
Voting Systems and Automated Reasoning:
the QBFEVAL Case Study

Massimo Narizzano and Luca Pulina and Armando Tacchella1

Abstract

Systems competitions play a fundamental role in the advancement of the state of
the art in several automated reasoning fields. The goal of such events is to answer
the question: “Which system should I buy?”. Usually the answer comes as the
byproduct of a ranking obtained by considering a pool of problem instances and
then aggregating the performances of the systems on each member of the pool. In
this paper, we consider voting systems as an alternative to other procedures which
are well established in automated reasoning contests. Our research is aimed to
compare methods that are customary in the context of social choice, with meth-
ods that are targeted to artificial settings, including a new hybrid method that we
introduce. Our analysis is empirical, in that we compare the aggregation proce-
dures by computing measures which should account for their effectiveness using
the data from the 2005 evaluation of quantified Boolean formulas solvers that we
organized. The results of our experiments give useful indications about the rela-
tive strengths and weaknesses of the procedures under test, and allow us to infer
also some conclusions that are independent of the specific procedure adopted.

1 Introduction

Systems competitions play a fundamental role in the advancement of the state of the
art in several automated reasoning fields. A non-exhaustive list of such events in-
cludes the CADE ATP System Competition (CASC) [1] for theorem provers in first
order logic, the SAT Competition [2] for propositional satisfiability solvers, the In-
ternational Planning Competition (see, e.g., [3]) for symbolic planners, the CP Com-
petition (see, e.g., [4]) for constraint programming systems, the Satisfiability Modulo
Theories (SMT) Competition (see, e.g., [5]) for SMT solvers, and the evaluation of
quantified Boolean formulas solvers (QBFEVAL, see [6, 7, 8] for previous reports).
The main purpose of the above events is to designate a winner, i.e., to answer the
question: “Which system should I buy?”. Even if such perspective can be limiting,
and the results of automated reasoning systems competitions may provide less insight
than controlled experiments in the spirit of [9], there is a general agreement that com-
petitions raise interest in the community and they help to set research challenges for
developers and assess the current technological frontier for users. The usual way to
designate a winner in competitions is to compute a ranking obtained by considering
a pool of problem instances and then aggregating the performances of the systems on
each member of the pool. While the definition of performances can encompass many

1The authors wish to thank the Italian Ministry of University and Research (MIUR) for its financial
support, the anonymous reviewers who helped us to improve the quality of the paper, and Elena Seghezza
for making some relevant references available to us.



aspects of a system, usually it is the capability of giving a sound solution to a high
number of problems in a relatively short time that matters most. Therefore, one of
the issues that occurred to us as organizers of QBFEVAL, relates to the procedures
used to compute the final ranking of the solvers, i.e., we had to answer the question
“Which aggregation procedure is best?”. Indeed, even if the final rankings cannot be
interpreted as absolute measures of merit, they should at least represent the relative
strength of a system with respect to the other competitors based on the difficulty of the
problem instances used in the contest.

Our analysis of aggregation procedures considers three voting systems, namely
Borda’s method [10], range voting [11] and Schulze’s method [12], as an alterna-
tive to methods which are well estabished in automated reasoning contests, namely
CASC [1], the SAT competitions [2], and QBFEVAL [13] (before 2006). We adapted
voting systems to the artificial setting of systems competition by considering the sys-
tems as candidates and the problem instances as voters. Each instance casts its vote
on the systems in such a way that systems with the best performances on the instance
will be preferred over other candidates. The individual preferences are aggregated to
obtain a collective choice that determines the winner of the contest. Our motivation to
investigate methods which are customary in the context of social choice by applying
them to the artificial setting of systems competitions is twofold. First, although voting
systems do not enjoy a great popularity in automated reasoning systems contests (one
exception is Robocup [14] using Borda’s method), there is a substantial amount of lit-
erature in social choice (see, e.g., [15]) that deals with the problem of identifying and
formalizing appropriate methods of aggregation in specific domains. Second, voting
can be seen as a way to “infer the candidates’ absolute goodness based on the voters’
noisy signals, i.e., their votes.” [16]. Therefore, the use of voting systems as aggrega-
tion procedures could pave the way to extracting hints about the absolute value of a
system from the results of a contest.

