
How to Allocate Hard Candies Fairly

Marco Dall’Aglio and Raffaele Mosca
Dipartimento di Scienze
Università d’Annunzio

Viale Pindaro, 42
65127 — Pescara, Italy

Abstract

We consider the problem of allocating a finite number of indivisible items
to two players with additive utilities. We design a procedure that looks
for all the maximin allocations. The procedure makes repeated use of an
extension of the Adjusted Winner, an effective procedure that deals with
divisible items, to find new candidate solutions, and to suggest which
items should be assigned to the players.

JEL classification: D61, D63

Keywords: Fair division, indivisible items, Adjusted Winner

1 Introduction

This paper presents a procedure for allocating a set of indivisible items between
two players with subjective preferences over the items.

While most of the literature in fair division theory deals with one or more
completely divisible goods (such as cakes or pieces of land), recent works by
Brams with several coauthors drew attention on the problem of allocating sev-
eral indivisible items. Brams, Edelman and Fishburn [4] point out how the
most commonly accepted criteria for optimality may conflict with each other
when players rank the items according to their preferences, so that

achieving fairness requires some consensus on the ground rules and
some delicacy in applying them.

In the same context of ordinal preferences, Brams and King [8] focus on the
possible incompatibility between rank- and Borda-maxmin allocations on one
side and envy-free ones on the other. Brams, Edelman and Fishburn [5], again,
provide conditions for the existence of allocations which are optimal according
to different criteria and study the relationship among those criteria for any
number of players and items. An earlier work by Brams and Fishburn [6],
focuses on the case of two players with the same ranking on the items.

When it comes to the design of specific procedures, however, it turns out
that most of the proposals devise some technique to treat some, or all, of the
contended items as divisible. This is the case, for instance, of the Adjusted
Winner (AW) procedure, certainly the most popular and effective procedure
so far conceived. In case no actual splitting is allowed, one may recur to such



surrogates as the use of side payments, as in the Knaster method, or that of
randomization, where items are given according to a probability distribution,
or of side payments to compensate the giving up of some item. As noted in [13],
however, there are situations where these methods are impractical or impossible
to implement.

If we focus on methods that deal exclusively with the allocation of indi-
visible items, with no side actions to mitigate the discontent of some players,
we find, quite surprisingly, a more narrow choice. Classical methods for the
2-player case are described in [9] and, especially, [10]. The simplest method is
that of strict alternation of the players’ right to pick an item. This approach
usually favors the player who picks first. To mitigate this advantage, Brams
and Taylor propose a preliminary ranking of the items (a “query step”) with
the immediate assignment of the undisputed items, followed by a division of
the remaining items (the “contested pile”) via an alternation schemes that uses
a more balanced sequence. The whole scheme is called balanced alternation.
Another option is given by Lucas’ method of markers which could be seen as a
discrete variant of the sliding knife procedure.

A few recent additions complete the list. Herreiner and Puppe in [13] define
a descending demand procedure where each player, in turn, declare their most
preferred bundle (i.e. a collection of items) until a feasible arrangement is met
that maximizes the bundle’s rank of the least favored player. The findings in
[6] suggest a procedure that Brams and Fishburn set out in the same work to
single out an allocation which is Pareto-optimal, it ensures that the less well-
off player does as well as possible, and, often, he/she does not envy the other
player. In a similar fashion Brams and King [8] devise a simple procedure based
on balanced alternation and sincere choices that yields Pareto-optimality and
does not rule out envy-freeness1

All the above mentioned methods require the players’ ability to rank items
or bundles of them, and can be adapted to the simpler framework in which
players are able to assess the subjective utility (or score) of each item and
these evaluations are additive. Brams and Fishburn [6] show conditions that
make preference relations compatible with additive utilities, and explain how
to simplify their procedure in this situation. Anyway, we record the lack of
a procedures specifically designed to work with additive utilities, in a manner
similar to what the AW procedure does for the divisible case. Our aim indeed
is to devise a specific procedure that makes repeated use of the original AW
procedure as a guide to decide who gets the single items. The procedure mimics
the branch-and-bound algorithms of Operations Research (OR), but keeps the
procedural appeal of the original AW and it can be implemented as a simple
set of instructions given to the players. The association of ideas from OR with
fair division is not new: In [15] Kuhn defines a linear program that has the
Knaster rule for the efficient allocation of items with side payments as its solu-
tion. Demko and Hill [12] define a maximin optimization problem. They show

