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Abstract

We propose an abstract approach to coalition formation by focusing on

partial preference relations between partitions of a grand coalition. Coali-

tion formation is modelled by means of simple merge and split rules that

transform partitions. We identify conditions under which every iteration

of these rules yields a unique partition. The main conceptual tool is the

notion of a stable partition. The results naturally apply to coalitional

TU-games and to some classes of hedonic games.

1 Introduction

1.1 Background

Coalition formation has been a research topic of continuing interest in the area
of coalitional games. It has been analyzed from several points of view, starting
with [2], where the static situation of cooperative games in the presence of a
given coalition structure (i.e., a partition) was considered. Early research on
the subject is discussed in [10].

More recently, the problem of formation of stable coalition structures was
considered in [15] in the presence of externalities and in [13] in the presence
of binding agreements. In both papers two-stage games are analyzed. In the
first stage coalitions form and in the second stage the players engage in a non-
cooperative game given the emerged coalition structure. In this context the
question of stability of the coalition structure is then analyzed.

Much research on stable coalition structures focused on hedonic games.
These are games in which the payoff of a player depends exclusively on the
members of the coalition he belongs to. In other words, a payoff of a player is a
preference relation on the sets of players that include him. [5] considered four
forms of stability in such games: core, Nash, individual and contractually indi-
vidual stability. Each alternative captures the idea that no player, respectively,
no group of players has an incentive to change the existing coalition structure.
The problem of existence of (core, Nash, individually and contractually individ-
ually) stable coalitions was considered in this and other references, for example
[14] and [6]. A potentially infinitely long coalition formation process in the
context of hedonic games was studied in [3]. This leads to another notion of
stability analogous to subgame perfect equilibrium.

Recently, [4] compared various notions of stability and equilibria in network
formation games. These are games in which the players may be involved in a
network relationship that, as a graph, may evolve. Other interaction structures



which players can form were considered in [8], in which formation of hierarchies
was studied, and [11] in which only bilateral agreements that follow a specific
protocol were allowed. Various aspects of coalition formation are also discussed
in the recent collection of articles [9].

In [1] we introduced the concept of a stable partition for coalitional TU-
games and investigated whether and how so defined stable partitions can be
reached from any initial partition by means of simple transformations. The
underlying concept of ‘quality’ of a partition was defined there by means of
social welfare, which is simply the summed value of the partition.

Finally, the computer science perspective is illustrated by [7] in which an
approach to coalition formation based on Bayesian reinforcement was considered
and tested empirically.

1.2 Approach

In this paper we generalize the approach of [1] and investigate the idea of
coalition formation in an abstract setting. To this end we introduce an abstract
preference relation � between partitions of any subset of players. We then
model coalition formation by means of simple transformations of partitions of
the grand coalition through merges and splits that yield a ‘local’ improvement
w.r.t. the � preference relation.

We then turn to the question of identifying conditions to ensure that arbi-
trary sequences of merges and splits yield the same outcome. We provide an
answer to this question by imposing natural conditions on the � preference rela-
tion (namely transitivity and monotonicity) and by considering a parametrized
concept of a stable partition.

The introduced notion of a stable partition focuses only on the way a group
of players is partitioned. Intuitively, a partition P of the grand coalition is stable
w.r.t. a class of partioned groups iff no such group gains advantage (modelled
by an improvement w.r.t. �) by changing the way it is partitioned by P to its
own partition.

This way we obtain a generic presentation that allows us to study the idea
of coalition formation by focusing only on an abstract concept of the ‘quality’
of a partition. In particular this analysis does not take into account any allo-
cations to individual players. Also, in our results no specific coalitional game
is assumed.

In the setting of coalitional TU-games we obtain results for concrete pref-
erence relations induced by specific orders, some of which are discussed in [12],
viz. the utilitarian, Nash, egalitarian and leximin orders. We also discuss ap-
plications to hedonic games.