In the paper, we also propose a new procedure called YASM (“Yet Another Scor-
ing Method”)2 that we selected as an aggregation procedure for QBFEVAL’06. YASM
is an hybrid between a voting system and traditional aggregation procedures used in
automated reasoning contests. Our results show that YASM provides a good compro-
mise when considering some measures that should quantify desirable properties of the
aggregation procedures. In particular, the measures we propose account for:

• the degree of fidelity of the procedures, i.e., given a synthesized set of raw data,
evaluate whether a procedure distorts the results;

• the degree of stability of each procedure with respect to perturbations(i) in the
size of the test set,(ii) in the amount of resources available (CPU time), and
(iii) in the quality of the test-set;

• the representativeness of each procedure with respect to the state of the art ex-
pressed by the competitors.

2The terminology “scoring method” is somewhat inappropriate in the context of social choice, as it
recalls a positional scoring procedure such as Borda’s method and range voting; we decided to keep the
original terminology for consistency across the previous works [17, 18, 21].



We compute the above measures using part of the results from QBFEVAL’05 [8]. In
particular, the results of our experiments give useful indications about the relative
strengths and weaknesses of the aggregation procedures, and allow us to infer also
some conclusions that are independent of the specific method adopted.

This paper builds on and extends previous work by one of the authors [17]. First,
the version of YASM that we present here improves on the one presented in [17]. In
particular, the new YASM is simpler and more effective when compared to the old one.
Moreover, the comparison of aggregation procedures is broadened by the addition of
new effectiveness measures (fidelity, see Section 4), and an improved definition of
State-Of-The-Art (SOTA) relevance (see Section 4).

The paper is structured as follows. In Section 2 we introduce the case study of
QBFEVAL’05 [8], and we introduce the state of the art aggregation procedures. In
Section 3 we introduce our new aggregation procedure, and then we compare it with
other methods in Section 4 using several effectiveness measures. We conclude the
paper in Section 5 with a discussion about the presented results.

2 Preliminaries

2.1 QBFEVAL’05

QBFEVAL’05 [8] is the third in a series of non-competitive events that preceded
QBFEVAL’06. QBFEVAL’05 accounted for 13 competitors, 553 quantified Boolean
formulas (QBFs) and three QBF generators submitted. The test set was assembled
using a selection of 3191 QBFs obtained considering the submissions and the in-
stances archived in QBFLIB [19]. The results of QBFEVAL’05 can be listed in a
table RUNS comprised of four attributes (column names):SOLVER, INSTANCE, RE-
SULT, and CPUTIME. The attributesSOLVER and INSTANCE report which solver is
run on which instance.RESULT is a four-valued attribute:SAT, i.e., the instance was
found satisfiable by the solver,UNSAT, i.e., the instance was found unsatisfiable by the
solver,TIME, i.e., the solver exceeded a given time limit without solving the instance
(900 seconds in QBFEVAL’05), andFAIL , i.e., the solver aborted for some reason
(e.g., a run-time error, an inherent limitation of the solver, or any other reason beyond
our control). Finally,CPUTIME reports the CPU time spent by the solver on the given
instance, in seconds. In the analysis herewith presented we used a subset of QBFE-
VAL’05 RUNS table, including only the solvers that, as far as we know, work correctly
(the solvers of the second stage of the evaluation) and the QBFs coming from classes
of instances having fixed structure (see [8] for more details). Under these assumptions,
RUNS table reduces to 4408 entries, one order of magnitude less than the original one.
This choice allows us to disregard correctness issues, to reduce considerably the over-
head of the computations required for our analysis, and, at the same time, maintain a
significant number of runs. The aggregation procedures that we evaluate, the measures
that we compute and the results that we obtain, are based on the assumption that a
table identical to RUNS as described above is the only input required by a procedure.
As a consequence, the aggregation procedures (and thus our analysis) do not take into



account(i) memory consumption,(ii) correctness of the solution, and(iii) “quality”
of the solution.

2.2 State of the art aggregation procedures

In the following we describe in some details the state of the art aggregation procedures
used in our analysis. For each method we describe only those features that are relevant
for our purposes. Further details can be found in the references provided.

CASC [1] Using CASC methodology, the solvers are ranked according to the num-
ber of problems solved, i.e., the number of timesRESULT is eitherSAT or UNSAT.
Under this procedure, solverA is better than solverB, if and only if A is able to solve
at least one problem more thanB within the time limit. In case of a tie, the solver far-
ing the lowest average onCPUTIME fields over the problems solved is the one which
ranks first.

