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Abstract

Dodgson’s election system elegantly satisfies the Condorcet criterion.
However, determining the winner of a Dodgson election is known to
be ©F-complete ([HHRI7], see also [BTT89]), which implies that unless
P = NP no polynomial-time solution to this problem exists, and unless
the polynomial hierarchy collapses to NP the problem is not even in NP.
Nonetheless, we prove that when the number of voters is much greater
than the number of candidates (although the number of voters may still
be polynomial in the number of candidates), a simple greedy algorithm
very frequently finds the Dodgson winners in such a way that it “knows”
that it has found them, and furthermore the algorithm never incorrectly
declares a nonwinner to be a winner.

1 Introduction

The Condorcet paradoz [Con85], otherwise known as the paradox of voting or
the Condorcet effect, says that rational (i.e., well-ordered) individual preferences
can lead to irrational (i.e., cyclical) majority preferences.? It is a well-known
and widely studied problem in the field of social choice theory [MU95]. A voting
system is said to obey the Condorcet criterion [Con85] if whenever there is a
Condorcet winner—a candidate who in each pairwise subcontest gets a strict
majority of the votes—that candidate is selected by the voting system as the
overall winner.

The mathematician Charles Dodgson (who wrote fiction under the now more
famous name of Lewis Carroll) devised a voting system [Dod76] that has many
lovely properties and meets the Condorcet criterion. In Dodgson’s system, each
voter strictly ranks (i.e., no ties allowed) all candidates in the election. If a
Condorcet winner exists, he or she wins the Dodgson election. If no Condorcet
winner exists, Dodgson’s approach is to take as winners all candidates that are
“closest” to being Condorcet winners, with closest being in terms of the fewest

1This paper appeared in technical report form as [HHO06a] and a shorter version appeared
as [HHO6b]. Supported in part by NSF grant CCF-0426761, a Friedrich Wilhelm Bessel
Research Award, the Alexander von Humboldt Foundation’s TransCoop program, and an
RIT Faculty Evaluation and Development grant.

2For instance, given a choice between a, b, and ¢, one-third of a group might rank (in
order of strictly increasing preference) the candidates (a, b, ¢), another third might rank them
(b,c,a), and the remaining third might rank them (c,a,b). Thus, each voter would have a
cycle-free set of preferences, yet 2/3 of the voters would prefer b to a, another 2/3 would
prefer a to ¢, and still another 2/3 would prefer ¢ to b.



changes to the votes needed to make the candidate a Condorcet winner. We
will in Section 2 describe what exactly Dodgson means by “fewest changes,” but
intuitively speaking, it is the smallest number of sequential switches between
adjacent entries in the rankings the voters provide. It can thus be seen as a
sort of “edit distance” [SK83].

Dodgson wrote about his voting system only in an unpublished pamphlet
on the conduct of elections [Dod76] and may never have intended for it to be
published. It was eventually discovered and disseminated by Black [Bla58] and
is now regarded as a classic of social choice theory [MU95]. Dodgson’s system
was one of the first to satisfy the Condorcet criterion.?

Although Dodgson’s system has many nice properties, it also poses a se-
rious computational worry: The problem of checking whether a certain num-
ber of changes suffices to make a given candidate the Condorcet winner is
NP-complete [BTT89], and the problem of computing an overall winner, as
well as the related problem of checking whether a given candidate is at least
as close as another given candidate to being a Dodgson winner, is complete
for ©F [HHRO7], the class of problems solvable with polynomial-time par-
allel access to an NP oracle [PZ83]. (More recent work has shown that
some other important election systems are complete for ©F: Hemaspaandra,
Spakowski, and Vogel [HSV05] have shown ©%-completeness for the winner
problem in Kemeny elections, and Rothe, Spakowski, and Vogel [RSV03] have
shown ©Of-completeness for the winner problem in Young elections.) The
above complexity-theoretic results about Dodgson elections show, quite dra-
matically, that unless the polynomial hierarchy collapses there is no efficient
(i.e., polynomial-time) algorithm that is guaranteed to always determine the
winners of a Dodgson election. Does this then mean that Dodgson’s widely
studied and highly regarded voting system is all but unusable?

