀Occurrenceo. ∀Statuss.

((recomm (o, s)) =Status s).
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State ×Action × State
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Fig. 4. Evidence and result variables for the TV recommender
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Fig. 5. Influence diagram for the TV recommender
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The function recomm simply projects onto the status component of the state.
Figure 4 illustrates the evidence and result variables for the TV recommender.

The corresponding influence diagram is given in Figure 5.
Given in Figure 6 is a set of transition probability distributions and utilities

that could reasonably arise in practice. (The utilities are given by the user.) The
last column contains the expected utility of the action given the evidence for
each row. In Figure 6 it is the case that the definition acquired by the agent
for uaccept is actually not all that accurate and the user is willing to watch
programs outside the periods given in the definition of this function. Secondly,
it is assumed that the user is reasonably happy with states in which the agent
recommends programs that they do not actually want to watch and therefore
gives this state the utility value of 0.4. The policy corresponding to the situation
is given in Figure 7 and its definition in the logic is as follows.

policy : State → Action
�t ∀States.

((policy s) =Action

if (((ultp s) =Ω >) ∧ ((udiary s) =Ω >)) then RecommendYes
else RecommendNo).

final ◦ (user , recomm)
initial ◦ (ultp, udiary , uaccept) action (>,Yes) (>,No) (⊥,Yes) (⊥,No)

(>,>,>) RecommendYes 0.8 0.0 0.2 0.0 0.88

(>,>,>) RecommendNo 0.0 0.8 0.0 0.2 0.20

(>,>,⊥) RecommendYes 0.4 0.0 0.6 0.0 0.64

(>,>,⊥) RecommendNo 0.0 0.4 0.0 0.6 0.60

(>,⊥,>) RecommendYes 0.0 0.0 1.0 0.0 0.40

(>,⊥,>) RecommendNo 0.0 0.0 0.0 1.0 1.00

(>,⊥,⊥) RecommendYes 0.0 0.0 1.0 0.0 0.40

(>,⊥,⊥) RecommendNo 0.0 0.0 0.0 1.0 1.00

(⊥,>,>) RecommendYes 0.1 0.0 0.9 0.0 0.46

(⊥,>,>) RecommendNo 0.0 0.1 0.0 0.9 0.90

(⊥,>,⊥) RecommendYes 0.0 0.0 1.0 0.0 0.40

(⊥,>,⊥) RecommendNo 0.0 0.0 0.0 1.0 1.00

(⊥,⊥,>) RecommendYes 0.0 0.0 1.0 0.0 0.40

(⊥,⊥,>) RecommendNo 0.0 0.0 0.0 1.0 1.00

(⊥,⊥,⊥) RecommendYes 0.0 0.0 1.0 0.0 0.40

(⊥,⊥,⊥) RecommendNo 0.0 0.0 0.0 1.0 1.00

1 0 0.4 1

Fig. 6. Influence diagram conditioned on the evidence and action variables for the TV
recommender
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initial ◦ (ultp, udiary , uaccept) action

(>,>,>) RecommendYes

(>,>,⊥) RecommendYes

(>,⊥,>) RecommendNo

(>,⊥,⊥) RecommendNo

(⊥,>,>) RecommendNo

(⊥,>,⊥) RecommendNo

(⊥,⊥,>) RecommendNo

(⊥,⊥,⊥) RecommendNo

Fig. 7. Policy for the TV recommender corresponding to Figure 6

5 Conclusions

While the outlines of the architecture are now clear, much work remains to be
done. For example, the belief acquisition algorithm is not yet fully implemented
and investigated; the issue of how changing evidence and result variables affect
the conditional probability tables in the Bayesian network needs further investi-
gation; and further challenging applications for this approach to designing and
building agents are needed.
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