QBF evaluation [13] QBFEVAL methodology is the same as CASC, except for the
tie-breaking rule, which is based on the sum ofCPUTIME fields over the problems
solved.

SAT competition [2] The last SAT competition uses apurse-based method, i.e., the
measure of effectiveness of a solver on a given instance is obtained by adding up three
purses:

• the solution purse, which is divided equally among all solvers that solve the
problem;

• the speed purse, which is divided unequally among all the competitors that solve
the problem, first by computing the speed factorFs,i of a solvers on a problem
instancei:

Fs,i =
k

1 + Ts,i
(1)

wherek is an arbitrary scaling factor (we setk = 104 according to [20]), and
Ts,i is the time spent bys to solvei; then by computing the speed awardAs,i,
i.e., the portion of speed purse awarded to the solvers on the instancei:

As,i =
Pi · Fs,i∑

r Fr,i
(2)

wherer ranges over the solvers, andPi is the total amount of the speed purse
for the instancei.

• the series purse, which is divided equally among all solvers that solve at least
one problem in a given series (a series is a family of instances that are somehow
related, e.g., different QBF encodings for some problem in a given domain).

The overall ranking of the solvers under this method is obtained by considering the
sum of the purses obtained on each instance, and the winner of the contest is the solver
with the highest sum.



Borda’s method [10] Suppose thatn solvers (candidates) andm instances (voters)
are involved in the contest. Consider the sorted list of solvers obtained for each in-
stance by considering the value of theCPUTIME field in ascending order. Letps,i be the
position of a solvers (1 ≤ s ≤ n) in the list associated with instancei (1 ≤ i ≤ m).
According to Borda’s method, each voter’s ballot consists of a vector of individual
scores given to candidates, where the scoreSs,i of solvers on instancei is simply
Ss,i = n − ps,i. In cases of time limit attainment or failure, we defaultSs,i to 0. The
score of a candidate, given the individual preferences, is justSs =

∑
i Ss,i, and the

winner is the solver with the highest score.

Range voting [11] Again, suppose thatn solvers andm instance are involved in the
contest andps,i is obtained as described above for Borda’s method. We let the score
Ss,i of solvers on instancei be the quantityarn−ps,i , i.e., we use a positional scoring
rule following a geometric progression with a common ratior = 2 and a scale factor
a = 1. We consider failures and time limit attainments in the same way (we call this
the failure-as-time-limit model in [21]), and thus we assume that all the voters express
an opinion about all the solvers. The overall score of a candidate is againSs =

∑
i Ss,i

and the candidate with the highest score wins the election.

Schulze’s method We denote as such an extension of the method described in Ap-
pendix 3 of [12]. Since Schulze’s method is meant to compute a single overall winner,
we extended the method according to Schulze’s suggestions [22] in order to make it
capable of generating an overall ranking.

3 YASM: Yet Another Scoring Method (Revisited)

While the aggregation procedures used in CASC and QBF evaluations are straight-
forward, they do not take into account some aspects that are indeed considered by
the purse-based method used in the last SAT competition. On the other hand, the
purse-based method used in SAT requires some oracle to assign purses to the problem
instances, so the results can be influenced heavily by the oracle. In [17] a first ver-
sion of YASM was introduced as an attempt to combine the two approaches: a rich
method like the purse-based one, but using the data obtained from the runs only. As
reported in [17], YASM featured a somewhat complex calculation, yielding unsatisfac-
tory results, particularly in the comparison with the final ranking produced by voting
systems. Here we revise the original version of YASM to make its computation sim-
pler, and to improve its performance using ideas borrowed from voting systems. From
here on, we call YASMv2 the revised version, and YASM the original one presented
in [17]. YASMv2 requires a preliminary classification whereby a hardness degreeHi

is assigned to each problem instancei using the same equation as in CASC [1] (and
YASM):

Hi = 1− Si

St
(3)



CASC QBF SAT YASM YASMv2 Borda r.v. Schulze
CASC – 1 0.71 0.86 0.79 0.86 0.71 0.86
QBF – 0.71 0.86 0.79 0.86 0.71 0.86
SAT – 0.86 0.86 0.71 0.71 0.71
YASM – 0.86 0.71 0.71 0.71
YASMv2 – 0.86 0.86 0.86
Borda – 0.86 1
r. v. – 0.86
Schulze –