It turns out that if a small degree of uncertainty is tolerated, then there
is a simple, polynomial-time algorithm, GreedyWinner (the name’s appro-
priateness will later become clear), that takes as input a Dodgson election
and a candidate from the election and outputs an element in {“yes”, “no” } x
{“definitely”, “maybe” }. The first component of the output is the algorithm’s
guess as to whether the input candidate was a winner of the input election.
The second output component indicates the algorithm’s confidence in its guess.
Regarding the accuracy of GreedyWinner we have the following results.

Theorem 1.1. . For each (election, candidate) pair it holds that if
GreedyWinner outputs “definitely” as its second output component, then
its first output component correctly answers the question, “Is the input
candidate a Dodgson winner of the input election?”

3The Condorcet criterion may at first glance seem easy to satisfy, but Nanson
showed [Nan82| that many well-known voting systems—such as the rank-order system [Bor84]
widely attributed to Borda (which Condorcet himself studied [Con85] in the same paper in
which he introduced the Condorcet criterion), in which voters assign values to each candi-
date and the one receiving the largest (or smallest) aggregate value wins—fail to satisfy the
Condorcet criterion.



2. For each m,n € N*, the probability that a Dodgson election E selected
uniformly at random from all Dodgson elections having m candidates and
n wvotes (i.e., all (m!)™ Dodgson elections having m candidates and n
votes have the same likelihood of being selected?®) has the property that
there exists at least one candidate ¢ such that GreedyWinner on input
(E,c) outputs “maybe” as its second output component is less than 2(m? —

Ln
m)esm? .

Thus, for elections where the number of voters greatly exceeds the number
of candidates (though the former could still be within a (superquadratic) poly-
nomial of the latter, consistently with the success probability for a family of
election draws thus-related in voter-candidate cardinality going asymptotically
to 1), if one randomly chooses an election E = (C, V), then with high likelihood
it will hold that for each c € C the efficient algorithm GreedyWinner when run
on input (C, V, ¢) correctly determines whether ¢ is a Dodgson winner of E, and
moreover will “know” that it got those answers right. We call GreedyWinner
a frequently self-knowingly correct® heuristic. (Though the GreedyWinner al-
gorithm on its surface is about recognizing Dodgson winners, as discussed in
Section 3 our algorithm can be easily modified into one that is about, given an
E = (C,V), finding the complete set of Dodgson Winners and that does so in
a way that is, in essentially the same high frequency as for GreedyWinner, self-
knowingly correct.) Later in this paper, we will introduce another frequently
self-knowingly correct heuristic, called GreedyScore, for calculating the Dodg-
son score of a given candidate.

2 Dodgson Elections

As mentioned in the introduction, in Dodgson’s voting system each voter strictly
ranks the candidates in order of preference. Formally speaking, for m,n € N*
(throughout this paper we by definition do not admit as valid elections with zero
candidates or zero voters), a Dodgson election is an ordered pair (C, V') where C
isaset {c1,...,cn} of candidates (as noted earlier, we without loss of generality
view them as being named by 1, 2, ..., m) and V is a tuple (v1, ..., v,) of votes
and a Dodgson triple, denoted (C,V,¢), is a Dodgson election (C,V') together
with a candidate ¢ € C. Each vote is one of the m! total orderings over the
candidates, i.e., it is a complete, transitive, and antireflexive relation over the
set of candidates. We will sometimes denote a vote by listing the candidates in

4Since Dodgson voting is not sensitive to the names of candidates, we will throughout
this paper always tacitly assume that all m-candidate elections have the fixed candidate set
1,2,...,m (though in some examples we for clarity will use other names, such as a, b, c,
and d). So, though we to be consistent with earlier papers on Dodgson elections allow the
candidate set “C” to be part of the input, in fact we view this as being instantly coerced into
the candidate set 1,2,...,m. And we similarly view voter names as uninteresting.

