
Eliciting Single-Peaked Preferences
Using Comparison Queries

Vincent Conitzer

Abstract

Voting is a general method for aggregating the preferences of multiple
agents. Each agent ranks all the possible alternatives, and based on this,
an aggregate ranking of the alternatives (or at least a winning alternative)
is produced. However, when there are many alternatives, it is impractical
to simply ask agents to report their complete preferences. Rather, the
agents’ preferences, or at least the relevant parts thereof, need to be
elicited. This is done by asking the agents a (hopefully small) number of
simple queries about their preferences, such as comparison queries, which
ask an agent to compare two of the alternatives. Prior work on preference
elicitation in voting has focused on the case of unrestricted preferences.
It has been shown that in this setting, it is sometimes necessary to ask
each agent (almost) as many queries as would be required to determine
an arbitrary ranking of the alternatives. By contrast, in this paper, we
focus on single-peaked preferences. We show that such preferences can
be elicited using only a linear number of comparison queries, if either
the order with respect to which preferences are single-peaked is known,
or at least one other agent’s complete preferences are known. We also
show that using a sublinear number of queries will not suffice. Finally,
we present experimental results.

1 Introduction

In multiagent systems, a group of agents often has to make joint decisions even
when the agents have conflicting preferences over the alternatives. For example,
agents may have different preferences over possible joint plans for the group,
allocations of tasks or resources among members of the group, potential repre-
sentatives (e.g. presidential candidates), etc. In such settings, it is important
to be able to aggregate the agents’ individual preferences. The result of this
aggregation can be a single alternative, corresponding to the group’s collective
decision, or a complete aggregate (compromise) ranking of all the alternatives
(which can be useful, for instance, if some of the alternatives later turn out
not to be feasible). The most general framework for aggregating the agents’
preferences is to have the agents vote over the alternatives. That is, each agent
announces a complete ranking of all alternatives (the agent’s vote), and based
on these votes an outcome (i.e. a winning alternative or a complete aggregate
ranking of all alternatives) is chosen according to some voting rule.1

1One may argue that this approach is not fully general because it does not allow agents
to specify their preferences over probability distributions over alternatives. For example, it is

One might try to create an aggregate ranking as follows: for given alterna-
tives a and b, if more votes prefer a to b than vice versa (i.e. a wins its pairwise

election against b), then a should be ranked above b in the aggregate ranking.
Unfortunately, when the preferences of the agents are unrestricted and there
are at least three alternatives, Condorcet cycles may occur. A Condorcet cycle
is a sequence of alternatives a1, a2, . . . , ak such that for each 1 ≤ i < k, more
agents prefer ai to ai+1 than vice versa, and more agents prefer ak to a1 than
vice versa. In the presence of a Condorcet cycle, it is impossible to produce an
aggregate ranking that is consistent with the outcomes of all pairwise elections.
Closely related to this phenomenon are numerous impossibility results that
show that every voting rule has significant drawbacks in this general setting.
For example, when there are at least three alternatives, Arrow’s impossibility
theorem [Arrow, 1963] shows that any voting rule for which the relative order
of two alternatives in the aggregate ranking is independent of how agents rank
alternatives other than these two (i.e. any rule that satisfies independence of

irrelevant alternatives) must either be dictatorial (i.e. the rule simply copies the
ranking of a fixed agent, ignoring all other agents) or conflicting with unanimity

(i.e. for some alternatives a and b, the rule sometimes ranks a above b even if
all agents prefer b to a). As another example, when there are at least three al-
ternatives, the Gibbard-Satterthwaite theorem [Gibbard, 1973; Satterthwaite,
1975] shows that for any voting rule that is onto (for every alternative, there
exist votes that would make that alternative win) and nondictatorial, there are
instances where an agent is best off casting a vote that does not correspond to
the agent’s true preferences (i.e. the rule is not strategy-proof).