Table 1: Homogeneity of aggregation procedures.

whereSi is the number of solvers that solvedi, andSt is the total number of
participants to the contest. Considering equation (3), we notice that0 ≤ Hi ≤ 1,
whereHi = 0 means thati is relatively easy, whileHi = 1 means thati is relatively
hard. We can then compute the measure of effectivenessSs,i of a solvers on a given
instancei (this definition changes with respect to YASM):

Ss,i = ks,i · (1 + Hi) ·
L− Ts,i

L−Mi
(4)

whereL is the time limit,Ts,i is the CPU time used up bys to solvei (Ts,i ≤ L),
andMi = mins{Ts,i}, i.e.,Mi is the time spent on the instancei by theSOTA solver
defined in [8] to be the ideal solver that always fares the best time among all the par-
ticipants. The hybridization with voting systems comes into play with the coefficient
ks,i which is computed as follows. Suppose thatn solvers are participating to the con-
test. Each instance ranks the solvers in ascending order considering the value of the
CPUTIME field. Let ps,i be the position of a solvers in the ranking associated with
instancei (1 ≤ ps,i ≤ n), thenks,i = n − ps,i. In case of time limit attainment and
failure, we defaultks,i to 0, and thus alsoSs,i is 0. The overall ranking of the solvers
is computed by considering the valuesSs =

∑
i Ss,i for all 1 ≤ s ≤ n, and the solver

with the highest sum wins.
We can see from equation (4) that in YASMv2 the effectiveness of a solver on a

given instance is influenced by three factors, namely(i) a Borda-like positional weight
(ks,i), (ii) the relative hardness of the instance (1 + Hi), and(iii) the relative speed
of the solver with respect to the fastest solver on the instance (L−Ts,i

L−Mi
). Intuitively,

coefficient(ii) rewards the solvers that are able to solve hard instances, while(iii)
rewards the solvers that are faster than other competitors. The coefficientks,i has been
added to stabilize the final ranking and make it less sensitive to an initial bias in the
test set. As we show in the next Section, this combination allows YASMv2 to reach
the best compromise among different effectiveness measures.

4 Experimental Evaluation

4.1 Homogeneity

The rationale behind this measure (introduced in [17]) is to verify that, on a given test
set, the aggregation procedures considered(i) do not produce exactly the same solver



Method Mean Std Median Min Max IQ Range F
QBF 182.25 7.53 183 170 192 13 88.54
CASC 182.25 7.53 183 170 192 13 88.54
SAT 87250 12520.2 83262.33 78532.74 119780.48 4263.94 65.56
YASM 46.64 2.22 46.33 43.56 51.02 2.82 85.38
YASMv2 1257.29 45.39 1268.73 1198.43 1312.72 95.11 91.29
Borda 984.5 127.39 982.5 752 1176 194.5 63.95
r. v. 12010.25 5183.86 12104 5186 21504 8096 24.12
SCHULZE – – – – – – –

Table 2: Fidelity of aggregation procedures. As far asSAT is concerned, the series
purse is not assigned.

rankings, but, at the same time,(ii) do not yield antithetic solver rankings. Thus, ho-
mogeneity is not an effectiveness measure per se, but it is a preliminary assessment that
we are performing an apple-to-apple comparison and that the apples are not exactly the
same.

Homogeneity is computed as in [17] considering the Kendall rank correlation co-
efficientτ which is a nonparametric coefficient best suited to compare rankings.τ is
computed between any two rankings and it is such that−1 ≤ τ ≤ 1, whereτ = −1
means perfect disagreement,τ = 0 means independence, andτ = 1 means perfect
agreement. Table 1 shows the values ofτ computed for the aggregation procedures
considered, arranged in a symmetric matrix where we omit the elements below the
diagonal (r.v. is a shorthand for range voting). Values ofτ close to, but not exactly
equal to1 are desirable. Table 1 shows that this is indeed the case for the aggregation
procedures considered using QBFEVAL’05 data. Only two couples of methods (QBF-
CASC and Schulze-Borda) show perfect agreement, while all the other couples agree
to some extent, but still produce different rankings.