5The full version of this paper [HHO06a] contains a long discussion of how self-knowing
correctness differs from other sorts of algorithmic analysis such as smoothed analysis and
average-case complexity, but for space reasons we cannot include that here.



increasing order, e.g., (z,y, z) is a vote over the candidate set {z,y, 2z} in which
y is preferred to x and z is preferred to (z and) y. (Note: A candidate is never
preferred to him- or herself.) For vote v and candidates ¢,d € C, “c <, d’
means “in vote v, d is preferred to ¢” and “c <, d” means “c <, d and there is
no e such that ¢ <, e <, d.” Each Dodgson election gives rise to (7;) pairwise
races, each of which is created by choosing two distinct candidates ¢,d € C and
restricting each vote v to the two chosen candidates, that is, to either (¢, d) or
(d, ¢). The winner of the pairwise race is the one that a strict majority of voters
prefer. Due to ties, a winner may not always exist in pairwise races.

A Condorcet winner is any candidate ¢ that, against each remaining can-
didate, is preferred by a strict majority of voters. For a given election (i.e.,
for a given sequence of votes), it is possible that no Condorcet winner exists.
However, when one does exist, it is unique.

For any vote v and any c,d € C, if ¢ <, d, let Swapqd(v) denote the vote
v', where v’ is the same total ordering of C' as v except that d <, ¢ (note
that this implies d <,/ ¢). If ¢ A, d then Swap, ,(v) is undefined. In effect, a
swap causes ¢ and d to “switch places,” but only if ¢ and d are adjacent. The
Dodgson score of a Dodgson triple (C,V,¢) is the minimum number of swaps
that, applied sequentially to the votes in V', make V' a sequence of votes in
which ¢ is the Condorcet winner. A Dodgson winner is a candidate that has
the smallest Dodgson score. This is the election system developed in the year
1876 by Dodgson (Lewis Carroll) [Dod76], and as noted earlier it gives victory
to the candidate(s) who are “closest” to being Condorcet winners. Note that if
no candidate is a Condorcet winner, then two or more candidates may tie, in
which case all tying candidates are Dodgson winners.

Decision Problem: DodgsonScore  Decision Problem: DodgsonWinner
Instance: A Dodgson triple (C,V,c); Input: A Dodgson triple (C,V,c).

a positive integer k. Question: Is ¢ a winner of the elec-
Question Is Score(C,V, ¢), the Dodg- tion? That is, does ¢ tie-or-defeat all
son score of candidate ¢ in the election other candidates in the election?
specified by (C, V), less than or equal

to k7

Bartholdi, Tovey, and Trick show that the problem of checking whether a cer-
tain number of changes suffices to make a given candidate the Condorcet winner
is NP-complete and that the problem of determining whether a given candidate
is a Dodgson winner is NP-hard [BTT89]. Hemaspaandra, Hemaspaandra, and
Rothe show [HHRO7] that this latter problem, as well as the related problem
of checking whether a given candidate is at least as close as another given
candidate to being a Dodgson winner, is complete for ©F. Hemaspaandra,
Hemaspaandra, and Rothe’s results show that determining a Dodgson winner
is not even in NP unless the polynomial hierarchy collapses. This line of work
has significance because the hundred-year-old problem of deciding if a given can-



didate is a Dodgson winner was more naturally conceived than the problems
that were previously known to be complete for ©F (see [Wag87]).

3 The GreedyScore and GreedyWinner Algorithms

In this section, we study the greedy algorithms GreedyScore and
GreedyWinner, stated as, respectively, Algorithm 1 (page 6) and Algorithm 2
(page 7), and we note that their running time is polynomial. We show that both
algorithms are self-knowingly correct in the sense of the following definition.

