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Chapter1

IMA GE SEARCH ENGINES:
AN OVERVIEW

In this chapter, we present an overview on the theory, techniques and applications
of content-based image retrieval. We choosepatterns of use, image domains and
computation as the pivotal building blocks of our survey. A graphical overview of
the content-based image retrieval scheme is given in Fig. 1.1. Derived from this
scheme,we follow the data asthey o w through the computational process,seeFig.
1.3, with the conventions indicated in Fig. 1.2. In all of this chapter, we follow the
review in [155] closely.

We focus on still images and leave video retrieval as a separate topic. Video
retrieval could be consideredas a broader topic than image retrieval as video is
more than a set of isolated images. However, video retrieval could also be consid-
ered to be simpler than image retrieval since, in addition to pictorial information,
video contains supplementary information such as motion, and spatial and time
constraints e.g. video discloseits objects more easily as many points corresponding
to one object move together and are spatially coherent in time. In still pictures
the user's narrativ e expressionof intention is in image selection, object descrip-
tion and composition. Video, in addition, has the linear time line as an important
information cue to assist the narrativ e structure.

1.1 Overview of the chapter

The overview of the basiccomponents, to bediscussedin this chapter, is given in Fig.
1.1 and the corresponding datao w processis shown in Fig. 1.3. The sectionsin this
chapter harmonize with the data as they o w from one computational component
to another as follows:

� Interactive query formulation: Interactive query formulation is o�ered either
by query (sub)image(s) or by o�ering a pattern of feature values and weights. To
achieve interactive query formulation, an image is sketched, recorded or selected
from an imagerepository. With the query formulation, the aim to search for partic-
ular imagesin the database. The mode of search might be oneof the following three
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Figure 1.1. Overview of the basic concepts of the content-based image retrieval
schemeas considered in this chapter. First, featuresare extracted from the images
in the database which are stored and indexed. This is done o�-line. The on-
line image retrieval processconsists of a query exampleimage from which image
features are extracted. These image feature are used to �nd the images in the
databasewhich are most similar. Then, a candidate list of most similar imagesis
shown to the user. From the user feed-back the query is optimized and used as a
new query in an iterative manner.

categories: search by association, target search, and category search. For search by
association, the intention of the user is to browse through a large collection of im-
ageswithout a speci�c aim. Search by association tries to �nd interesting images
and is often applied in an iterativ e way by means of relevance feedback. Target
search is to �nd similar (target) imagesin the image database. Note that "similar
image" may imply a (partially) identical image, or a (partially) identical object
in the image. The third class is category search, where the aim is to retrieve an
arbitrary image which is typical for a speci�c classor genre (e.g. indoor images,
portraits, city views). As many image retrieval systemsare assembled around one
of thesethree search modes, it is important to get more insight in thesecategories
and their structure. Search modeswill be discussedin Section 1.2.1.

� Image domains: The de�nition of image features dependson the repertoire of
imagesunder consideration. This repertoire can be ordered along the complexity
of variations imposedby the imaging conditions such as illumination and viewing
geometry going from narrow domains to broad domains. For imagesfrom a narrow
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Figure 1.2. Data ow and symbol conventions as used in this chapter. Di�er ent
styles of arrows indicate di�er ent data structures.

domain there will be a restricted variabilit y of their pictorial content. Examples
of narrow domains are stamp collections and face databases. For broad domains,
imagesmay be taken from objects from unknown viewpoints and illumination. For
example, two recordings taken from the sameobject from di�eren t viewpoints will
yield di�eren t shadowing, shadingand highlighting cueschanging the intensity data
�elds considerably. Moreover, large di�erences in the illumination color will dras-
tically change the photometric content of imageseven when they are taken from
the samescene. Hence, imagesfrom broad domains have a large pictorial variety
which is called the sensorygap to be discussedin Section 1.2.2. Furthermore, low-
level image features are often too restricted to describe imageson a conceptual or
semantic level. This semantic gap is a well-known problem in content-based image
retrieval and will be discussedin Section 1.2.3.