In our future work we plan to incorporate into this analysis the concept of a
network structure. In this context a network is an undirected graph on the set
of players that makes explicit the direct links between players. In the presence
of a network only coalitions formed by connected players are allowed.

The paper is organized as follows. In the next section we set the stage by



introducing an abstract comparison relation between partitions of a group of
players and the corresponding merge and split rules that act on such partitions.
Then in Section 3 we discuss a number of natural comparison relations on
partitions within the context of coalitional TU-games. Next, in Section 4, we
introduce and study a parametrized concept of a stable partition and in Section
5 relate it to the merge and split rules. Finally, in Section 6 we explain how
to apply the obtained results to the coalitional TU-games and some classes of
hedonic games.

2 Comparing and transforming collections

Let N = {1, 2, . . . , n} be a fixed set of players called the grand coalition. Non-
empty subsets of N are called coalitions. A collection (in the grand coalition N)
is any family C := {C1, . . . , Cl} of mutually disjoint coalitions, and l is called

its size. If additionally
⋃l

j=1 Cj = N , the collection C is called a partition of

N . For C = {C1, . . . , Ck}, we define
⋃

C :=
⋃k

i=1 Ci.
In this article we are interested in comparing collections. In what follows

we only compare collections A and B that are partitions of the same set, i.e.,
such that

⋃

A =
⋃

B. Intuitively, assuming a comparison relation �, A � B
means that the way A partitions K, where K =

⋃

A =
⋃

B, is preferable to
the way B partitions K.

In specific examples we shall deal both with reflexive and non-reflexive tran-
sitive relations. So, to keep the presentation uniform we only assume that the
relation � is transitive, i.e. for all collections A, B, C with

⋃

A =
⋃

B =
⋃

C,

A � B � C imply A � C, (tr)

and that � is monotonic in the following two senses: for all collections A, B, C, D
with

⋃

A =
⋃

B,
⋃

C =
⋃

D, and
⋃

A ∩
⋃

C = ∅,

A � B and C � D imply A ∪ C � B ∪ D, (m1)

and for all collections A, B, C with
⋃

A =
⋃

B and
⋃

A ∩
⋃

C = ∅,

A � B implies A ∪ C � B ∪ C. (m2)

Of course, if � is reflexive (m2) follows from (m1).
The role of monotonicity will become clear in Section 4. If � is reflexive,

we may denote it by � and if � is irreflexive, we may denote it by �.

Definition 2.1. By a comparison relation we mean a relation on collections
that satisfies the conditions (tr), (m1) and (m2). 2

In what follows we study coalition formation by focusing on the following
two rules that allow us to transform partitions of the grand coalition:

merge: {T1, . . . , Tk} ∪ P → {
⋃k

j=1 Tj} ∪ P , where {
⋃k

j=1 Tj} � {T1, . . . , Tk}



split: {
⋃k

j=1 Tj} ∪ P → {T1, . . . , Tk} ∪ P , where {T1, . . . , Tk} � {
⋃k

j=1 Tj}

Note that both rules use the � comparison relation ‘locally’, by focusing
on the coalitions that take part and result from the merge resp. split. In this
paper we are interested in finding conditions that guarantee that arbitrary
sequences of these two rules yield the same outcome. So, once these conditions
hold, a specific preferred partition exists such that any initial partition can be
transformed into it by applying the merge and split rules in an arbitrary order.

To start with, the following observation isolates the condition that guaran-
tees the termination of the iterations of these two rules.

Note 2.2. Suppose that � is an irreflexive comparison relation. Then every
iteration of the merge and split rules terminates.

Proof. Every iteration of these two rules produces by (m2) a sequence of par-
titions P1, P2, . . . with Pi+1 � Pi for all i ≥ 1. But the number of different
partitions is finite. So by transitivity and irreflexivity of � such a sequence has
to be finite.

The analysis of the conditions guaranteeing the unique outcome of the iter-
ations is now deferred to Section 5.