Definition 3.1. For sets S and T and function f : S — T, an algorithm
A S — T x {“definitely”, “maybe”} is self-knowingly correct for f if, for all
s €S andt € T, whenever A on input s outputs (t, “definitely”) it holds that
f(s) =t

The reader may wonder whether “self-knowing correctness” is so easily
added to heuristic schemes as to be uninteresting to study. After all, if one
has a heuristic for finding certificates for an NP problem with respect to some
fixed certificate scheme (in the standard sense of NP certificate schemes)—e.g.,
for trying to find a satisfying assignment to an input (unquantified) proposi-
tional boolean formula—then one can use the P-time checker associated with
the problem to “filter” the answers one finds, and can put the label “definitely”
on only those outputs that are indeed certificates. However, the problem stud-
ied in this paper does not seem amenable to such after-the-fact addition of
self-knowingness, as in this paper we are dealing with heuristics that are seek-
ing objects that are computationally much more complex than mere certificates
related to NP problems. In particular, a polynomial-time function-computing
machine seeking to compute an input’s Dodgson score seems to require about
logarithmically many adaptive calls to SAT.6

We call GreedyScore “greedy” because, as it sweeps through the votes,
each swap it (virtually) does immediately improves the standing of the input
candidate against some adversary that the input candidate is at that point
losing to. The algorithm nonetheless is very simple. It limits itself to at most
one swap per vote. Yet, its simplicity notwithstanding, we will eventually prove
that this (self-knowingly correct) algorithm is very frequently correct.

6We say “seems to,” but we note that one can make a more rigorous claim here. As
mentioned in Section 2, among the problems that Hemaspaandra, Hemaspaandra, and
Rothe [HHR97] prove complete for the language class @127 is DodgsonWinner. If one could, for
example, compute Dodgson scores via a polynomial-time function-computing machine that
made a (globally) constant-bounded number of queries to SAT, then this would prove that
DodgsonWinner is in the boolean hierarchy [CGHT88], and thus that ©} equals the boolean
hierarchy, which in turn would imply the collapse of the polynomial hierarchy [Kad88]. That
is, this function problem is so closely connected to a @g-complete language problem that if
one can save queries in the former, then one immediately has consequences for the complexity
of the latter.



Algorithm 1: GreedyScore(C,V,¢) [n
= number of voters; m = number of
candidates]

1: for all d € C—{c} do

2:  Deficit[d] — 1 —[n/2]

3:  Swaps[d] — 0

4: end for

5: for all votes v[] in V do

6:  state < “nocount”

7. forallie(1,...,m) do

8: if (state = “incrdef”) V (state =
“swap”) then

9: Deficit[v]i]] « Deficit[v[i]] + 1

10: if state = “swap” then

11: Swaps[v(i]] < Swaps[v[i]] + 1

12: state < “incrdef”

13: end if

14: else if ¢ = v[i] then

15: state «— “swap”

16: end if

17:  end for

18: end for

19: confidence «— “definitely”
20: score + 0

21: for all d € C—{c} do
22:  if Deficit[d] > 0 then

23: score «— score + Deficit[d]

24: if Deficit|d] > Swaps[d] then
25: confidence «— “maybe”

26: score «— score + 1

27: end if

28: end if

29: end for

30: return (score, confidence)

where (C,V,c) is the input to the encoding scheme.

We now state the main result
for this section, and a bit later we
will briefly describe the algorithms in
English.

Theorem 3.2. 1. GreedyScore
(Algorithm 1) is self-knowingly
correct for Score (recall that
Score is defined in  Sec-
tion 2 in the statement of
the DodgsonScore problem,).

2. GreedyWinner (Algorithm 2)
is  self-knowingly correct for

DodgsonWinner.
3. GreedyScore and
GreedyWinner both run in

polynomial time.”

Note that Theorem 1.1.1 follows
directly from Theorem 3.2.2. We will
prove Theorem 1.1.2 in Section 4.