1In the context of ordinal preferences allocations are divided into envy-free, envy-possible
and envy-ensuring ones. The procedure returns an allocation belonging to the first two classes



that this problem is computationally intractable and provide a lower bound for
optimal value. The second half of the paper deals with randomized solutions
for the same problem and shows how these can be computed through linear
programming and duality techniques.

We adopt the same framework, focusing on the case of two players. Each
player assigns a non-negative value to each item. The evaluations are additive,
but no normalization is required, so the total value of the items may differ for
the two players.

This work does not deal with manipulability issues: is it advantageous for
the players to reveal the items’ true values? A discussion of the manipulability
for the Adjusted Winner procedure appears in [9] and strategy proof procedures
have recently been introduced in [7] for the divisible case.

A similar approach to the one presented here is being developed by Bezáková
and Dani [3]. The purpose of the two works, however, differs. In [3] compu-
tationally efficient algorithms are given that approximate the optimal solution
and are implemented by suitably programmed computer routines. Here we fo-
cus on exact solutions, with the main aim to extend the AW procedure to cover
the case of indivisible items and keep its procedural nature.

Section 2 defines the problem. Section 3 takes another look at the AW
algorithm and an extension is discussed to consider the situations where players
own initial endowments. Incidentally, a more efficient version of the original
procedure is considered for the case where a large number of items are at stake.
Finally, section 4 illustrates the branch-and-bound algorithm that makes use
of the AW procedure with initial endowments to find new candidate solutions,
and to suggest which items should be forcedly assigned to the players.

2 The problem

We consider the following simple problem: two children (players), Alice and
Bob, are given a set of m hard candies to be shared between themselves. Candies
are indivisible and each of them is assigned to one of the children. Children
value the sweets according to their own taste. An allocation is sought that is
optimal according to some social welfare criterion.

More formally, let M = {1, . . . ,m} be the set of disputed items and let
a1, a2, . . . , am (b1, b2, . . . , bm resp.) be the non-negative evaluations of the single
items by Alice (Bob, resp.). An integer allocation for the m items is described
by a vector x = (x1, . . . , xm) ∈ {0, 1}m. If xi = 1 (resp. xi = 0), then item
i goes to Alice (Bob, resp.). The satisfaction (or score) of the two players is
given by, respectively,

vA(x) =
∑
i∈M

aixi and vB(x) =
∑
i∈M

bi(1− xi) (1)

There are many criteria that mediate between the conflicting interests of
the players. We follow Brams and Fishburn [6], who



recommend an alternative procedure that implements [their] fairness
criteria when additive utilities are presumed. [. . .]the alternative
procedure seeks a division that maximizes [min{vA, vB}] over all
divisions, subject to

vA((1, 1, . . . , 1)) = vB((0, 0, . . . , 0)) (2)

Therefore we look for an integer allocation that achieves

z∗ = max {min{vA(x), vB(x)} : x ∈ {0, 1}m} (IFD)

subject to (2). The same problem was considered earlier by Demko and Hill in
[12], who noted its NP-hardness. In fact, assume that ai = bi for every i ∈ M :
then solving (IFD) gives an answer to the problem of finding a partition of a
set of positive integers in two subsets of equal sum, which is NP-complete (see
for instance [19]).