1.1 Single-peaked preferences

Fortunately, these difficulties can disappear if the agents’ preferences are re-
stricted, i.e. they display some structure. The best-known, and arguably most
important such restriction is that of single-peaked preferences [Black, 1948].
Suppose that the alternatives are ordered on a line, from left to right, rep-
resenting the alternatives’ positions. For example, in a political election, a
candidate’s position on the line may indicate whether she is a left-wing or a
right-wing candidate (and how strongly so). As another example, the alterna-
tives may be numerical values: for example, agents may vote over the size of a
budget. As yet another example, the alternatives may be locations along a road
(for example, if agents are voting over where to construct a building, or where
to meet for dinner, etc.). We say that an agent’s preferences are single-peaked

with respect to the alternatives’ positions if, on each side of the agent’s most
preferred alternative (the agent’s peak), the agent prefers alternatives that are
closer to its peak. For example, if the set of alternatives is {a, b, c, d, e, f}, their

impossible to know from an agent’s vote whether that agent prefers its second-ranked alterna-
tive to a 1/2 - 1/2 probability distribution over its first-ranked and third-ranked alternatives.
In principle, this can be addressed by voting over these probability distributions instead,
although in practice this is usually not tractable.

positions may be represented by d < b < e < f < a < c, in which case the vote
f � e � b � a � c � d is single-peaked, but the vote f � e � a � d � c � b is
not (b and d are on the same side of f in the positions, and b is closer to f , so d
should not be ranked higher than b if f is the peak). (Throughout, we will as-
sume that all preferences are strict, that is, agents are never indifferent between
two alternatives.) Preferences are likely to be single-peaked if the alternatives’
positions are of primary importance in determining an agent’s preferences. For
example, in political elections, if voters’ preferences are determined primar-
ily by candidates’ proximity to their own stance on the left-to-right spectrum,
preferences are likely to be single-peaked. On the other hand, if other factors
are also important, such as the perceived amicability of the candidates, then
preferences are not necessarily likely to be single-peaked.

When all agents’ preferences are single-peaked (with respect to the same
positions for the alternatives), it is known that there can be no Condorcet
cycles. If, in addition, we assume that the number of agents is odd, then no
pairwise election can result in a tie. Hence, our aggregate ranking can simply
correspond to the outcomes of the pairwise elections. In this case, there is also
no incentive for an agent to misreport its preferences, since by reporting its
preferences truthfully, it will, in each pairwise election, rank the more desired
alternative higher.

1.2 Preference elicitation

A key difficulty in aggregating the preferences of multiple agents is the elicita-

tion of the agents’ preferences. In many settings, particularly those with large
sets of alternatives, having each agent communicate all of its preferences is im-
practical. For one, it can take up a large amount of communication bandwidth.
Perhaps more importantly, in order for an agent to communicate all of its pref-
erences, it must first determine exactly what those preferences are. This can
be a complex task, especially when no guidance is provided to the agent as to
what the key questions are that it needs to answer to determine its preferences.

An alternative approach is for an elicitor to sequentially ask the agents cer-
tain natural queries about their preferences. For example, the elictor can ask
an agent which of two alternatives it prefers (a comparison query). Three nat-
ural goals for the elicitor are to (1) learn enough about the agents’ preferences
to determine the winning alternative, (2) learn enough to determine the entire
aggregate ranking, and (3) learn each agent’s complete preferences. (1) and (2)
have the advantage that in general, not all of each agent’s preferences need to be
determined. For example, for (1), the elicitor does not need to elicit an agent’s
preferences among alternatives for which we have already determined (from the
other agents’ preferences) that they have no chance of winning. But even (3)
can have significant benefits over not doing any elicitation at all (i.e. having
each agent communicate all of its preferences on its own). First, the elicitor
provides the agent with a systematic way of assessing its preferences: all that
the agent needs to do is answer simple queries. Second, and perhaps more

importantly, once the elicitor has elicited the preferences of some agents, the
elicitor will have some understanding of which preferences are more likely to oc-
cur (and, perhaps, some understanding of why this is so). The elicitor can then
use this understanding to guide the elicitation of the next agent’s preferences,
and learn these preferences more rapidly.

In this paper, we will study the elicitation of single-peaked preferences us-
ing only comparison queries. We will focus on approach (3), i.e. learning each
agent’s complete preferences. We will study both the setting where the elicitor
knows the positions of the alternatives (Section 4), and the setting where the
elicitor (at least initially) does not (Section 5). We will assume that prefer-
ences are always single-peaked.2 Our elicitation algorithms completely elicit
one agent’s preferences before moving on to the next agent (as opposed to go-
ing back and forth between agents). This gives the algorithms a nice online
property: if agents arrive over time, then we can elicit an agent’s preferences
when it arrives, after which the agent is free to leave and pursue other things
(as opposed to being forced to wait until the arrival of the next agent).