Theorem 3.2, since it just states
polynomial time, is not heavily de-
pendent on the encoding scheme used.
However, we will for specificity give
a specific scheme that can be used.
Note that the scheme we use will
encode the inputs as binary strings
by a scheme that is easy to com-
pute and invert and encodes each
vote as an O(||C| log ||C||)-bit sub-
string and each Dodgson triple as
an O(|V'] - ] - log |C]|)-bit string,
For a Dodgson triple

(C,V,c), our encoding scheme is as follows.

"The number of times lines of Algorithm 1 (respectively, Algorithm 2) are executed is
clearly O(||V]| - |IC||) (respectively, O(|V]| - [|C||?)), and so these are indeed polynomial-time
algorithms.

For completeness, we mention that when one takes into account the size of the objects being
manipulated (in particular, under the assumption—which in light of the encoding scheme we
will use below is not unreasonable—that it takes O(log ||C||) time to look up a key in either
Deficit or Votes and O(log ||V||) time to update the associated value, and each Swap operation
takes O(log ||C||) time) the running time of the algorithm might be more fairly viewed as
O(IVII-ICI - (log [[C] +log [V])) (respectively, O(|[V'[|- [C]2 - (log |C | + log | V]}))), though
in any case it certainly is a polynomial-time algorithm.



- First comes ||C]|, encoded as a binary string of length [log (]|C|| + 1)],® pre-
ceded by the substring 1/ (ICII+DTg,

- Next comes the chosen candidate ¢, encoded as a binary string of length
[log ([[C| +1)].

- Finally each vote is encoded as a binary substring of length |C| -
[log ([IC]| + 1)

Regarding the notation used in Algorithm 1: A vote is represented as an
array v[] of length m, where m = ||C||. For each vote v[], v[l] is the least
preferred candidate, v[2] is the second least preferred candidate, and so on, and
v[m] is the most preferred candidate. Swap,(v) means that the ith and (i +1)st
values in v[] are swapped.

We now describe in English
what our algorithms actually

Algorithm 2: GreedyWinner(C,V,c) do (however, all references
1: (escore, confidence) = GreedyScore(C,V, c) above and below to specific
2: winner «— “yes” variables such as v[|, Swap]],
3: for all candidates d € C—{c} do and Deficit]], refer to their in-
4:  (dscore,dcon) — GreedyScore(C,V, d) cluded pseudocode versions).
5 if dscore < cscore then Briefly put, GreedyScore, for
g ng;l er = mo each candidate d, ¢ # d €
Poone! « ; C, computes (in Deficit[d]) the
8: if dcon = “maybe” then .
. « » number of votes (if any) that
9: confidence < “maybe A
10:  end if ¢ needs to gain in order to
11: end for have strictly more votes than
12: return (winner, confidence) d (in a pairwise contest be-

tween them), and computes (in
Swaps[d]) the number of votes
v in which d is immediately adjacent to and preferred to ¢ (¢ <, d). If the
former number is strictly greater than zero and the latter number is at least as
large as the former number, then it is the case that by adjacent swaps in exactly
the former number of votes—when done in that number of votes chosen from
among those votes v satisfying ¢ <, d—c can be with perfect efficiency (every
swap pays off by reducing a positive shortfall) be changed to beating d. If the
number values just stated are not the case, the GreedyScore algorithm declares
that it is stumped by the current input. If it is stumped for no candidate d,
¢ # d € C, then it simply adds up the costs of defeating each other candidate,
and is secure in the knowledge that this is optimal (see also the proof below).
Turning to the GreedyWinner algorithm, it does the above for all candidates,
and if while doing so GreedyScore is never stumped, then GreedyWinner uses in

8 All logarithms in this paper are base 2. We use [log (||C|| + 1)]-bit strings rather than
[log (||C||)]-bit strings as we wish to have the size of the coding scale at least linearly with
the number of voters even in the pathological ||C|| = 1 case (in which each vote carries no
information other than about the number of voters).



the obvious way the information it has obtained, and (correctly) states whether
c is a Dodgson winner of the input election.