4.2 Fidelity

We introduce this measure to check whether the aggregation procedures under test
introduce any distortion with respect to the true merits of the solvers. Our motiva-
tion is that we would like to extract some scientific insight from the final ranking of
QBFEVAL’06 and not just winners and losers. Of course, we have no way to know
the true merits of the QBF solvers: this would be like knowing the true statistic of
some population. Therefore, we measure fidelity by feeding each aggregation proce-
dure with “white noise”, i.e., several samples of table RUNS having the same structure
outlined in Subsection 2.1 and filled with random results. In particular, we assign to
RESULT one ofSAT/UNSAT, TIME andFAIL values with equal probability, and a value
of CPUTIME chosen uniformly at random in the interval [0;1]. Given this artificial set-
ting, we know in advance that the true merit of the competitors is approximately the
same. A high-fidelity aggregation procedure is thus one that computes approximately
the same scores for each solver, and thus produces a final ranking where scores have a
small variance-to-mean ratio.

The results of the fidelity test are presented in Table 2 where each line contains the
statistics of a aggregation procedure. The columns show, from left to right, the mean,



Figure 1: RDT-stability plots.

the standard deviation, the median, the minimum, the maximum and the interquartile
range of the scores produced by each aggregation procedure when fed by white noise.
The last column is our fidelity coefficient F, i.e., the percent ratio between the lowest
score (solver ranked last) and the highest one (solver ranked first): the higher the value
of F, the more the fidelity of the aggregation procedure. As we can see from Table 2,
the fidelity of YASMv2 is better than that of all the other methods under test, including
QBF and CASC which are second best, and have higher fidelity than YASM. Notice
that range voting, and to a lesser extent also SAT and Borda’s methods, introduce a
substantial distortion. In the case of range voting, this can be explained by the ex-
ponential spread that separates the scores, and thus amplifies even small differences.
Measuring fidelity does not make sense in the case of Schulze’s method. Indeed, given
the characteristics of the "white noise" data set, Schulze’s method yields a tie among
all the solvers. Thus, checking for fidelity would essentially mean checking the tie-
breaking heuristic, and not the main method.

4.3 RDT-stability and DTL-stability

Stability on a randomized decreasing test set (RDT-stability), and stability on a de-
creasing time limit (DTL-stability) have been introduced in [17] to measure how much
an aggregation procedure is sensitive to perturbations that diminish the size of the orig-
inal test set, and how much an aggregation procedure is sensitive to perturbations that
diminish the maximum amount of CPU time granted to the solvers, respectively. The
results of RDT- and DTL-stability tests are presented in the plots of Figures 1 and 2.
We obtained such plots considering the CPU time noise model in [18], and considering
YASMv2 instead of YASM and the Schulze’s method instead of the sum of victories
method.
On Figure 1, the first row shows, from left to right, the plots regarding QBF/CASC,
SAT and YASMv2 procedures, while the second row shows, again from left to right,
the plots regarding Borda’s method, range voting and Schulze’s method. Each his-
togram reports, on the x-axis the number of problemsm discarded from the origi-



Figure 2: DTL-stability plots.

nal test set (0, 100, 200 and 400 out of 551) and on the y-axis the score. Schulze’s
scores are the straightforward translation of the ordinal ranking derived by applying
the method which is not based on cardinal ranking. For each value of the x-axis, eight
bars are displayed, corresponding to the scores of the solvers. The legend is sorted
according to the ranking computed by the specific procedure, and the bars are also dis-
played accordingly. This makes easier to identify perturbations of the original ranking,
i.e., the leftmost group of bars in each plot corresponding tom = 0. On Figure 2, the
histograms are arranged in the same way as Figure 1, except that the x-axis now reports
the amount of CPU time seconds used as a time limit when evaluating the scores of the
solvers. The leftmost value isL = 900, i.e., the original time limit that produces the
ranking according to which the legend and the bars are sorted, and then we consider
the valuesL′ = {700, 500, 300, 100, 50, 10, 1}.
The conclusion that we reach are the same of [17], and precisely:

• All the aggregation procedures considered are RDT-stable up to 400, i.e., a ran-
dom sample of 151 instances is sufficient for all the procedures to reach the
same conclusions that each one reaches on the heftier set of 551 instances used
in QBFEVAL’05.