3 TU-games

To properly motivate the subsequent considerations and to clarify the status of
the monotonicity conditions we now introduce some natural comparison rela-
tions on collections for coalitional TU-games. Recall that a coalitional TU-game
is a pair (v, N), where N = {1, . . ., n} and v is a function from the powerset of
N to the set of non-negative reals.1 In what follows we assume that v(∅) = 0.

For a coalitional TU-game (v, N) the comparison relations on collections are
induced in a canonic way from the corresponding relations on the multisets of
reals, by stipulating that for the collections A and B

A � B iff v(A) � v(B),

where for a collection A := {A1, . . ., Am}, v(A) := {̇v(A1), . . ., v(Am)}̇, denoting
the multisets using dotted braces.

To take into account payoffs to individual players we need to use the concept
of a value function φ that given a coalition A assigns to each player i ∈ A a real
φA(i) such that

∑

i∈A φA(i) = v(A). Then for a collection A := {A1, . . ., Am}

we put v(A) := {̇φAj (i) | i ∈ Aj , j ∈ {1, . . ., m}}̇.
So first we introduce the appropriate relations on the multisets of non-

negative reals. The corresponding definition of monotonicity for such a relation

1The assumption that the values of v are non-negative is non-standard and is needed only

to accomodate for the Nash order, defined below.



� is that for all multisets a, b, c, d of reals

a � b and c � d imply a ∪̇ c � b ∪̇ d

and
a � b implies a ∪̇ c � b ∪̇ c,

where ∪̇ denotes the multiset union.
Given two sequences (a1, . . ., am) and (b1, . . ., bn) of real numbers we define

the (extended) lexicographic order on them by putting

(a1, . . ., am) >lex (b1, . . ., bn)

iff
∃i ≤ min(m, n) (ai > bi ∧ ∀j < i aj = bj)

or
∀i ≤ min(m, n) ai = bi ∧ m > n.

Note that in this order we compare sequences of possibly different length.
We have for example (1, 1, 1, 0) >lex (1, 1, 0) and (1, 1, 0) >lex (1, 1). It is
straightforward to check that it is a linear order.

We assume below that a = {̇a1, . . ., am}̇ and b = {̇b1, . . ., bn}̇ and that a∗ is
a sequence of the elements of a in decreasing order, and define

• the utilitarian order:

a �ut b iff
∑m

i=1 ai >
∑n

j=1 bj ,

• the Nash order:

a �Nash b iff Πm
i=1ai > Πn

j=1bj ,

• the elitist order:

a �el b iff max(a) > max(b),

• the egalitarian order:

a �eg b iff min(a) > min(b),

• the leximin order:

a �lex b iff a∗ >lex b∗.

In [12] these orders were considered for the sequences of the same length.
The intuition behind the Nash order is that when the sum

∑m
i=1 ai is fixed, the

product Πm
i=1ai is largest when all ais are equal. So in a sense the Nash order

favours an equal distribution.
For the first four relations, the corresponding reflexive counterparts are ob-

tained by replacing > by ≥. In turn, �lex, the reflexive version of �lex, is
obtained by additionally including all pairs of equal multisets. Note that all
these preorders are in fact linear (i.e., total) preorders.



Note 3.1. The above relations are all monotonic both in sense (m1) and (m2).

Proof. The only relations for which the claim is not immediate are �lex and
�lex. We will only prove (m1) for �lex; the remaining proofs are analogous.

Let arbitrary multisets of non-negative reals a, b, c, d be given. We define,
with e denoting any sequence or multiset of non-negative reals,

len(e) := the number of elements in e,

µ := (a ∪̇ b ∪̇ c ∪̇ d)∗ with all duplicates removed,

ν(x, e) := the number of occurrences of x in e,

β := 1 +
len(µ)
max
k=1

{ν(µk, a ∪̇ b ∪̇ c ∪̇ d)},

#(e) :=

len(µ)
∑

k=1

ν(µk, e) · β−k.