Proof of Theorem 3.2. For item 1, suppose that GreedyScore, on input
(C,V,¢), returns “definitely” as the second component of its output. Then,
at the point in time when the algorithm completes, it must hold that, for each
d € C —{c}, Swaps[d] > Deficit[d]. Note that for each d € C—{c}, Deficit|[d]
is initially set to 1 — [||V'||/2] and then is incremented once for every vote v in
which d is preferred to ¢. As noted above, it follows that Deficit[d], if it after
that process is nonnegative,

will be set to the minimum number of votes v where the relationship ¢ <, d
needs to be reversed in order for ¢ to beat d. Also as noted above, Swap|d]
will by the time all votes are visited be set to the number of votes v such that
¢ <y d. Thus, since Swaps|d] > Deficit[d] it is possible (i.e., by swapping ¢ and d
in Deficit[d] of the votes that Swaps|d] counts) to turn (C, V') into an election in
which ¢ beats d by performing only Deficit[d] swaps involving d (which clearly
is the fewest swaps that can result in ¢ beating d) when Deficit[d] > 0, and
by performing zero swaps involving d when Deficit[d] < 0. From this, and
because for each d,e € C—{c} such that d # e A Swaps[d] > Deficit[d] >
0 A Swapsle] > Deficitle] > 0 it holds that {v | v is vote in C' and ¢ <, e} N
{v | v is vote in C and ¢ <, d} = 0, one can by making Deficit[d] + Deficit[e]
swaps turn (C,V) into an election in which ¢ beats both d and e. Similarly,
one can by making Yjec—{c}:peficit[d)>0Deficit[d] swaps turn (C,V) into an
election in which ¢ beats every d € C—{c}. Because one swap reverses the
preference relationship between exactly one pair of candidates in exactly one
vote, Ygec—{c}: Deficit[d)>0 Deficit[d] is the Dodgson score of ¢, which is the first
component of the output of GreedyScore whenever the second component is
“definitely.”

For item 2, clearly GreedyWinner correctly checks whether ¢ is a Dodgson
winner if every call it makes to GreedyScore correctly calculates the Dodgson
score. GreedyWinner then returns “definitely” exactly if each call it makes
to GreedyScore returns “definitely.” But, by item 1, GreedyScore is self-
knowingly correct.

Item 3 follows from a straightforward analysis of the algorithm (see also
footnote 7). O

Note that GreedyWinner could easily be modified into a new polynomial-
time algorithm that, rather than checking whether a given candidate is the
winner of the given Dodgson election, finds all Dodgson winners by taking as
input a Dodgson election alone (rather than a Dodgson triple) and outputting a
list of all the Dodgson winners in the election. This modified algorithm on any
Dodgson election (C,V) would make exactly the same calls to GreedyScore
that the current GreedyWinner (on input (C,V,c), where ¢ € C) algorithm
makes, and the new algorithm would be accurate whenever every call it makes
to GreedyScore returns “definitely” as its second argument. Thus, whenever
the current GreedyWinner would return a “definitely” answer so would the new



Dodgson-winner-finding algorithm (when their inputs are related in the same
manner as described above). These comments explain why in the title (and
abstract), we were correct in speaking of “finding Dodgson-Election Winners”
(rather than merely recognizing them).

4 Analysis of the Correctness Frequency of the
Two Heuristic Algorithms

In this section, we prove that, as long as the number of votes is much greater
than the number of candidates, GreedyWinner is a frequently self-knowingly
correct algorithm.

Theorem 4.1. For each m,n € NT the following hold. Let C = {1,...,m}.

1. Let V satisfy V|| = n. For each c € C, if for all d € C—{c} it holds that
{i € {1,....n} | ¢ <o, d}|| < 2222 and ||{i € {1,...,n} | ¢ <o, d}]| >
3 then GreedyScore(C,V,c) = (Score(C,V,c), “definitely”).