As pointed out by Brams, Edelman and Fishburn [4] in the context of or-
dinal preferences, a maximin allocation of indivisible items may generate envy
between the players. Moreover the optimal partition may assign a different
number of items to the players — thus being unequal. Equitability, i.e. the
property that the scores of the two players coincide, is rarely obtained for a
solution of (IFD). Moreover, the solution may not be unique. Quoting Brams
and Fishburn again

If two or more division maximize the min value, [the procedure]
then finds an [allocation] within the maximin set that maximizes
max{vA(x), vB(x)}

This is referred to in the literature as the equimax (or Rawls, or Dubins-Spanier)
allocation and has the property of (strong) Pareto-optimality: no other alloca-
tion weakly dominates it. Alternatively, we may choose a maximin allocation
that minimizes max{vA(x), vB(x)}. This time only weak Pareto-optimality is
ensured (no other allocation strongly dominates it) but the resulting allocation
would be closer to equitability. Neither one of the two restrictions, however,
would ensure uniqueness in the solution. In what follows, we will distinguish
between methods that are able to find one maximin solution, and those who
can list them all.

3 Relaxing Integer Fair Division: The Adjusted
Winner procedure

Suppose now that children are given muffins (with different flavors), instead of
hard candies. Each muffin can be given in its entirety to one of the children —
or it can be split in any proportion. We are now dealing with the allocation of
m divisible items between two players.



It is further assumed that all items i ∈ M are homogeneous. Thus player
1 can receive a part xi ∈ [0, 1] of item i, while player 2 gets the rest. The
two players will benefit, respectively, by xiai and (1− xi)bi from the splitting.
The overall satisfaction of each player is still given by (1). We now look for an
allocation x = (x1, x2, . . . , xm) ∈ [0, 1]m that achieves

z+ = max {min{v1(x), v2(x)} : x ∈ [0, 1]m} (DFD)

with vA and vB satisfying (2). As noted in [12], (DFD) can be solved through
linear programming, and in the OR jargon, this is the linear relaxation of (IFD).

Here we are going to show that a solution for (DFD) is readily provided by a
popular and effective step-by-step procedure in fair division, known as Adjusted
Winner.

3.1 The Adjusted Winner algorithm

The Adjusted Winner (AW) algorithm was introduced by Brams and Taylor
in [9] (with many applications analyzed in [10]). Their aim was to provide a
step-by-step procedure returning a partition that is equitable, Pareto optimal
and envy-free (in the sense that none of the player feels that the other player
has received more than him/herself). A brief sketch of the algorithm follows —
for a more detailed account we refer to [9] and [10]. There are two phases:

the “winning” phase. each player temporarily receives the items that he/she
values more than the other player does — ties being temporarily assigned
to any of the players. The total score of each player, vA and vB respec-
tively, is computed.

the “adjusting” phase. Items are transferred, one at a time from the
“richer” player to the “poorer” one, starting with the items with ratio
ai/bi closer to 1. To reach equitability one item may be split into two
parts.

As an exemplification, suppose vA ≥ vB . Then Alice begins transferring
items to Bob, one at a time, starting with the item with ratio ai/bi closer
to 1 (and greater than or equal to 1). The handover continues until perfect
equitability is achieved, or the roles of the “richer” and “poorer” player
are reversed. In the last case, suppose that after the handover of, say, item
r we have vA < vB . Item r is then split, with Alice getting a fraction
given by

xr =
br + v−r

B − v−r
A

ar + br

where v−r
A and v−r

B are the scores obtained by the two players so far in the
process without considering item r. Bob gets the remaining fraction. The
item is split according to the same proportions also when Bob is favored



in the “winning” phase and the handover occurs in the opposite direction.
Both players walk out of the procedure with a common score of

z+ = vA = vB =
v−r

B ar + v−r
A br + arbr

ar + br

We next show that AW provides exactly what we are looking for in the
maximin problem with divisible items.

Proposition 3.1. The AW algorithm solves (DFD). Therefore, the AW solu-
tion is also maximin.

Some preliminary results are required. First of all consider the allocation
range.

D = {(vA(x), vB(x)) : x ∈ [0, 1]m}

Lemma 3.2. D is a convex and compact set in R2.