� Image features: Image feature extraction is an important step for image index-
ing and search. Image feature extraction modulesshould take into account whether
the image domain is narrow or broad. In fact, they should considerto which of the
imaging conditions they should be invariant to such a change in viewpoint, object
pose,and illumination. Further, imagefeaturesshould be conciseand completeand
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Figure 1.3. Basic algorithmic components of query by pictorial examplecaptured
in a data-ow schemewhile using the conventions of Fig. 1.2.

at the samehaving high discriminativ e power. In general,a tradeo� exists between
the amount of invariance and selectivity. In Section 1.3, a taxonomy on feature
extraction modules is given from an image processingperspective. The taxonomy
can be usedto selectthe proper feature extraction method for a speci�c application
basedon whether imagescomefrom broad domains and which search goalsare at
hand (target/category/associate search). In Section 1.3.1, we �rst focus on color
content descriptors derived from image processingtechnology. Various color based
image search methods will be discussedbasedon di�eren t representation schemes
such as color histograms, color moments, color edgeorientation, and color correlo-
grams. These image representation schemesare created on the basisof RGB , and
other color systemssuch as H SI and CIE L � a� b� . For example, the L � a� b� space
has been designedto conform to the human perception of color similarit y. If the
appreciation of a human observer of an object is basedon the perception of certain
conspicuousitems in the image, it is natural to direct the computation of broad
domain features to these points and regions. Similarly, a biologically plausible ar-
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chitecture [84] of center-surround processingunits is likely to select regions which
humans would also focus on �rst. Further, color models are discussedwhich are
robust to a change in viewing direction, object geometry and illumination. Image
processingfor shape is outlined in Section 1.3.2. We focus on local shape which
are image descriptors capturing salient details in images. Finally, in Section 1.3.3,
our attention is directed towards texture and a review is given on texture features
describing local color characteristics and their spatial layout.

� Representation and indexing
Representation and indexing will be discussedin Section 1.4. In general, the

image feature set is represented by vector space, probabilistic or logical models.
For example, for the vector spacemodel, weights can be assignedcorresponding to
the feature frequency giving the well-known histogram form. Further, for accurate
imagesearch, it is often desirableto assignweights in accordanceto the importance
of the image features. The image feature weights usedfor both imagesand queries
can be computed as the product of the featuresfrequencymultiplied by the inverse
collection frequencyfactor. In this way, featuresare emphasizedhaving high feature
frequenciesbut low overall collection frequencies.More on feature accumulation and
representation is discussedin Section 1.4.2. In addition to feature representation,
indexing is required to speed up the search process. Indexing techniques include
adaptive histogram binning, signature �les, and hashing. Further, tree-basedin-
dexing schemeshave beendeveloped for indexing the stored imagesso that similar
imagescan be identi�ed e�cien tly at someadditional costs in memory, such as a
k-d tree, R*-tree or a SS-tree,[69] for example.

Throughout the chapter, a distinction is made between weak and strong seg-
mentation. Weak segmentation is a local grouping approach usually focusing on
conspicuousregions such as edges, corners and higher-order junctions. In Sec-
tion 1.4.4, various methods are discussedto achieve weak segmentation. Strong
segmentation is the extraction of the complete contour of an object in an image.
Obviously, strong segmentation is far more di�cult than weak segmentation and is
hard to achieve if not impossiblefor broad domains.

� Similarity and search
The actual matching processcan be seenas a search for images in the stored

image set closest to the query speci�cation. As both the query and the image
data set is captured in feature form, the similarit y function operates between the
weighted feature sets. To make the query e�ectiv e, closeattention has to be paid to
the selectionof the similarit y function. A proper similarit y function shouldberobust
to object fragmentation, occlusionand clutter by the presenceof other objects in the
view. For example, it is known that the mean squareand the Euclidean similarit y
measureprovidesaccurateretrieval without any object clutter [59] [162]. A detailed
overview on similarit y and search is given in Section 1.5.