• Decreasing the time limit substantially, even up to one order of magnitude,
is not influencing the stability of the aggregation procedures considered, ex-
cept for some minor perturbations for QBF/CASC, SAT and Schulze’s methods.
Moreover, independently from the procedure used and the amount of CPU time
granted, the best solver is always the same.

Indeed, while the above measures can help us extract general guidelines about running
a competition, in our setting they do not provide useful insights to discriminate the
relative merits of the procedures.



Figure 3: SBT-stability plots.

4.4 SBT-stability

Stability on a solver biased test set (SBT-stability) is introduced in [17] to measure how
much an aggregation procedure is sensitive to a test set that is biased in favor of a given
solver. LetΓ be the original test set, andΓs be the subset ofΓ such that the solvers is
able to solve exactly the instances inΓs. LetRq,s be the ranking obtained by applying
the aggregation procedureq onΓs. If Rq,s is the same as the original rankingRq, then
the aggregation procedureq is SBT-stable with respect to the solvers. Notice that,
contrarily to what stated in [17], SBT-stability alone is not a sufficient indicator of the
capacity of an aggregation procedure to detect the absolute merit of the participants.
Indeed, it turns out that a very low-fidelity method such as range voting is remarkably
SBT-stable. This because we can raise the SBT-stability of a ranking by decreasing its
fidelity: in the limit, a aggregation procedure that assigns fixed scores to each solver,
has the best SBT-stability and the worst fidelity. Therefore, an aggregation procedure
showing a high SBT-stability is relatively immune to bias in the test set, but it must
also feature a high fidelity if we are to conclude that the method provides a good hint
at detecting the absolute merit of the solvers.

Figure 3 shows the plots with the results of the SBT-stability measure for each
aggregation procedure considering the noise model and YASMv2 (the layout is the
same as Figures 1 and 2). The x-axis reports the name of the solvers used to compute
the solver-biased test setΓs and the y-axis reports the score value. For each of the
Γs’s, we report eight bars showing the scores obtained by the solvers using only the
instances inΓs. The order of the bars (and of the legend) corresponds to the ranking
obtained with the given aggregation procedure on the original test setΓ. As we can see
from Figure 3 (top-left), CASC/QBF aggregation procedures are not SBT-stable: for
each of theΓs, the original ranking is perturbed and the winner becomess. Notice that
on ΓQUANTOR, CASC/QBF yield the same ranking that they output on the complete
test setΓ. The SAT competition procedure (Figure 3, top-center) is not SBT-stable,
not even on the test set biased on its alleged winnerQUANTOR. YASMv2 is better
than both CASC/QBF and SAT, since its alleged winnerQUANTOR is the winner on



CASC/QBF SAT YASM YASMv2 Borda r. v. Schulze
OPENQBF 0.43 0.57 0.36 0.64 0.79 0.79 0.79
QBFBDD 0.43 0.43 0.36 0.64 0.79 0.86 0.79
QMRES 0.64 0.86 0.76 0.79 0.71 0.86 0.79

QUANTOR 1 0.86 0.86 0.86 0.93 0.86 0.93
SEMPROP 0.93 0.71 0.71 0.79 0.93 0.86 0.93
SSOLVE 0.71 0.57 0.57 0.79 0.86 0.79 0.86

WALK QSAT 0.57 0.57 0.43 0.71 0.64 0.79 0.79
YQUAFFLE 0.71 0.64 0.57 0.71 0.86 0.86 0.93

Mean 0.68 0.65 0.58 0.74 0.81 0.83 0.85

Table 3: Kendall coefficient between the ranking obtained on the original test set and
each of the rankings obtained on the solver-biased test sets.

biased test sets as well. Borda’s method (Figure 3, bottom-left) is not SBT-stable with
respect to any solver, but the alleged winner (QUANTOR) is always the winner on the
biased test sets. Moreover, the rankings obtained on the test sets biased onQUANTOR

andSEMPROPare not far from the ranking obtained on the original test set. Also range
voting (Figure 3, bottom-center), is not SBT-stable with respect to any solver, but the
solvers ranking first and last do not change over the biased test sets and it is true for
the Schulze’s method (Figure 3, bottom-right) too.