Proof. Pick x, y ∈ [0, 1]m and γ ∈ [0, 1]. Then

vA(γx + (1− γ)y) = γvA(x) + (1− γ)vA(y)

and the same holds for vB , so D is convex. Compactness is a consequence of
the compactness of [0, 1]m and the continuity of vA and vB . More in detail,
D ⊂ [0,

∑
i∈M ai] × [0,

∑
i∈M bi], so D is bounded. Consider now a sequence

{xn} in [0, 1]m for which (v1(xn), v2(xn)) converges. Since [0, 1]m is compact,
there exists a subsequence {xn′} converging to some x∗ ∈ [0, 1]m. Since vA and
vB are continuous, we have

(vA(xn′), vB(xn′)) → (vA(x∗), vB(x∗)) ∈ D

and D is closed.

Next we characterize the maximin solutions.

Lemma 3.3. A maximin solution always exists. An allocation is maximin if
and only if it is Pareto optimal and equitable.

Proof. We prove the “only if” part of the prove, since this is what is actually
needed for Proposition 3.1.2

We consider the set D of all the allocations’ values. An allocation x is Pareto
if there is no other point of D in the upper quadrant pointed on (vA(x), vB(x))
(with the exception of x itself). The allocation is equitable if (vA(x), vB(x))
lies on the bisector of the positive quadrant.

Let Q be the family of upper quadrants pointed on the equitable allocations.
A maximin solution is obtained by considering the supremum of the quadrants
in Q that intersects D. Since D is compact, the supremum is attained, and a
maximin solution x∗ exists.

2For the whole proof we refer to the longer version of the paper.



Suppose that x is Pareto and equitable. Equitability implies that the upper
quadrant pointed on (vA(x), vB(x)) is in Q. Pareto optimality implies that no
other part of D lies on the same quadrant. Therefore x is maximin.

Proof of Proposition 3.1. It is a straightforward consequence of Lemma 3.3 and
the following

Theorem 3.4. (Brams and Taylor, [9], Th,4.1) AW produces an allocation of
the goods that is Pareto-optimal and equitable.

An alternative proof of Theorem 3.4 which links AW to a cake cutting
scheme is provided by Jones [14].

3.2 The maximin problem with initial endowments

The AW procedure is flexible enough to cover the situation where the two
players own initial endowments. This variation is interesting in its own rights.
An optimal allocation is sought when the utility of each player is the sum of the
initial endowment and the values of the items (or fractions thereof) received.
Our interest in this problem, however, is mainly instrumental. In order to
implement a branch-and-bound method for the case of indivisible items we need
to solve several instances of the corresponding problem with divisible items in
which certain items are forcedly assigned to the players. These items represent
their initial wealth. Let α ≥ 0 (resp. β ≥ 0) the initial endowment of Alice
(Bob, resp.) that add up to the players’ utilities.

The problem of interest is now:

z+ = max {min{α + vA(x), β + vB(x)} : x ∈ [0, 1]m} (DFD-ie)

This time we do not impose a normalization condition such as (2), but rather
assume all terms ai, bi to be strictly positive. We could in fact set up a prelim-
inary step that deals with null values. If ai > 0 and bi = 0, then item i can
be assigned to Alice with no harm for Bob, and increase her initial endowment.
Similarly, Bob could take all items with null value to Alice (and items with no
value for both could be thrown away). It may be worthwhile noticing that, by
removing (2), we may lose envy-freeness. Consider for instance the case with no
initial endowments and only one muffin M , with vA(M) = 10 and vB(M) = 5.
Bob will now get 2/3 of the muffin, leaving Alice envious.

Once again the maximin solution coincides with the Pareto and equitable
solution, but only when the value of the assignable items according to the poorer
player is larger than or equal to the difference between the initial endowments.
We propose the following:



The Adjusted Winner procedure with initial endowments (AW-ie)