� Interaction and Learning
Visualization of the feature matching results gives the user insight in the im-

portance of the di�eren t features. Windowing and information display techniques
can be used to establish communications between system and user. In particular,
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new visualization techniques such as 3D virtual image clouds can used to desig-
nate certain imagesas relevant to the user's requirements. These relevant images
are then further used by the system to construct subsequent (improved) queries.
Relevance feedback is an automatic processdesignedto produce improved query
formulations following an initial retrieval operation. Relevance feedback is needed
for image retrieval where users �nd it di�cult to formulate pictorial queries. For
example, without any speci�c query image example, the user might �nd it di�-
cult to formulate a query (e.g. to retrieve an image of a car) by image sketch or
by o�ering a pattern of feature values and weights. This suggeststhat the �rst
search is performed by an initial query formulation and a (new) improved query
formulation is constructed based on the search results with the goal to retrieve
more relevant imagesin the next search operations. Hence,from the user feedback
giving negative/positive answers, the method can automatically learn which image
features are more important. The system usesthe feature weighting given by the
user to �nd the images in the image databasewhich are optimal with respect to
the feature weighting. For example, the search by association allows usersto re�ne
iterativ ely the query de�nition, the similarit y or the exampleswith which the search
wasstarted. Therefore, systemsin this category are highly interactive. Interaction,
relevancefeedback and learning are discussedin Section 1.6.

� Testing
In general,imagesearch systemsare assessedin terms of precision, recall, query-

processingtime as well as reliabilit y of a negative answer. Further, the relevance
feedback method is assessedin terms of the number of iterations to approach to
the ground-truth. Today, more and more imagesare archived yielding a very large
rangeof complex pictorial information. In fact, the averagenumber of images,used
for experimentation as reported in the literature, augmented from a few in 1995
to over a hundred thousand by now. It is important that the dataset should have
ground-truths i.e. imageswhich are (non) relevant to a given query. In general, it
is hard to get theseground-truths. Especially for very large datasets. A discussion
on system performanceis given in Section 1.6.

1.2 Image Domains

In this section, we discusspatterns in image search applications, the repertoire of
images,the inuence of the imageformation process,and the semantic gap between
image descriptors and the user.

1.2.1 Search modes
We distinguish three broad categoriesof search modeswhen using a content-based
image retrieval system, seeFig. 1.4.

� There is a broad variety of methods and systemsdesignedto browsethrough
a large set of imagesfrom unspeci�ed sources,which is called search by association.
At the start, users of search by association have no speci�c aims other than to
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Figure 1.4. Three patterns in the purposeof content-based retrieval systems.

�nd interesting images. Search by association often implies iterativ e re�nement
of the search, the similarit y or the exampleswith which the search was initiated.
Systemsin this category are highly interactive, where the query speci�cation may
be de�ned by sketch [28] or by exampleimages. The oldest realistic exampleof such
a systemis probably [91]. The result of the search can be manipulated interactively
by relevance feedback [76]. To support the quest for relevant results, also other
sourcesthan imagesare employed, for example [163].

� Another classof search mode is target search with the purposeto �nd a speci�c
image. The search may be for a precisecopy of the image in mind, as in searching
art catalogues,e.g. [47]. Target search may also be for another image of the same
object the user has an image of. This is target search by example. Target search
may also be applied when the user has a speci�c image in mind and the target
is interactively speci�ed as similar to a group of given examples,for instance [29].
These systemsare suited to search for stamps, paintings, industrial components,
textile patterns, and cataloguesin general.

� The third class of search modes is category search, aiming at retrieving an
arbitrary image representativ e for a speci�c class. This is the casewhen the user
has an example and the search is for other elements of the same class or genre.
Categoriesmay be derived from labelsor may emergefrom the database[164], [105].
In category search, the user may have available a group of imagesand the search
is for additional images of the same class [25]. A typical application of category
search is cataloguesof varieties. In [82], [88], systemsare designedfor classifying



8 Image Search Engines: An Overview Chapter 1

trademarks. Systemsin this category are usually interactive with a domain speci�c
de�nition of similarit y.

1.2.2 The sensory gap
In the repertoire of imagesunder consideration(the imagedomain) there is a gradual
distinction betweennarrow and broad domains [154]. At one end of the spectrum,
we have the narrow domain:

A narrow domain hasa limited and predictable variability in all relevant
aspects of its appearance.