2 Related research

A significant body of work on preference elicitation in multiagent systems fo-
cuses on combinatorial auctions (for an overview of this work, see Sandholm
and Boutilier [2006]). Much of this work focuses on approach (1), i.e. learn-
ing enough about the bidders’ valuations to determine the optimal allocation.
(Sometimes, additional information must be elicited from the bidders to de-
termine the payments that they should make according to the Clarke [Clarke,
1971], or more generally, a Groves [Groves, 1973], mechanism.) Example elic-
itation approaches include ascending combinatorial auctions (for an overview,
see Parkes [2006]) as well as frameworks in which the auctioneer can ask queries
in a more flexible way [Conen and Sandholm, 2001]. A significant amount of
the research on preference elicitation in combinatorial auctions is also devoted
to approach (3), i.e. learning an agent’s complete valuation function. In this re-
search, typically valuation functions are assumed to lie in a restricted class, and
given this it is shown that an agent’s complete valuation function can be elicited
using a polynomial number of queries of some kind. Various results of this na-
ture have been obtained by Zinkevich et al. [2003], Blum et al. [2004], Lahaie
and Parkes [2004], and Santi et al. [2004].

There has also been some work on elicitation in voting settings (the set-
ting of this paper). All of that work so far has focused on approach (1), elic-
iting enough information from the agents to determine the winner, without

2We note that if it is possible that some agent’s preferences are not single-peaked, we can
always elicit them as if they were, and then verify that we have learned them correctly using an
additional m−1 comparison queries. This is done by asking the agent whether it prefers (what
we think is) its most preferred alternative to its second-most preferred alternative, its second-
most preferred alternative to its third-most preferred alternative, etc. If this verification step
fails, we can use some other method to re-elicit the agent’s preferences.

any restriction on the space of possible preferences. Conitzer and Sandholm
[2002] studied the complexity of deciding whether enough information has been
elicited to declare a winner, as well as the complexity of choosing which votes
to elicit given very strong suspicions about how agents will vote. They also
studied what additional opportunities for strategic misreporting of preferences
elicitation introduces, as well as how to avoid introducing these opportunities.
(Strategic misreporting is not a significant concern in the setting of this paper:
under the restriction of single-peaked preferences, reporting truthfully is a dom-
inant strategy when agents simultaneously report their complete preferences,
and hence responding truthfully to the elicitor’s queries is an ex-post equilib-
rium. As such, in this paper we will make no distinction between an agent’s
vote and its true preferences.) Conitzer and Sandholm [2005] studied elicitation
algorithms for determining the winner under various voting rules (without any
suspicion about how agents will vote), and gave lower bounds on the worst-case
amount of information that agents must communicate.

3 Eliciting general preferences

As a basis for comparison, let us first analyze how difficult it is to elicit arbi-
trary (not single-peaked) preferences using comparison queries. We recall that
our goal is to extract the agent’s complete preferences, i.e. we want to know the
agent’s exact ranking of all m alternatives. This is exactly the same problem
as that of sorting a set of m elements, when only binary comparisons between
elements can be used to do the sorting. This is an extremely well-studied prob-
lem, and it is well-known that it can be solved using O(m log m) comparisons,
for example using the MergeSort algorithm (which splits the set of elements into
two halves, solves each half recursively, and then merges the solutions using a
linear number of comparisons). It is also well-known that Ω(m log m) compar-
isons are required (in the worst case). One way to see this is that there are
m! possible orders, so that an order encodes log(m!) bits of information—and
log(m!) is Ω(m log m). Hence, in general, any method for communicating an
order (not just methods based on comparison queries) will require Ω(m log m)
bits (in the worst case).