Case 1 If
∑

i∈M bi ≤ α − β assign all the items to Bob. The maximin value
will be z+ = β +

∑
i∈M bi

Case 2 If
∑

i∈M ai ≤ β − α then assign all the items to Alice and z+ =
α +

∑
i∈M ai

Case 3 If −
∑

i∈M ai < α − β <
∑

i∈M bi then start an AW procedure with
the only difference that the initial endowment is taken into account to
reach an equitable allocation. So, after a winning phase identical to the
AW procedure, the total scores, inclusive of the initial endowment are
computed. In the adjusting phase, items are transferred from the “richer”
player to the “poorer” one, ordering the items in terms of the preference
ratios ai/bi. The process stops when perfect equitability between the
scores with the endowments is reached or the roles of the two players are
reversed. In this case, the last transferred item, say r, is split and Alice
gets a fraction given by

xr =
β − α + br + v−r

B − v−r
A

ar + br

while Bob gets the rest. Both players walk out with a common score of

z+ = α + vA = β + vB =
(β + v−r

B )ar + (α + v−r
A )br + arbr

ar + br

Proposition 3.5. The AW-ie procedure returns the solution for (DFD-ie).

Proof. In this case the utility of the two players is given, respectively, by
v′A(x) = α + vA(x) and v′B(x) = β + vB(x), so the new allocation range D′

is simply the allocation range D translated by (α, β). The three cases listed
above correspond to different positions of D′ with respect to the bisector of the
first quadrant

Case 1: D′ lies below the bisector. So u ≥ w for all (u, w) ∈ D′ and the
allocation that assigns all goods to Bob is maximin.

Case 2: D′ lies above the bisector. Therefore u ≤ w for all (u, w) ∈ D′

and all goods are given to Alice in order to have the highest maximin
value.

Case 3: D′ crosses the bisector Lemma 3.3 is still valid. Thus, the proce-
dure looks for an allocation that is Pareto-optimal and equitable.

If case 3 holds, a more efficient version of AW can be implemented just as it
was done for the original AW. This time vi

A(λ) and vi
B(λ), i = 1, 2 will include

the initial endowments of the respective players.



4 A branch and bound algorithm

When solving the maximin allocation problem (IFD) there is a finite number of
possible candidates to choose from. In principle the solution can be obtained in
finite time by computing the value of each allocation for the two players. This
process can be considerably speeded up if we consider a branch-and-bound
technique that splits the original problem into smaller subproblems and uses
upper bounds to avoid exploring certain parts of the set of feasible integer
solutions. This approach makes repeated use of the Adjusted Winner procedure
with initial endowment and keeps the procedural character of the latter.

In what follows, we will consider a series of constrained subproblems in which
some of the items have already been assigned to the players. Let A,B ⊂ M ,
with A ∩ B = ∅. Let S(A,B) be the constrained problem in which the items
in A (B, resp.) are assigned to Alice (Bob, resp.), i.e., xi = 1 for each i ∈ A
(xi = 0 for each i ∈ B). S(∅, ∅) denotes the original (unconstrained) problem.

For a given couple of disjoint index sets, A,B in M , let x̄(A,B) denote
a feasible allocation for the constrained problem and let z̄(A,B) denote the
corresponding value. Moreover, let x∗(A,B) and z∗(A,B) denote the solution
and the value of S(A,B). Finally let x+(A,B) and z+(A,B) be, respectively,
the solution and value for the linear relaxation of S(A,B), i.e. for the case
where splitting of the contended items is allowed. Clearly, the following holds
for each couple of A and B:

z̄(A,B) ≤ z∗(A,B) ≤ z+(A,B) (3)

The results in Section 3 can be used to compute x+(A,B) and z+(A,B). In
particular we set α =

∑
i∈A v1(xi) and β =

∑
i∈B v2(xi), and divide the re-

maining M ′ = M \ (A ∪ B) items according to the AW-ie procedure. Since
x+(A,B) contains at most one fractional component, x̄(A,B) may be obtained
by approximating the fractional coordinate to the nearest integer, 0 or 1.

4.1 A variable elimination test

The branch-and-bound procedure defines a series of subproblems in which an
increasing numbers are forcedly assigned to one player or the other. Since the
procedure becomes simpler as the number of pre-assigned items increases,and
following [18], p.452, we consider a variable elimination test that, for any given
subproblem, checks whether additional items can be assigned priori to any
further analysis.

Let A,B ⊂ M be a couple of disjoint sets of items and take i ∈ M ′.