Hence, in a narrow domain one �nds imageswith a reduceddiversity in their pic-
torial content. Usually, the image formation processis similar for all recordings.
When the object's appearancehas limited variabilit y, the semantic description of
the image is generally well-de�ned and largely unique. An example of a narrow
domain is a set of frontal views of faces,recordedagainst a clear background. Al-
though each face is unique and has large variabilit y in the visual details, there are
obvious geometrical, physical and illumination constraints governing the pictorial
domain. The domain would be wider in casethe faceshad beenphotographedfrom
a crowd or from an outdoor scene. In that case,variations in illumination, clutter
in the scene,occlusion and viewpoint will have a major impact on the analysis.

On the other end of the spectrum, we have the broad domain:

A broad domain has an unlimited and unpredictable variability in its
appearance even for the samesemantic meaning.

In broad domains images are polysemic, and their semantics are described only
partially . It might be the casethat there are conspicuousobjects in the scenefor
which the object class is unknown, or even that the interpretation of the sceneis
not unique. The broadest classavailable today is the set of imagesavailable on the
Internet.

Many problems of practical interest have an image domain in between these
extreme ends of the spectrum. The notions of broad and narrow are helpful in
characterizing patterns of use, in selecting features, and in designing systems. In
a broad image domain, the gap between the feature description and the semantic
interpretation is generally wide. For narrow, specialized image domains, the gap
between features and their semantic interpretation is usually smaller, so domain-
speci�c models may be of help.

For broad imagedomains in particular, onehas to resort to generally valid prin-
ciples. Is the illumination of the domain white or colored? Does it assumefully
visible objects, or may the scenecontain clutter and occluded objects as well? Is
it a 2D-recording of a 2D-sceneor a 2D-recording of a 3D-scene?The given char-
acteristics of illumination, presenceor absenceof occlusion, clutter, and di�erences
in cameraviewpoint, determine the demandson the methods of retrieval.
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The sensory gap is the gap between the object in the world and the in-
formation in a (computational) description derived from a recording of
that scene.

The sensorygap makes the description of objects an ill-p osed problem: it yields
uncertainty in what is known about the state of the object. The sensorygap is par-
ticularly poignant when a preciseknowledgeof the recording conditions is missing.
The 2D-recordsof di�eren t 3D-objects canbe identical. Without further knowledge,
one has to decidethat they might represent the sameobject. Also, a 2D-recording
of a 3D- scenecontains information accidental for that sceneand that sensingbut
one doesnot know what part of the information is scenerelated. The uncertainty
due to the sensorygap doesnot only hold for the viewpoint, but also for occlusion
(where essential parts telling two objects apart may be out of sight), clutter, and
illumination.

1.2.3 The semantic gap
As stated in the previous sections,content-based image retrieval relies on multiple
low-level features (e.g. color, shape and texture) describing the image content.
To cope with the sensory gap, these low-level features should be consistent and
invariant to remain representativ e for the repertoire of imagesin the database. For
image retrieval by query by example, the on-line image retrieval processconsists
of a query example image, given by the user on input, from which low-level image
featuresare extracted. Theseimagefeaturesare usedto �nd imagesin the database
which are most similar to the query image. A drawback, however, is that theselow-
level image features are often too restricted to describe imageson a conceptual or
semantic level. It is our opinion that ignoring the existenceof the semantic gap
is the causeof many disappointments on the performanceof early image retrieval
systems.

The semantic gapis the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same
data have for a user in a given situation.

A user wants to search for images on a conceptual level e.g. images containing
particular objects (target search) or conveying a certain messageor genre(category
search). Image descriptions, on the other hand, are derived by low-level data-
driven methods. The semantic search by the user and the low-level syntactic image
descriptors may be disconnected. Association of a complete semantic system to
image data would entail, at least, solving the general object recognition problem.
Since this problem is yet unsolved and will likely to stay unsolved in its entirit y,
research is focusedon di�eren t methods to associate higher level semantics to data-
driven observables.