So µ is the sequence of all distinct reals used in a ∪̇ b ∪̇ c ∪̇ d, arranged in
a decreasing order. The function #(·) injectively maps a multiset e to a real
number y in such a way that in the floating point representation of y with base
β, the kth digit after the point equals the number of occurrences of the kth
biggest number µk in e. The base β is chosen in such a way that even if e is the
union of some of the given multisets, the number ν(x, e) of occurrences of x in
e never exceeds β − 1. Therefore, the following sequence of implications holds:

a∗ >lex b∗ and c∗ >lex d∗ ⇒ #(a) > #(b) and #(c) > #(d)

⇒ #(a) + #(c) > #(b) + #(d)

⇒ #(a ∪̇ c) > #(b ∪̇ d)

⇒ (a ∪̇ c)∗ >lex (b ∪̇ d)∗

As a natural example of a transitive relation that is not monotonic consider
�av defined by

a �av b iff (
∑m

i=1 ai)/m ≥ (
∑n

j=1 bj)/n.

Note that for

a := {̇3}̇, b := {̇2, 2, 2, 2}̇, c := {̇1, 1, 1, 1}̇, d := {̇0}̇

we have both a �av b and c �av d but not a ∪̇ c �av b ∪̇ d since {̇3, 1, 1, 1, 1}̇ �av

{̇2, 2, 2, 2, 0}̇ does not hold.



4 Stable partitions

We now return to our study of collections. One way to identify conditions
guaranteeing the unique outcome of the iterations of the merge and split rules
is through focusing on the properties of such a unique outcome. This brings us
to a concept of a stable partition.

We follow here the approach of [1], although now no notion of a game is
present. The introduced notion is parametrized by means of a defection function
D that assigns to each partition some partitioned subsets of the grand coalition.
Intuitively, given a partition P the family D(P ) consists of all the collections
C := {C1, . . . , Cl} whose players can leave the partition P by forming a new,
separate, group of players ∪l

j=1Cj divided according to the collection C. Two
most natural defection functions are Dp, which allows formation of all partitions
of the grand coalition, and Dc, which allows formation of all collections in the
grand coalition.

Next, given a collection C and a partition P := {P1, . . . , Pk} we define

C[P ] := {P1 ∩
⋃

C, . . . , Pk ∩
⋃

C} \ {∅}

and call C[P ] the collection C in the frame of P . (By removing the empty set
we ensure that C[P ] is a collection.) To clarify this concept consider Figure 1.
We depict in it a collection C, a partition P and C in the frame of P (together
with P ). Here C consists of three coalitions, while C in the frame of P consists
of five coalitions.

C in the frame of P

Collection C

Partition P

Figure 1: A collection C in the frame of a partition P

Intuitively, given a subset S of N and a partition C := {C1, . . . , Cl} of S, the
collection C offers the players from S the ‘benefits’ resulting from the partition



of S by C. However, if a partition P of N is ‘in force’, then the players from S
enjoy instead the benefits resulting from the partition of S by C[P ], i.e., C in
the frame of P .

To get familiar with the C[P ] notation note that

• if C is a singleton, say C = {T}, then {T}[P ] = {P1∩T, . . ., Pk ∩T}\{∅},
where P = {P1, . . ., Pk},

• if C is a partition of N , then C[P ] = P ,

• if C ⊆ P , that is C consists of some coalitions of P , then C[P ] = C.

In general the following simple observation holds.

Note 4.1. For a collection C and a partition P , C[P ] = C iff each element of
C is a subset of a different element of P . 2

This brings us to the following notion.

Definition 4.2. Assume a defection function D and a comparison relation �.
We call a partition P D-stable if C[P ]�C for all C ∈ D(P ) such that C[P ] 6= C.

The last qualification, that is C[P ] 6= C, requires some explanation. First
note that if C is a partition of N , then C[P ] 6= C is equivalent to the statement
P 6= C, since then C[P ] = P . So in the case of the Dp defection function we
have the following simpler definition.