Proposition 4.1. (a) If

z+(A ∪ {i}, B) < z̄(A,B) (4)

then x∗(A,B ∪ {i}) solves S(A,B), while x∗(A ∪ {i}, B) does not.



(b) If
z+(A,B ∪ {i}) < z̄(A,B) (5)

then x∗(A ∪ {i}, B) solves S(A,B), while x∗(A,B ∪ {i}) does not.

Proof. By assumption and (3) we have

z∗(A ∪ {i}, B) ≤ z+(A ∪ {i}, B) < z̄(A,B) ≤ z∗(A,B)

So x∗(A ∪ {i}, B) cannot be a solution for S(A,B). If this is the case, then
x∗(A,B ∪{i}) must be a solution for the same problem. Part (b) is established
symmetrically.

The result simply states that whenever condition (4) ((5), resp.) occurs,
then S(A,B) can be replaced by S(A,B ∪ {i}) (S(A ∪ {i}, B), resp.). When
the two sides of (4), or (5), attain equality, there is a partial extension of the
previous result:

Proposition 4.2. (a) If z+(A∪ {i}, B) ≤ z̄(A,B), then either x∗(A,B ∪ {i})
or x̄(A,B) solve S(A,B).

(b) If z+(A,B ∪ {i}) ≤ z̄(A,B), then either x∗(A ∪ {i}, B) or x̄(A,B) solve
S(A,B).

(c) If z+(A ∪ {i}, B) ≤ z̄(A,B) and z+(A,B ∪ {i}) ≤ z̄(A,B), then x̄(A,B)
solves S(A,B).

Proof. (a) By assumption

z+(A ∪ {i}, B) ≤ z̄(A,B) ≤ z∗(A,B)

Assume now that x∗(A,B ∪ {i}) does not solve S(A,B). Then x∗(A ∪ {i}, B)
will work instead, and thus

z∗(A,B) ≤ z∗(A ∪ {i}, B) ≤ z+(A ∪ {i}, B)

Comparing the two inequalities, we conclude that z̄(A,B) = z∗(A,B) and
x̄(A,B) solves S(A,B). Part (b) is proved with a symmetrical argument.

(c) By definition

z̄(A,B) ≤ z∗(A,B) ≤ z+(A,B) ≤ max{z+(A ∪ {i}, B), z+(A,B ∪ {i})}

while the hypotheses reads

max{z+(A ∪ {i}, B), z+(A,B ∪ {i})} ≤ z̄(A,B)

Thus x̄(A,B) solves S(A,B).



The use of Proposition 4.2 is more subtle: when situation (a) occurs, than
we replace S(A,B) with S(A,B ∪ {i}) and continue with the sub-partitioning
to obtain a solution x̃. This solution is then compared with x̄(A,B). The one
with the higher value is the solution for (IFD).

At first sight, Proposition 4.2 is more powerful than Proposition 4.1 since
it binds more items to the players, thus making the problem simpler. Using
this result, however, may result in the loss of some solutions. Part (a) of
the statement does not prevent x∗(A ∪ {i}) from being a possible solution for
S(A,B) (and a symmetrical conclusion holds for part (b)). So, if the goal is to
capture all the solutions for (IFD), Proposition 4.1 is the one to choose3.

The problem remaining after the elimination test has been carried out is
called the reduced problem. Note that the discriminating value λ is the same
for the reduced problem as well as for the original problem.

4.2 The algorithm

All the elements are set to formulate a branch-and-bound algorithm for the max-
imin problem with indivisible items (IFD). The algorithm follows the general
scheme for branch-and-bound, where the original problem S(∅, ∅) is recursively
split into a series of constrained problems with some of the items assigned in
advance to one player or the other. As usual for this kind of algorithms, it
is convenient to represent the splitting process with a tree graph. When a
subproblem cannot yield any more candidates for the solution of the original
problem, the branch corresponding to that subproblem is cut (or pruned) and
no other branch generates from that node of the tree.

The general framework is adapted to the peculiar features of the problem in
question. For instance, the linear relaxation of each subproblem has a twofold
purpose: on one hand it gives an upper bound for the value of the integer
solution, but when the solution for the linear relaxation is not integer, it also
suggests how to operate the splitting, by assigning the item corresponding to
the unique fractional component to one player or the other.