Interestingly, for some common voting rules (including Borda, Copeland,
and Ranked Pairs), it can be shown using techniques from communication
complexity theory that even just determining whether a given alternative is
the winner requires the communication of Ω(nm log m) bits (in the worst case),
where n is the number of agents [Conitzer and Sandholm, 2005]. That is, even
if we do not try to elicit agents’ complete preferences, (in the worst case) it
is impossible to do more than a constant factor better than having each agent
communicate all of its preferences! These lower bounds even hold for nondeter-

ministic communication, but they do assume that preferences are unrestricted.
By contrast, by assuming that preferences are single-peaked, we can elicit an
agent’s complete preferences using only O(m) queries, as we will show in this

paper. Of course, once we know the agents’ complete preferences, we can ex-
ecute any voting rule. This shows how useful it can be for elicitation to know
that agents’ preferences lie in a restricted class.

4 Eliciting with knowledge of alternatives’ po-

sitions

In this section, we focus on the setting where the elicitor knows the positions
of the alternatives. Let p : {1, . . . , m} → A denote the mapping from positions
to alternatives, i.e. p(1) is the leftmost alternative, p(2) is the alternative im-
mediately to the right of p(1), . . ., and p(m) is the rightmost alternative. Our
algorithms make calls to the function Query(a1, a2), which returns true if the
agent whose preferences we are currently eliciting prefers a1 to a2, and false

otherwise. (Since one agent’s preferences are elicited at a time, we do not need
to specify which agent is being queried.)

The first algorithm serves to find the agent’s peak (most preferred alterna-
tive). The basic idea of this algorithm is to do a binary search for the peak. To
do so, we need to be able to assess whether the peak is to the left or right of
a given alternative a. We can discover this by asking whether the alternative
immediately to the right of a is preferred to a: if it is, then the peak must be
to the right of a, otherwise, the peak must be to the left of, or equal to, a.

FindPeakGivenPositions(p)

l ← 1
r ← m
while l < r {
m1 ← b(l + r)/2c
m2 ← m1 + 1

. . .

. . .
if Query(p(m1), p(m2))

r ← m1

else

l← m2

}
return l

Once we have found the peak, we can continue to construct the agent’s
ranking of the alternatives as follows. We know that the agent’s second-ranked
alternative must be either the alternative immediately to the left of the peak,
or the one immediately to the right. A single query will settle which one is
preferred. Without loss of generality, suppose the left alternative was preferred.
Then, the third-ranked alternative must be either the alternative immediately
to the left of the second-ranked alternative, or the alternative immediately to
the right of the peak. Again, a single query will suffice—etc. Once we have
determined the ranking of either the leftmost or the rightmost alternative, we
can construct the remainder of the ranking without asking any more queries (by
simply ranking the remaining alternatives according to proximity to the peak).
The algorithm is formalized below. It uses the function Append(a1, a2), which
makes a1 the alternative that immediately succeeds a2 in the current ranking

(i.e. the current agent’s preferences as far as we have constructed them). In the
pseudocode, we will omit the (simple) details of maintaining such a ranking as
a linked list. The algorithm returns the highest-ranked alternative; this is to be
interpreted as including the linked-list structure, so that effectively the entire
ranking is returned. c is always the alternative that is ranked last among the
currently ranked alternatives.

FindRankingGivenPositions(p)
t← FindPeakGivenPositions(p)
s← p(t)
l ← t− 1
r ← t + 1
c← s
while l ≥ 1 and r ≤ m {
if Query(p(l), p(r)) {

Append(p(l), c)
c← p(l)
l← l − 1
} else {

Append(p(r), c)
c← p(r)

. . .

. . .
r ← r + 1
}
}
while l ≥ 1 {
Append(p(l), c)
c← p(l)
l ← l − 1
}
while r ≤ m {
Append(p(r), c)
c← p(r)
r ← r + 1
}
return s

Theorem 1 FindRankingGivenPositions requires at most m− 2 + dlog me com-

parison queries.

Proof: FindPeakGivenPositions requires at most dlog me comparison queries.
Every query after this allows us to add an additional alternative to the ranking,
and for the last alternative we will not need a query, hence there can be at most
m− 2 additional queries.