Looking at the results presented above, we can see that YASMv2 performance in
terms of SBT stability lies in between classical automated reasoning contests methods
and methods based on voting systems. This fact is highlighted in Table 3, where for
each procedure we compute the Kendall coefficient between the ranking obtained on
the original test setΓ and each of the rankings obtained on theΓs test sets, including
the mean coefficient observed. Overall, YASMv2 turns out to be, on average, better
than CASC/QBF, SAT, and YASM, while it is worse, on average, than the methods
based on voting systems. However, if we consider also the results of Table 2 about
fidelity, we can see that YASMv2 offers the best compromise between SBT-stability
and fidelity. Indeed, while CASC/QBF methods have a relatively high fidelity, they
perform poorly in terms of SBT-stability, and SAT method is worse than YASMv2
both in terms of fidelity and in terms of SBT-stability. Methods based on voting sys-
tems are all more SBT-stable that YASMv2, but they have poor fidelity coefficients.
We consider this good performance of YASMv2 a result of our choice to hybridize
classical methods used in automated reasoning contests and methods based on voting
systems. This helped us to obtain an aggregation procedure which is less sensitive to
bias, and, at the same time, a good indicator of the absolute merit of the competitors.

4.5 SOTA-relevance

This measure was introduced in [17] to understand the relationship between the rank-
ing obtained with an aggregation procedure and the strength of a solver, as witnessed
by its contribution to the SOTA solver. As mentioned in Section 3, the SOTA solver
is the ideal solver that always fares the best time among all the participants. Indeed,
a participant contributes to the SOTA solver whenever it is the fastest solver on some
instance. In [17] SOTA-relevance was obtained by counting the number of such events
for any given solver, and then computing the Kendall coefficient between the ranking



SOTA-distance
CASC 1
QBF 1
SAT 0.71

YASM 0.86
YASM v2 0.79

Borda 0.86
range voting 0.71

Schulze 0.86

Table 4: SOTA-relevance.

thereby induced and the ranking obtained with any given procedure. However, it turns
out that evaluating the SOTA-contribution of each solver by simply counting the num-
ber of times that it is faster than other solvers can be misleading. To understand this,
consider the following example. Suppose that a solverA solves 50% of the test set
using timeat mosttA and times out on the rest, and that solverB, on the contrary,
solves all the problems whereA times out using timeat mosttB but it does time out
on the problems thatA solves. Finally, suppose that a solverC is able to solve all the
problems in the test set using timeat leasttC wheretC > tA andtC > tB . Given our
definition of SOTA solver, it turns out thatC is never contributing to it. Evaluating the
SOTA contribution using a simple count as described in [17] would induce a ranking
whereC is last. However,C is, on average, better than bothA andB and this will
probably be correctly spotted by high-fidelity methods, which would turn out to have
a very low SOTA-relevance.

In order to overcome the above problem we redefine here SOTA-relevance in terms
of SOTA-distance. SOTA-distance is the distance metric obtained by computing the
Euclidean norm between the CPU times of any given solver and the SOTA solver.
The resulting values of the metrics induce a ranking that can be used to compute the
Kendall coefficient yielding the SOTA-relevance. Table 4 shows the values of the
coefficients thereby obtained for each procedure. Notice that according to our new
definition of SOTA-relevance, CASC/QBF methods turn out to have the highest such
relevance possible, i.e.,τ = 1. Therefore the other coefficients correspond to the first
row of Table 1 about homogeneity results. Notice that YASMv2 has a better SOTA
relevance than SAT and range voting, but worse than all the other methods, including
YASM. Given the positive results of YASMv2 insofar fidelity and SBT-stability are
concerned, we consider this result as a matter for further investigation either in the
quality of YASMv2, or in the explanatory power of the SOTA-distance metric.

5 Conclusions

Summing up, the analysis presented in this paper allowed us to make some progress in
the research agenda associated to QBFEVAL. Indeed, in [17] improving YASM was
cited as one of the future directions, and in this paper we have presented YASMv2,
which features a simpler calculation, yet it is more powerful than YASM in terms of
SBT-stability and fidelity. Our empirical evaluation tools of aggregation procedures
have also improved with the addition of the fidelity measure and the improved def-



inition of SOTA-relevance. We confirmed some of the conclusions reached in [17],
namely that independently of the specific procedure used, a larger test set is not nec-
essarily a better test set, and that a higher time limit does not necessarily result in a
more informative contest. On the other hand, while aggregation procedures based on
voting systems emerged from [17] as “moral” winners over other procedures, the anal-
ysis presented in this paper shows that better results could be achieved using hybrid
techniques such as YASMv2.