4m
2. For each c,d € C such that ¢ # d, Pr((||[{i € {1,...,n} | ¢ <y, d}|| >
2mntn) v (I1{i € {1,...,n} | ¢ <y, d}]| < 22)) < 2esm? | where the proba-

4m
bility is taken over drawing uniformly at random an m-candidate, n-voter
Dodgson election V = (v1,...,v,) (i.e., all (m))™ Dodgson elections hav-

ing m candidates and n voters have the same likelihood of being chosen).

3. For  each ¢ € C, Pr(GreedyScore(C,V, ¢) #
(Score(C,V,¢), “definitely”)) < 2(m — 1)esnZ, where the probability
is taken over drawing uniformly at random an m-candidate, n-voter
Dodgson election V = (v1,...,0p).

4. Pr((3e € C)[GreedyWinner(C,V, c) #
(DodgsonWinner(C, V, ¢), “definitely”)]) < 2(m2? — m)esn?, where the
probability is taken over drawing uniformly at random an m-candidate,
n-voter Dodgson election V- = (v1,...,vp).

Note that Theorem 1.1.2 follows from Theorem 4.1.4.

The main intuition behind Theorem 4.1 is that, in any election having m
candidates and n voters, and for any two candidates ¢ and d, it holds that,
in exactly half of the ways v a voter can vote, ¢ <, d, but for exactly 1/m
of the ways, ¢ <, d. Thus, assuming that the votes are chosen independently
of each other, when the number of voters is large compared to the number of
candidates, with high likelihood the number of votes v for which ¢ <, d will
hover around n/2 and the number of votes for which ¢ <, d will hover around
n/m. This means that there will (most likely) be enough votes available for our
greedy algorithms to succeed.

Throughout this section, regard V = (vy,...,v,) as a sequence of n inde-
pendent observations of a random variable v whose distribution is uniform over



the set of all votes over a set C' = {1,2,...,m} of m candidates, where 7 can
take, with equal likelihood, any of the m! distinct total orderings over C. (This
distribution should be contrasted with such work as that of, e.g., [RMO05], which
in a quite different context creates dependencies between voters’ preferences.)
Proof of Theorem 4.1. For item 1, 2"?#‘”‘ = § + 1=, so, if [[{i €
{1,....n} | ¢ <y, d}|| < 222 then either ¢ already beats d or if not then
the defection of more than ;- votes from preferring-d-to-c to preferring-c-to-d
would (if such votes exist) ensure that ¢ beats d. If ||[{i € {1,...,n} | c <y, d}|| >
437’:L then (keeping in mind that we have globally excluded as invalid all cases
where at least one of n or m equals zero) |[{i € {1,...,n} | ¢ <y, d}|| > 7%,
and so GreedyScore will be able to make enough swaps (in fact and this
is critically important in light of Algorithm 1, there is a sequence of swaps
such that any vote has at most one swap operation performed on it) so that ¢
beats d. Item 2 follows from applying the union bound (which of course does
not require independence) to Lemma 4.3, which is stated and proven below.
Item 3 follows from item 1 and from applying item 2 and the union bound to
Pr(Vaec— (o (i € {1, ,n} [ e <o, d}]| > 2E) V([{i € {1,... .0} [ e <y,

d}|| < 22))). Item 4 follows from item 1 and from applying item 2 and the
union bound to Pr(V, jec n exa(({i € {1,....n} [ ¢ <y, d}| > 2matn) v (|1{i €
{1 ;n} | ¢ =y, d}| < 22))) (note that [|[{(c,d) [c€C AdeC Ac#d}| =

O

m? —m)

We now turn to stating and proving Lemma 4.3, which is needed to support
the proof of Theorem 4.1. Lemma 4.3 follows from the following variant of
Chernoff’s Theorem [Cheb2].

Theorem 4.2 ([AS00]). Let X1,..., X, be a sequence of mutually independent
random variables. If there exists a p € [0,1] C R such that, for each i €
{1,...,n}, (Pr(X; =1—p)=p and Pr(X; = —p) = 1 — p), then for alla € R
where a > 0 it holds that Pr(S7_, X; > a) < e~247/n,

Lemma 4.3. 1. Pr(|[{i € {1,...,n} | ¢ <,, d}|| > 2mntn) < esm?