Thus, the number of queries that the algorithm requires is linear in the
number of alternatives. It is impossible to succeed using a sublinear number
of queries, because an agent’s single-peaked preferences can encode a linear
number of bits, as follows. Suppose the alternatives’ positions are as follows:
am−1 < am−3 < am−5 < . . . < a4 < a2 < a1 < a3 < a5 < . . . < am−4 <
am−2 < am. Then, any vote of the form a1 � {a2, a3} � {a4, a5} � . . . �
{am−1, am} (where the set notation indicates that there is no constraint on
the preference between the alternatives in the set, that is, {ai, ai+1} can be
replaced either by ai � ai+1 or ai+1 � ai) is single-peaked with respect to the
alternatives’ positions. The agent’s preference between alternatives ai and ai+1

(for even i) encodes a single bit, hence the agent’s complete preferences encode
(m− 1)/2 bits. Since the answer to a comparison query can communicate only
a single bit of information, it follows that a linear number of queries is in fact
necessary.

5 Eliciting without knowledge of alternatives’

positions

In this section, we study a more difficult question: how hard is it to elicit the
agents’ preferences when the alternatives’ positions are not known? Certainly,
it would be desirable to have elicitor software that does not require us to enter
domain-specific information (namely, the positions of the alternatives) before
elicitation begins, for two reasons: (1) this information may not be available
to the entity running the election, and (2) entering this information may be
perceived by agents as unduly influencing the process, and perhaps the outcome,
of the election. Rather, the software should learn (relevant) information about
the domain from the elicitation process itself.

It is clear that this learning will have to take place over the process of elic-
iting the preferences of multiple agents. Specifically, without any knowledge of
the positions of the alternatives, the first agent’s preferences could be any rank-
ing of the alternatives, since any ranking is single-peaked with respect to some
positions. Hence, eliciting the first agent’s preferences will require Ω(m log m)
queries. Once the elicitor knows the first agent’s preferences, though, some
ways in which the alternatives may be positioned will be eliminated (but many
will remain).

Can the elicitor learn the exact positions of the alternatives? The answer
is no, for several reasons. First of all, we can invert the positions of the alter-
natives, making the leftmost alternative the rightmost, etc., without affecting
which preferences are single-peaked with respect to these positions. This is
not a fundamental problem because the elicitor could choose either one of the
positionings. More significantly, the agents’ preferences may simply not give
the elicitor enough information to determine the positions. For example, if
all agents turn out to have the same preferences, the elicitor will never learn
anything about the alternatives’ positions beyond what was learned from the
first agent. In this case, however, the elicitor could simply try to verify that
the next agent whose preferences are to be elicited has the same preferences,
which can be done using only a linear number of queries. More generally, one
might imagine an intricate elicitation scheme which either requires few queries
to elicit an agent’s preferences, or learns something new and useful from these
preferences that will shorten the elicitation process for later agents. Then, one
might imagine a complex accounting scheme, in the spirit of amortized analysis,
showing that the total elicitation cost over many agents cannot be too large.

Fortunately, it turns out that we do not need anything so complex. In fact,
knowing even one agent’s (complete) preferences is enough to elicit any other
agent’s preferences using only a linear number of queries! (And a sublinear
number will not suffice, since we already showed that a linear number is neces-
sary even if we know the alternatives’ positions.) To prove this, we will give an
elicitation algorithm that takes as input one (the first) agent’s preferences (not

the positions of the alternatives), and elicits another agent’s preferences using
a linear number of queries.

First, we need a subroutine for finding the agent’s peak. We cannot use
the algorithm FindPeakGivenPositions from the previous section, since we do
not know the positions. However, even the trivial algorithm that examines
the alternatives one by one and maintains the most-preferred alternative so far
requires only a linear number of queries, so we will simply use this algorithm.

FindPeak()

s← a1

for all a ∈ {a2, . . . , am}
if Query(a, s)

s← a
return s

Once we have found the agent’s peak, we next find the alternatives that lie
between this peak, and the peak of the known vote (i.e. the peak of the agent
whose preferences we know). The following lemma is the key tool for doing so.

Lemma 1 Consider votes v1 and v2 with peaks s1 and s2, respectively. Then,

an alternative a /∈ {s1, s2} lies between the two peaks if and only if both a �v1
s2

and a �v2
s1.

Proof: If a lies between the two peaks, then for each i, a lies closer to si than
s3−i (the other vote’s peak) lies to si. Hence a �v1

s2 and a �v2
s1. Conversely,

a �vi
s3−i implies that a lies on the same side of s3−i as si (otherwise, vi would

have ranked s3−i higher). But since this is true for both i, it implies that a
must lie between the peaks.