In building the tree, several integer solutions are met and the best of them
(in terms of objective function) are recorded. Here we are interested in finding
all the solutions to (IFD). Therefore X̄ will denote the set of best solutions
met so far, while z̄ is their common value.

Each subproblem S(A,B) may have three different labels attached to it:
“new”, “open” or “close”: a subproblem is new when its linear relaxation has
not been computed yet; once the computation occurs, the problem is open or
close depending on whether the solution for the relaxation is integer or not.
Furthermore, a subproblem may also be closed when its upper bound is smaller
than the best current admissible solution. Open problems are split according
to the above mentioned rule. The algorithm ends when all the subproblem are
closed.

The algorithm runs as follows:
3The use of Proposition 4.2 is explaines with more detail in the longer version of the paper.



Initialization. Set X̄ = ∅ and z̄ = −∞. Label S(∅, ∅) as new.

The generic cycle is made of the following steps

Compute bounds. For any new subproblem S(A,B) perform the vari-
able elimination test derived from Proposition 4.1 and denote with
S(A′, B′) the resulting subproblem with (possibly) more items pre-
assigned to the players.

• Compute x+(A′, B′) and z+(A′, B′) using the AW-ie algorithm.
• Examine x+(A′, B′).

– If x+(A′, B′) is integer then set x̄(A′, B′) = x+(A′, B′) and
z̄(A′, B′) = z+(A′, B′). Label S(A′, B′) as close.

– If x+(A′, B′) has a fractional component then set x̄(A′, B′) =
rnd(x+(A′, B′)) with corresponding value z̄(A′, B′). Label
S(A′, B′) as close.

• Update the optimal set
– If z̄(A′, B′) > z̄ then set z̄ = z̄(A′, B′) and X̄ = {x̄(A′, B′)}.
– If z̄(A′, B′) = z̄ and x̄(A′, B′) /∈ X̄ then append this solution

to X̄.

List and close List the open subproblems. Close all the S(A,B) such
that

z+(A,B) < z̄ . (6)

If there is no open subproblem left, then exit the algorithm and
return X̄ as the optimal solution set with value z̄.

Choose and split Choose the open problem S(A,B) with higher upper
bound z+(A,B). The relaxed solution x+(A,B) has one fractional
component i ∈ M \ (A ∪ B). Replace S(A,B) (labelled close) with
two subproblems S(A∪ {i}, B) and S(A,B ∪ {i}), labelling them as
new. Continue with the next cycle.

Some of the rules in the algorithm may be changed. For instance another
criterion may be selected to pick an open problem. A näıve motivation for the
chosen rule is that the higher the bound, the more likely is the subproblem to
deliver an optimal solution. Also, when x+(A′, B′) has a fractional component,
we assign the fractional good to the player who holds more than 50% of it to
get an integer admissible solution. Alternatively, we may check both options:
assigning the split good to Alice and Bob, and choosing the one yielding a
higher value for z. Although the latter seems a more efficient option, we prefer
the simplicity of the former rule.

As noted previously, we may use a variable elimination test based on Propo-
sition 4.2. The algorithm will be quicker, but some solutions may be left off of
the solution set X̄.

Since the IFD problem is NP-hard, in the worst case the algorithm may
execute an exponential number of iterations to determine an optimal solution



(unless P = NP ). To this end, let us consider the following instance of IFD:
there are m = 2n+1 items and both players evaluate 2 each item. In this case:
the value of an optimal solution is 2n, and corresponds to any solution which
assigns n items to one player, and n + 1 items to the other player; the upper
bound is 2n + 1 (n variables are equal to 1, one variable is equal to 0,5, and
n variables are equal to 0); a node can be closed only if either at least n + 1
variables are fixed equal to 1, or at least n + 1 variables are fixed equal to 0.
Then the enumeration tree of the branch and bound, independently to possible
strategies (of searching), is totally explored till level n, i.e., the number of nodes
which are examined is 2(n+1).