Theorem 4.3. A partition P is Dp-stable iff for all partitions P ′ 6= P , P � P ′

holds. 2

Corollary 4.4. Suppose that � is an irreflexive linear comparison relation.
Then a Dp-stable partition exists. 2

Next, if we deal with a reflexive comparison relation �, then the qualification
C[P ] 6= C can be dropped, as then C[P ] = C implies C[P ] � C. However, if
we deal with an irreflexive comparison relation �, then this qualification is of
course necessary. So using it we can deal with the irreflexive and reflexive case
in a uniform way.

Intuitively, the condition C[P ] 6= C indicates that the players only care
about the way they are partitioned. Indeed, if C[P ] = C, then the partitions
of

⋃

C by means of P and by means of C coincide and are viewed as equally
satisfactory for the players in

⋃

C. By disregarding the situations in which
C[P ] = C we therefore adopt a limited viewpoint of cooperation according
to which the players in C do not care about the presence of the players from
outside of

⋃

C in their coalitions.
The definition of D-stability calls for checks involving (almost) all collections

from D(P). In the case of the Dc defection function, we can considerably simplify
these checks as the following characterization results shows. Given a partition
P := {P1, . . . , Pk} we call here a coalition T P -compatible if for some i ∈
{1, . . . , k} we have T ⊆ Pi and P -incompatible otherwise.



Theorem 4.5. A partition P = {P1, . . . , Pk} of N is Dc-stable iff the following
two conditions are satisfied:

(i) for each i ∈ {1, . . . , k} and each pair of disjoint coalitions A and B such
that A ∪ B ⊆ Pi

{A ∪ B} � {A, B}, (1)

(ii) for each P -incompatible coalition T ⊆ N

{T}[P ] � {T}. (2)

Proof. (⇒) Immediate.

(⇐) Transitivity (tr), monotonicity (m2) and (1) imply by induction that for
each i ∈ {1, . . . , k} and each collection C = {C1, . . . , Cl} with l > 1 and

⋃

C ⊆
Pi,

{

⋃

C
}

� C. (3)

Let now C be an arbitrary collection in N such that C[P ] 6= C. We prove
that C[P ] � C. Define

Di := {T ∈ C | T ⊆ Pi},

E := C \
⋃k

i=1 Di,

Ei := {Pi ∩ T | T ∈ E} \ {∅}.

Note that Di is the set of P -compatible elements of C contained in Pi, E
is the set of P -incompatible elements of C and Ei consists of the non-empty
intersections of P -incompatible elements of C with Pi.

Suppose now that
⋃k

i=1 Ei 6= ∅. Then E 6= ∅ and consequently

k
⋃

i=1

Ei =

k
⋃

i=1

({Pi ∩ T | T ∈ E} \ {∅}) =
⋃

T∈E

{T}[P ]
(m1),(2)

� E. (4)

Consider now the following property:

|Di ∪ Ei| > 1. (5)

Fix i ∈ {1, . . . , k}. If (5) holds, then

{

Pi ∩
⋃

C
}

=
{

⋃

(Di ∪ Ei)
} (3)

� Di ∪ Ei

and otherwise
{

Pi ∩
⋃

C
}

=
{

Di ∪ Ei
}

.

Recall now that

C[P ] =

k
⋃

i=1

{

Pi ∩
⋃

C
}

\ {∅}.



We distinguish two cases.

Case 1. (5) holds for some i ∈ {1, . . . , k}.
Then by (m1) and (m2)

C[P ] �

k
⋃

i=1

(Di ∪ Ei) = (C \ E) ∪
k

⋃

i=1

Ei.

If
⋃k

i=1 Ei = ∅, then also E = ∅ and we get C[P ] � C. Otherwise by (4),
(tr) and (m2)

C[P ] � (C \ E) ∪ E = C.

Case 2. (5) does not hold for any i ∈ {1, . . . , k}.
Then

C[P ] =
k

⋃

i=1

(Di ∪ Ei) = (C \ E) ∪
k

⋃

i=1

Ei.