Thus, to find the alternatives between the peak of the known vote and the
peak of the current agent, we simply ask the current agent, for each alternative
that the known vote prefers to the peak of the current agent, whether it prefers
this alternative to the known vote’s peak. If the answer is positive, we add the
alternative to the list of alternatives between the peaks.

The two votes must rank the alternatives between their peaks in the exact
opposite order. Thus, at this point, we know the current agent’s preferences
over the alternatives that lie between its peak and the peak of the known
vote (including the peaks themselves). The final and most complex step is to
integrate the remaining alternatives into this ranking. (Some of these remaining
alternatives may be ranked higher than some of the alternatives between the
peaks.) The strategy will be to integrate these alternatives into the current
ranking one by one, in the order in which the known vote ranks them, starting
with the one that the known vote ranks highest. When integrating such an
alternative, we first have the current agent compare it to the worst-ranked
alternative already in the ranking. We note that the known vote must prefer
the latter alternative, because this latter alternative is either the known vote’s

peak, or an alternative that we integrated earlier and that was hence preferred
by the known vote. If the latter alternative is also preferred by the current
agent, we add the new alternative to the bottom of the current ranking and
move on to the next alternative. If not, then we learn something useful about
the positions of the alternatives, namely that the new alternative lies on the
other side of the current agent’s peak from the alternative currently ranked last.
The following lemma proves this.

Lemma 2 Consider votes v1 and v2 with peaks s1 and s2, respectively. Con-

sider two alternatives a1, a2 6= s2 that do not lie between s1 and s2. Suppose

a1 �v1
a2 and a2 �v2

a1. Then, a1 and a2 must lie on opposite sides of s2.

Proof: If a1 and a2 lie on the same side of s2—without loss of generality, the
left side—then, because neither lies between s1 and s2, they must also both lie
on the left side of s1 (possibly, one of them is equal to s1). But then, v1 and v2

cannot disagree on which of a1 and a2 is ranked higher.

Knowing that the new alternative lies on the other side of the current agent’s
peak from the currently worst-ranked alternative will not help us to integrate
the new alternative; in fact, our algorithm may still have to ask the agent
to compare the new alternative to every alternative in the current ranking
(other than the peak and the currently worst-ranked alternative). However,
once we have integrated the new alternative, we know that all alternatives that

we integrate later must end up ranked below this alternative. This is because
of the following reason. Let us refer to the newly integrated alternative as c1,
and to the currently worst-ranked alternative as c2. Because we have already
taken care of the alternatives between the peaks of the current agent and the
known vote, any later alternative that we integrate must lie on the same side of
both peaks, on the same side as one of the two ci. Because we are integrating
alternatives in the order in which they are ranked by the known vote, the new
(later) alternative must be further from the known vote’s peak than that ci.
Hence, it must also be further from the current agent’s peak than that ci, so it
must be ranked below c1 by the current agent (since c1 is ranked higher than
c2).

We now present the algorithm formally. The algorithm again uses the func-
tion Append(a1, a2), which makes a1 the alternative that immediately succeeds
a2 in the current ranking. It also uses the function InsertBetween(a1, a2, a3),
which inserts a1 between a2 and a3 in the current ranking. The algorithm will
(eventually) set m(a) to true if a lies between the peaks of the current agent and
the known vote v, or if a is the peak of v; otherwise, m(a) is set to false. v(i)
returns the alternative that the known vote ranks ith (and hence v−1(a) returns
the ranking of alternative a in the known vote, and v−1(a1) < v−1(a2) means
that v prefers a1 to a2). n(a) returns the alternative immediately following a
in the current ranking. Again, only the peak is returned, but this includes the
linked-list structure and hence the entire ranking.

FindRankingGivenOtherVote(v)

s← FindPeak()
for all a ∈ A
m(a)← false

for all a ∈ A− {s, v(1)}
if v−1(a) < v−1(s)
if Query(a, v(1))
m(a)← true

c1 ← s
c2 ← s
m(v(1))← true

for i = m to 1 step −1 {
if m(v(i)) = true {

Append(v(i), c2)
. . .