Indeed, the most reasonabletool for semantic image characterization entails
annotation by keywords or captions. This converts content-based image accessto
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(textual) information retrieval [134]. Common objections to the practice of label-
ing are cost and coverage. On the cost side, labeling thousands of images is a
cumbersomeand expensive job to the degreethat the deployment of the economic
balance behind the database is likely to decrease. To solve the problem, systems
presented in [140], [139] usea program that exploresthe Internet collecting images
and inserting them in a prede�ned taxonomy on the basis of the text surrounding
them. A similar approach for digital libraries is taken by [19]. On the coverageside,
labeling is seldomcomplete,context sensitive and, in any case,there is a signi�cant
fraction of requestswhosesemantics can't be captured by labeling alone [7], [72].
Both methods will cover the semantic gap only in isolated cases.

1.2.4 Discussion
We have discussedthree broad types of search categories: target search, category
search and search by association. Target search is related to the classicalmethods
in the �eld of pattern matching and computer vision such asobject recognition and
imagematching. However, imageretrieval di�ers from traditional pattern matching
by consideringmore and more imagesin the database. Therefore, new challengesin
content-basedretrieval are in the hugeamount of imagesto search among,the query
speci�cation by multiple images,and in the variabilit y of imaging conditions and
object states. Category search connectsto statistical pattern recognition methods.
However, compared to traditional pattern recognition, new challengesare in the
interactive manipulation of results, the usually very large number of object classes,
and the absenceof an explicit training phasefor feature and classi�er tuning (ac-
tiv e learning). Search by association is the most distant from the classical �eld of
computer vision. It is severely hampered by the semantic gap. As long as the gap
is there, useof content-based retrieval for browsing will not be within the grasp of
the general public as humans are accustomedto rely on the immediate semantic
imprin t the moment they seean image.

An important distinction we have discussedis that between broad and narrow
domains. The broader the domain, the more browsing or search by association
should be consideredduring system set-up. The narrower the domain, the more
target search should be taken as search mode.

The major discrepancy in content-based retrieval is that the user wants to re-
trieve imageson a semantic level, but the image characterizations can only provide
similarit y on a low-level syntactic level. This is called the semantic gap. Fur-
thermore, another discrepancyis that between the properties in an image and the
properties of the object. This is called the sensorygap. Both the semantic and
sensorygap play a serious limiting role in the retrieval of images based on their
content.
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1.3 Image Features

Beforestarting the discussionon imagefeatures,it is important to keepin mind that
content-based retrieval does not depend on a complete description of the pictorial
content of the image. It is su�cien t that a retrieval systempresents similar images,
i.e. similar in some user de�ned sense. The description of the content by image
features should serve that goal primarily .

Onesuch goalcanbemet by using invarianceasa tool to dealwith the accidental
distortions in the imagecontent intro ducedby the sensorygap. From Section1.2.2,
it is clear that invariant features may carry more object-speci�c information than
other features as they are insensitive to the accidental imaging conditions such as
illumination, object poseand cameraviewpoint. The aim of invariant imagefeatures
is to identify objects no matter from how and where they are observed at the loss
of someof the information content.

Therefore, the degreeof invariance, should be tailored to the recording circum-
stances. In general,a feature with a very wide classof invariance loosesthe power
to discriminate among object di�erences. The aim is to select the tightest set of
invariants suited for the expectedset of non-constant conditions. What is neededin
image search is a speci�cation of the minimal invariant conditions in the speci�ca-
tion of the query. The minimal set of invariant conditions can only be speci�ed by
the userasit is part of his or hers intention. For each imageretrieval query a proper
de�nition of the desired invariance is in order. Does the applicant wish search for
the object in rotation and scale invariance? illumination invariance? viewpoint
invariance? occlusion invariance? The oldest work on invariance in computer vision
has been done in object recognition as reported among others in [119] for shape
and [181] for color. Invariant description in image retrieval is relatively new, but
quickly gaining ground, for a good intro duction see[15], [30], [57].