At the same time, the efficiency of a branch and bound technique is directly
linked to the quality of (i) the method to compute bounds for each subproblem,
(ii) the method to possibly split each subproblem. In our case, (i) is given
by the linear programming relaxation of each subproblem, and (ii) is given by
the generation of two new subproblems obtained by splitting a binary variable.
The proposed algorithm adopts methods which follow the ones used in the most
popular (and empirically considered efficient) branch and bound algorithms for
the solution of optimization 0-1 Knapsack, which is a problem very close to
IFD.

When a small number of items is at stake, the algorithm can be run by
humans — in the spirit of the original AW procedure. Finding methods that
keep this feature for larger bundles is the subject of our current research.

5 Acknowledgements

This is an abridged version of the paper “How to allocate hard candies fairly”
which is currently being submitted for publication. The authors wish to thank
two anonymous referees for the careful revision of the work and the constructive
remarks. We would also like to thank Steve Brams, Erio Castagnoli and Ted
Hill for useful suggestions during the completion of the work. The authors are
responsible for all the remaining errors.

References

[1] Akin, E., 1995. Vilfredo Pareto cuts the cake, Journal of Mathematical
Economics 24, 23–44.

[2] Bertsimas, D., and J.N. Tsitsiklis, 1997, Introduction to linear optimiza-
tion, Athena Scientific, Belmon, Massachusetts, U.S.A.

[3] Bezáková, I., Dani, V., 2005. Allocating indivisible goods, ACM SIGecom
Exchanges5, 11–18.

[4] Brams, S.J., Edelman, P.H., Fishburn, P.C., 2001. Paradoxes of Fair Divi-
sion, Journal of Philosophy 98, 300–314.



[5] Brams, S.J., Edelman, P.H., Fishburn, P.C., 2003. Fair division of indivis-
ble items, Theory and Decision 55, 147–180.

[6] Brams, S.J., Fishburn, P.C., 2000. Fair division of indivisble items between
two people with identical preferences: Envy-freeness, Pareto-optimality,
and equity, Social Choice and Welfare 17, 247–267.

[7] Brams, S.J., Jones, M.A., Klamler, C., 2006. Better ways to cut a cake,
Notices of the American Mathematical Society 53, 1314–1321.

[8] Brams, S.J., King, D.L., 2005. Efficient Fair Division: Help the Worst Off
or Avoid Envy?, Rationalitiy and Society 17, 387–421.

[9] Brams, S.J., Taylor, A.D., 1996. Fair Division: from Cake-cutting to Dis-
pute Resolution, Cambridge University Press.

[10] Brams, S.J., Taylor, A.D., 1999. The Win-win Solution, Guaranteeing Fair
Shares to Everybody, W.W.Norton.

[11] Cormen, T.H., Leiserson, C.H., Rivest, R.L., Stein, C., 2001. Introduction
to Algorithms, The MIT Press.

[12] Demko,S., Hill, T.P., 1988. Equitable distribution of indivisible objects,
Mathematical Social Sciences 16, 145–158.

[13] Herreiner, D., Puppe, C., 2002. A simple procedure for finding equitable
allocations of indivisible goods, Social Choice and Welfare 19, 415–430.

[14] Jones, M.A., 2002. Equitable, envy-free, and efficient cake cutting for two
people and its applications to divisible goods, Mathematics Magazine 75,
275–283.

[15] Kuhn, H.W., 1967, On games of fair division, In: Shubik M.(Ed.), Essays
in Mathematical Economics in Honor of Oskar Morgenstern. Princeton
University Press.

[16] Legut, J., Wilczyński, M., 1988. Optimal partitioning of a measurable
space, Proceedings of the American Mathematical Society 104, 262–264.

[17] Papadimitriou, C.H., Steiglitz, K., 1982. Combinatorial Optimization: Al-
gorithms and Complexity, Prentice & Hall.

[18] Wolsey, L.A., Nemhauser, G.L., 1988. Integer and Combinatorial Opti-
mization, Wiley-Interscience.

[19] Vazirani, V.V., 2001. Approximation Algorithms, Springer-Verlag.