. . .
c2 ← v(i)
}
}
for i = 1 to m
if not (m(v(i)) or v(i) = s)
if Query(c2, v(i)) {
Append(v(i), c2)
c2 ← v(i)
} else {
while Query(n(c1), v(i))
c1 ← n(c1)

InsertBetween(v(i), c1, n(c1))
c1 ← v(i)
}

return s

Theorem 2 FindRankingGivenOtherVote requires at most 4m − 6 comparison

queries.

Proof: FindPeak requires m−1 comparison queries. The next stage, discovering
which alternatives lie between the current agent’s peak and the known vote’s
peak, requires at most m − 2 queries. Finally, we must count the number of
queries in the integration step. This is more complex, because integrating one
alternative (which we may have to do up to m− 2 times) can require multiple
queries. Certainly, the algorithm will ask the agent to compare the alternative
currently being integrated to the current c2. This contributes up to m − 2
queries in total. However, if the current alternative is preferred over c2, we
must ask more queries, comparing the current alternative to the alternative
currently ranked immediately behind the current c1 (perhaps multiple times).
But every time that we ask such a query, c1 changes to another alternative, and
this can happen at most m− 1 times in total.

In practice, the algorithm ends up requiring on average roughly 3m queries,
as we will see in Section 6.

6 Experimental results

The following experiment compares FindRankingGivenPositions, FindRanking-

GivenOtherVote, and MergeSort. As discussed in Section 3, MergeSort is a stan-
dard sorting algorithm that uses only comparison queries, and can therefore be
used to elicit an agent’s preferences without any knowledge of the alternatives’
positions or of other votes.

In each run, first a random permutation of the m alternatives was drawn to
represent the positions of the alternatives. Then, two random votes (rankings)

that were single-peaked with respect to these positions were drawn. For each
vote, this was done by randomly choosing a peak, then randomly choosing the
second-highest ranked alternative from the two adjacent alternatives, etc. Each
algorithm then elicited the second vote; FindRankingGivenPositions was given
(costless) access to the positions, and FindRankingGivenOtherVote was given
(costless) access to the first vote. (For each run, it was also verified that each
algorithm produced the correct ranking.) Figure 1 shows the results.

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1000 10000 100000

co

m
pa

ris
on

 q
ue

rie
s

alternatives

MergeSort
FindRankingGivenOtherVote
FindRankingGivenPositions

Figure 1: Experimental comparison of the two algorithms introduced in this
paper, and MergeSort. Please note the logarithmic scale on the x-axis. Each
data point is averaged over 5 runs.

FindRankingGivenPositions outperforms FindRankingGivenOtherVote, which in
turn clearly outperforms MergeSort.

One interesting observation is that FindRankingGivenOtherVote sometimes
repeats a query that it has asked before. Thus, by simply storing the results of
previous queries, the number of queries can be reduced. However, in general,
keeping track of which queries have been asked imposes a significant compu-
tational burden, as there are

(

m

2

)

possible comparison queries. Hence, in the
experiment, the results of previous queries were not stored. FindRankingGiven-

Positions and MergeSort never repeat a query.

7 Conclusions

Voting is a general method for aggregating the preferences of multiple agents.
Each agent ranks all the possible alternatives, and based on this, an aggregate
ranking of the alternatives (or at least a winning alternative) is produced. How-
ever, when there are many alternatives, it is impractical to simply ask agents to
report their complete preferences. Rather, the agents’ preferences, or at least
the relevant parts thereof, need to be elicited. This is done by asking the agents
a (hopefully small) number of simple queries about their preferences, such as
comparison queries, which ask an agent to compare two of the alternatives.
Prior work on preference elicitation in voting has focused on the case of un-
restricted preferences. It has been shown that in this setting, it is sometimes
necessary to ask each agent (almost) as many queries as would be required to
determine an arbitrary ranking of the alternatives. By contrast, in this paper,
we focused on single-peaked preferences. The agents’ preferences are said to be
single-peaked if there is some fixed order of the alternatives the alternatives’
positions (representing, for instance, which alternatives are more “left-wing”
and which are more “right-wing”), such that each agent prefers alternatives
that are closer to the agent’s most preferred alternative to ones that are further
away. We first showed that if an agent’s preferences are single-peaked, and the
alternatives’ positions are known, then the agent’s (complete) preferences can
be elicited using a linear number of comparison queries. If the alternatives’
positions are not known, then the first agent’s preferences can be arbitrary and
therefore cannot be elicited using only a linear number of queries. However,
we showed that if we already know at least one other agent’s preferences, then
we can elicit the (next) agent’s preferences using a linear number of queries
(albeit a larger number of queries than the first algorithm). We also showed
that using a sublinear number of queries will not suffice. Experimental results
confirmed that these algorithms outperform algorithms that do not make use
of the alternatives’ positions or of previously elicited agents’ preferences.