References

[1] G. Sutcliffe and C. Suttner. The CADE ATP System Competition.http://
www.cs.miami.edu/~tptp/CASC [2006-6-2].

[2] D. Le Berre and L. Simon. The SAT Competition. http://www.
satcompetition.org [2006-6-2].

[3] D. Long and M. Fox. The 3rd International Planning Competition: Results and
Analysis.Artificial Intelligence Research, 20:1–59, 2003.

[4] M.R.C. van Dongen. Introduction to the Solver Competition. InCPAI 2005
proceedings, 2005.

[5] C. W. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Mod-
ulo Theories Competition. InCAV, volume 3576 ofLecture Notes in Computer
Science, pages 20–23, 2005.

[6] D. Le Berre, L. Simon, and A. Tacchella. Challenges in the QBF arena: the
SAT’03 evaluation of QBF solvers. InSixth International Conference on Theory
and Applications of Satisfiability Testing (SAT 2003), volume 2919 ofLecture
Notes in Computer Science. Springer Verlag, 2003.

[7] D. Le Berre, M. Narizzano, L. Simon, and A. Tacchella. The second QBF solvers
evaluation. InSeventh International Conference on Theory and Applications of
Satisfiability Testing (SAT 2004), Lecture Notes in Computer Science. Springer
Verlag, 2004.

[8] M. Narizzano, L. Pulina, and A. Tacchella. The third QBF solvers comparative
evaluation.Journal on Satisfiability, Boolean Modeling and Computation, 2:145–
164, 2006. Available on-line athttp://jsat.ewi.tudelft.nl/ .

[9] J. N. Hooker. Testing Heuristics: We Have It All Wrong.Journal of Heuristics,
1:33–42, 1996.

[10] D. G. Saari. Chaotic Elections! A Mathematician Looks at Voting. American
Mathematical Society, 2001.

[11] W. D. Smith. Range voting. Available on-line athttp://www.math.
temple.edu/~wds/homepage/rangevote.pdf [2006-9-29].



[12] M. Schulze. A New Monotonic and Clone-Independent Single-Winner Election
Method.Voting Matters, pages 9–19, 2003.

[13] M. Narizzano, L. Pulina, and A. Taccchella. QBF solvers competitive evaluation
(QBFEVAL). http://www.qbflib.org/qbfeval .

[14] RoboCup.http://www.robocup.org .

[15] K. J. Arrow, A. K. Sen, and K. Suzumura, editors.Handbook of Social Choice
and Welfare, volume 1. Elsevier, 2002.

[16] V. Conitzer and T. Sandholm. Common Voting Rules as Maximum Likelihood
Estimators. In6th ACM Conference on Electronic Commerce (EC-05), Lecture
Notes in Computer Science, pages 78–87, 2005.

[17] L. Pulina. Empirical Evaluation of Scoring Methods. InProc. STAIRS 2006,
volume 142 ofFrontiers in Artificial Intelligence and Applications, pages 108–
119, 2006.

[18] M. Narizzano, L. Pulina, and A. Tacchella. Competitive Evaluation of QBF
Solvers: noisy data and scoring methods. Technical report, STAR-Lab - Uni-
versity of Genoa, May 2006.

[19] E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas
satisfiability library (QBFLIB), 2001.www.qbflib.org .

[20] A. Van Gelder, D. Le Berre, A. Biere, O. Kullmann, and L. Simon. Purse-Based
Scoring for Comparison of Exponential-Time Programs, 2006. Unpublished
draft.

[21] M. Narizzano, L. Pulina, and A. Tacchella. Competitive Evaluation of Automated
Reasoning Tools: Statistical Testing and Empirical Scoring. InFirst Workshop
on Empirical Methods for the Analysis of Algorithms (EMAA 2006), 2006.

[22] M. Schulze. Extending schulze’s method to obtain an overall ranking. Personal
communications.

Massimo Narizzano
DIST, Università di Genova
Viale Causa, 13 – 16145 Genova, Italy
Email:mox@dist.unige.it

Luca Pulina
DIST, Università di Genova
Viale Causa, 13 – 16145 Genova, Italy
Email:pulina@dist.unige.it

Armando Tacchella
DIST, Università di Genova
Viale Causa, 13 – 16145 Genova, Italy
Email: tac@dist.unige.it