2. Pr([{i € {1,...,n} | ¢ <y, d}|| < 32) < e5mz.

. (12 ife<y, d,
Proof. 1. For each i € {1,...,n}, define X; as X; = { “1/2 otherwise.

Then [|{i € {1,...,n} | ¢ <y, d}|| > 222 exactly if Y | X; > § (2mndn)

m

%(n— %).Since % (2"4‘#4'") - % (n—%) = 1 settmga— 1 and

p= % in Theorem 4.2 yields the desired result.
. [ 1/m if ¢ 4, d,
2. For each i € {1,...,n}, define X; as X; = { 1/m—1 otherwise.

Then ||{i € {1 ,n} | e <y, d}f| < s if and only if ||{i € {1,. n} | ¢ Au,
d}l >n——;1fand only 1f211X > %(n—i’—;)—&—(——l) . Since
1 3n

s (n — R)""(E — 1) = 1, setting a = {- and p = 1—— in Theorem4 2
yields the desired result. O



We now have proven Theorem 1.1.

Proof of Theorem 1.1. As mentioned in Section 3, Theorem 1.1.1 follows from
Theorem 3.2.2. Theorem 1.1.2 follows from Theorem 4.1.4. O

5 Conclusion and Open Directions

The Dodgson voting system elegantly satisfies the Condorcet criterion. Al-
though it is NP-hard (and so if P # NP is computationally infeasible) to deter-
mine the winner of a Dodgson election or compute scores for Dodgson elections,
we provided heuristics, GreedyWinner and GreedyScore, for computing winners
and scores for Dodgson elections. We showed that these heuristics are compu-
tationally simple, and we showed that, over all elections of a given size where
the number of voters is much greater than the number of candidates (although
the number of voters may still be polynomial in the number of candidates) in
a randomly chosen election, these algorithms, with likelihood approaching one,
get the right answer and know that they are correct.

We consider the fact that one can prove this even for such simple greedy
algorithms to be an advantage—it is good that one does not have to resort to
involved algorithms to guarantee extremely frequent success. Nonetheless, it is
also natural to wonder to what degree these heuristics can be improved. What
would be the effect of adding, for instance, limited backtracking or random
nongreedy swaps to our heuristics? Regarding our analysis, in the distribu-
tions we consider, each vote is cast independently of every other. What about
distributions in which there are dependencies between voters?

It is also natural to wonder whether one can state a general, abstract model
of what it means to be frequently self-knowingly correct. That would be a large
project (that we heartily commend as an open direction), and here we merely
make a brief definitional suggestion for a very abstract case—in some sense
simpler to formalize than Dodgson elections, as Dodgson elections have both a
voter-set size and a candidate-set size as parameters, and have a domain that
is not 3* but rather is the space of valid Dodgson triples—namely the case of
function problems where the function is total and the simple parameter of input-
length is considered the natural way to view and slice the problem regarding
its asymptotics. Such a model is often appropriate in computer science (e.g.,
a trivial such problem—Ileaving tacit the issues of encoding integers as bit-
strings—is f(n) = 2n, and harder such problems are f(n) equals the number
of primes less than or equal to n and f(0%) = ||SAT N X¢||).

Definition 5.1. Let A be a self-knowingly correct algorithm for g : ¥* — T.

1. We say that A is frequently self-knowingly correct for ¢ if
o ”{IGE"‘A(I’%XE‘ “maybe | _

lim,,



2. Let h be some polynomial-time computable mapping from N to the ra-
tionals. We say that A is h-frequently self-knowingly correct for g if

zeX"|A(x)ET “ be”
e AT “maybe DIl _ ().

Since the probabilities that the above definition is tracking may be quite en-
coding dependent, the second part of the above definition allows us to set more
severe demands regarding how often the heuristic (which, being self-knowingly
correct, always has the right output when its second component is “definitely”)
is allowed to remain uncommitted.
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