Moreover, because C[P ] 6= C, by Note 4.1 a P -incompatible element in C exists.

So
⋃k

i=1 Ei 6= ∅ and by (4) and (m2) we get as before

C[P ] � (C \ E) ∪ E = C.

In [1] this theorem was proved for the coalitional TU-games and both the
irreflexive and the reflexive utilitarian orders. The above result isolates the
relevant conditions that the comparison relation, here �, needs to satisfy.

In contrast to the case of the Dp-stable partitions, as shown in [1], a Dc-stable
partition does not need to exist, even if � is irreflexive. In that paper a natural
class of TU-games is defined for which Dc-stable partitions are guaranteed to
exist. In Section 6 we introduce a natural class of hedonic games for which
Dc-stable partitions exist.

5 Stable partitions and merge/split rules

We now resume our investigation of the conditions under which every iteration
of the merge and split rules yields the same outcome. With this in mind we
establish the following results concerned with the Dc defection function.

Note 5.1. If � is an irreflexive comparison relation, then every Dc-stable par-
tition P is closed under the applications of the merge and split rules.

Proof. To prove the closure under merge rule assume that for some
{T1, . . . , Tk} ⊆ P we have {

⋃k
j=1 Tj} � {T1, . . . , Tk}. Dc-stability of P with

C := {
⋃k

j=1 Tj} yields

{T1, . . . , Tk} = {
k
⋃

j=1

Tj}[P ] � {
k

⋃

j=1

Tj},



which is a contradiction by virtue of the transitivity and irreflexivity of �.
The closure under the split rule is shown analogously.

Lemma 5.2. Assume that � is an irreflexive comparison relation and P is
Dc-stable. Let P ′ be closed under applications of merge and split rules. Then
P ′ = P .

Proof. Suppose P = {P1, . . . , Pk}, P ′ = {T1, . . . , Tm}. Assume P 6= P ′. Then
there is i0 ∈ {1, . . . , k} such that for all j ∈ {1, . . . , m} we have Pi0 6= Tj . Let
Tj1 , . . . , Tjl

be the minimum cover of Pi0 . In the following case distinction we
use Theorem 4.5.

Case 1. Pi0 =
⋃l

h=1 Tjh
.

Then {Tj1 , . . . , Tjl
} is a proper partition of Pi0 . But (1) (through its gener-

alization to (3)) yields Pi0 � {Tj1 , . . . , Tjl
}, thus the merge rule is applicable to

P ′.

Case 2. Pi0 (
⋃l

h=1 Tjh
.

Then for some jh we have ∅ 6= Pi0 ∩ Tjh
( Tjh

, so Tjh
is P -incompatible.

By (2) we have {Tjh
}[P ] � {Tjh

}, thus the split rule is applicable to P ′.

This allows us to conclude the following result that answers our initial ques-
tion and clarifies the importance of the Dc-stable partitions.

Theorem 5.3. Suppose that � is an irreflexive comparison relation and P is
a Dc-stable partition. Then

(i) P is the outcome of every iteration of the merge and split rules.

(ii) P is a unique Dp-stable partition.

(iii) P is a unique Dc-stable partition.

Proof. (i) By Note 2.2 every iteration of the merge and split rules terminates,
so the claim follows by Lemma 5.2.

(ii) Since P is Dc-stable, it is in particular Dp-stable. Uniqueness follows from
the transitivity and irreflexivity of � by virtue of Theorem 4.3.

(iii) Suppose that P ′ is a Dc-stable partition. By Note 5.1 P ′ is closed under
the applications of the merge and split rules, so by Lemma 5.2 P ′ = P .

This generalizes the considerations of [1], where this result was established
for the coalitional TU-games and the irreflexive utilitarian order. It was also
shown there that there exist coalitional TU-games in which all iterations of the
merge and split rules have a unique outcome which is not a Dc-stable partition.