Future research includes studying elicitation in voting for other restricted
classes of preferences. The class of single-peaked preferences (over single-
dimensional domains) was a natural one to study first, due to both its practical
relevance (real-world preferences often have this structure) and its useful theo-
retical properties (no Condorcet cycles and, as a result, the ability to aggregate
preferences in a strategy-proof manner). Classes that are practically relevant
but do not have these nice theoretical properties are still of interest, though.
For example, one may consider settings where alternatives take positions in
two-dimensional rather than single-dimensional space. It is well-known that in
this generalization, Condorcet cycles can once again occur. Nevertheless, this
does not imply that efficient elicitation algorithms do not exist for this setting.
Nor does it imply that such elicitation algorithms would be useless, since it is
still often necessary to vote over alternatives in such settings. However, if we
use a voting rule that is not strategy-proof, then we must carefully evaluate
the strategic effects of elicitation. Specifically, from the queries that agents

are asked, they may be able to infer something about how other agents an-
swered queries before them; this, in turn, may affect how they (strategically)
choose to answer their own queries, since the rule is not strategy-proof. (This
phenomenon is studied in more detail by Conitzer and Sandholm [2002].)

References
Kenneth Arrow. Social choice and individual values. New Haven: Cowles

Foundation, 2nd edition, 1963. 1st edition 1951.
Duncan Black. On the rationale of group decision-making. Journal of Political

Economy, 56(1):23–34, 1948.
Avrim Blum, Jeffrey Jackson, Tuomas Sandholm, and Martin Zinkevich. Pref-

erence elicitation and query learning. JMLR, 5:649–667, 2004.
Ed H. Clarke. Multipart pricing of public goods. Public Choice, 11:17–33, 1971.
Wolfram Conen and Tuomas Sandholm. Preference elicitation in combinatorial

auctions: Extended abstract. ACM-EC, pages 256–259, 2001.
Vincent Conitzer and Tuomas Sandholm. Vote elicitation: Complexity and

strategy-proofness. AAAI, pages 392–397, 2002.
Vincent Conitzer and Tuomas Sandholm. Communication complexity of com-

mon voting rules. ACM-EC, pages 78–87, 2005.
Allan Gibbard. Manipulation of voting schemes. Econometrica, 41:587–602,

1973.
Theodore Groves. Incentives in teams. Econometrica, 41:617–631, 1973.
Sebastién Lahaie and David Parkes. Applying learning algorithms to preference

elicitation. ACM-EC, pages 180–188, 2004.
David Parkes. Iterative combinatorial auctions. In Peter Cramton, Yoav

Shoham, and Richard Steinberg, editors, Combinatorial Auctions, chapter 3.
MIT Press, 2006.

Tuomas Sandholm and Craig Boutilier. Preference elicitation in combinatorial
auctions. In Peter Cramton, Yoav Shoham, and Richard Steinberg, editors,
Combinatorial Auctions, chapter 10, pages 233–263. MIT Press, 2006.

Paolo Santi, Vincent Conitzer, and Tuomas Sandholm. Towards a characteriza-
tion of polynomial preference elicitation with value queries in combinatorial
auctions. COLT, pages 1–16, 2004.

Mark Satterthwaite. Strategy-proofness and Arrow’s conditions: existence and
correspondence theorems for voting procedures and social welfare functions.
Journal of Economic Theory, 10:187–217, 1975.

Martin Zinkevich, Avrim Blum, and Tuomas Sandholm. On polynomial-time
preference elicitation with value queries. ACM-EC, pages 176–185, 2003.

Vincent Conitzer
Computer Science Department, Duke University
Levine Science Research Center, Box 90129
Durham, NC 27708, USA
Email: conitzer@cs.duke.edu