6 Hedonic games

Note that the results of the last two sections do not involve any notion of a
game. Only by choosing the monotonic comparison relations introduced in
Section 3 we obtain specific results that deal with coalitional TU-games.

These considerations also readily apply to NTU-games. However, one needs
to be careful since the resulting notion of a stable coalition can be in some
situations counterintuitive. To clarify the limitation of this approach we now
focus on the hedonic games (see, e.g., [5]) that form a specific class of NTU-
games. Recall that a hedonic game (N,�1, . . .,�n) consists of a set of players
N = {1, . . ., n} and a sequence of linear preorders �1, . . .,�n, where each �i is
the preference of player i over the subsets of N containing i. In what follows
we shall not need the assumption that the �i relations are linear.

Again, we let �i denote the associated irreflexive relation. Given a partition
A of N and player i we denote by A(i) the element of A to which i belongs
and call it the set of friends of i in A. Given a hedonic game (N,�1, . . .,�n) a
natural preference relation on the collections is given by:

A � B iff ¬∃C ∈ B ∀i ∈ C.C �i A(i), (6)

where
⋃

A =
⋃

B.
It states that A is preferred over B unless B contains a coalition C such that

each player in C strictly prefers C to his coalition in A. Clearly � is monotonic.
The notion of Dp-stability then coincides with the notion of core stability in [5].

However, the resulting notion of a Dc-stable partition can contradict the
intuition. To see this consider the following example.

Example 6.1. Suppose N = {1, 2, 3, 4}. Consider a hedonic game in which

{2} �2 {2, 3} �2 {1, 2}

and
{3} �3 {2, 3} �3 {3, 4}.

Now take P = {{1, 2}, {3, 4}} and C = {{2, 3}}. Then C[P ] = {{2}, {3}}. So
both players 2 and 3 strictly prefer their coalition in C[P ] to the one in C and
consequently P is ‘stable’ w.r.t. collection C. In fact, it is straightforward to
extend the above ordering in such a way that P is Dc-stable.

However, both players 2 and 3 favour the coalition {2, 3} higher than their
coalition within P , so intuitively P should not be stable. 2

The difficulty in the above example arises from the fact that in players’
preferences smaller coalitions can be preferred over the larger ones. Natural
hedonic games in which this is not the case can be derived from arbitrary
partitions of the set of players. Given a partition P := {P1, . . ., Pk} of N we
assume that each player

• prefers a larger set of friends over a smaller one,



• only ‘cares’ about the sets of his friends in P .

We formalize this order by putting for all sets of players that include i

S �i T iff S ∩ P (i) ⊇ T ∩ P (i).

With this definition, all partitions which result from arbitrary (including no)
applications of the merge rule to P are Dc-stable w.r.t. the reflexive comparison
relation � defined in (6).

Next, we provide an example of a hedonic game in which a Dc-stable par-
tition w.r.t. to a natural irreflexive comparison relation � exists. To this end
given a partition P := {P1, . . ., Pk} of N we now assume that each player

• prefers a larger set of his friends in P over a smaller one,

• ‘dislikes’ coalitions that include a player who is not his friend in P .

We formalize this by putting for all sets of players that include i

S �i T iff S ∪ T ⊆ P (i) and S ⊇ T ,

and by extending this order to the coalitions that include player i and also a
player from outside of P (i) by assuming that they are the minimal elements in
�i. So S �i T iff either S ∪ T ⊆ P (i) and S ⊃ T or S ⊆ P (i) and ¬T ⊆ P (i).

We then define an irreflexive comparison relation on collections by

A � B iff for i ∈ {1, . . ., n} A(i) �i B(i) with at least one �i being strict.

It is straightforward to check that for this comparison relation the partition
{P1, . . ., Pk} satisfies the conditions (1) and (2) of Theorem 4.5. So by virtue
of this theorem {P1, . . ., Pk} is Dc-stable. Further, by virtue of Theorem 5.3,
{P1, . . ., Pk} can be reached from any initial partition through an arbitrary
sequence of the applications of the split and merge rules.
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