1.3.1 Color
Color hasbeenan active areaof research in imageretrieval, more than in any other
branch of computer vision. Color makes the image take values in a color vector
space.The choiceof a color systemis of great importance for the purposeof proper
image retrieval. It induces the equivalent classesto the actual retrieval algorithm.
However, no color system can be consideredas universal, becausecolor can be in-
terpreted and modeled in di�eren t ways. Each color systemhas its own set of color
models, which are the parametersof the color system. Color systemshave beende-
veloped for di�eren t purposes:1. display and printing processes:RGB , CM Y; 2.
television and video transmittion e�ciency: Y I Q, YUV; 3. color standardization:
X YZ ; 4. color uncorrelation: I 1I 2I 3; 5. color normalization and representation:
r gb, xyz; 6. perceptual uniformit y: U � V � W � , L � a� b� , L � u� v� ; 7. and intuitiv e
description: H SI , H SV . With this large variety of color systems, the inevitable
question ariseswhich color system to use for which kind of image retrieval appli-
cation. To this end, criteria are required to classify the various color systemsfor
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the purposeof content-based imageretrieval. Firstly , an important criterion is that
the color system is independent of the underlying imaging device. This is required
when imagesin the image databaseare recordedby di�eren t imaging devicessuch
as scanners,camera'sand camrecorder(e.g. imageson Internet). Another prereq-
uisite might be that the color systemshould exhibit perceptual uniformit y meaning
that numerical distanceswithin the color spacecan be related to human percep-
tual di�erences. This is important when imagesare to be retrieved which should
be visually similar (e.g. stamps, trademarks and paintings databases). Also, the
transformation neededto compute the color system should be linear. A non-linear
transformation may intro duce instabilities with respect to noise causing poor re-
trieval accuracy. Further, the color system should be composed of color models
which are understandable and intuitiv e to the user. Moreover, to achieve robust
image retrieval, color invariance is an important criterion. In general, imagesand
videos are taken from objects from di�eren t viewpoints. Two recordings made of
the same object from di�eren t viewpoints will yield di�eren t shadowing, shading
and highlighting cues.

Only when there is no variation in the recording or in the perception than the
RGB color representation is a good choice. RGB -representations are widely in use
today. They describe the image in its literal color properties. An image expressed
by RGB makesmost sensewhen recordingsare made in the absenceof variance,as
is the case,e.g., for art paintings [72], the color composition of photographs[47] and
trademarks [88], [39], where two dimensional imagesare recorded in frontal view
under standard illumination conditions.

A signi�cant improvement over the RGB -color space(at least for retrieval ap-
plications) comesfrom the useof normalized color representations [162]. This rep-
resentation has the advantage of suppressingthe intensity information and henceis
invariant to changesin illumination intensity and object geometry.

Others approachesusethe Munsell or the L � a� b� -spacesbecauseof their relative
perceptual uniformit y. The L � a� b� color system has the property that the closera
point (representing a color) is to another point, the more visual similar the colors
are. In other words, the magnitude of the perceived color di�erence of two colors
corresponds to the Euclidean distance between the two colors in the color system.
The L � a� b� systemis basedon the three dimensionalcoordinate systembasedon the
opponent theory usingblack-white L � , red-greena� , and yellow-blue b� components.
The L � axis corresponds to the lightness where L � = 100 is white and L � = 0 is
black. Further, a� rangesfrom red + a� to green � a� while b� rangesfrom yellow
+ b� to blue � b� . The chromaticit y coordinates a� and b� are insensitive to intensity
and has the sameinvariant properties as normalized color. Care should be taken
when digitizing the non-linear conversion to L � a� b� -space[117].

The H SV-representation is often selectedfor its invariant properties. Further,
the human color perception is conveniently represented by thesecolor modelswhere
I is an attribute in terms of which a light or surfacecolor may be orderedon a scale
from dim to bright. S denotesthe relativewhite content of a color and H is the color
aspect of a visual impression. The problem of H is that it becomesunstable when S
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is near zerodue to the non-removable singularities in the nonlinear transformation,
which a small perturbation of the input can causea large jump in the transformed
values [62]. H is invariant under the orientation of the object with respect to
the illumination intensity and camera direction and hencemore suited for object
retrieval. However, H is still dependent on the color of the illumination [57].

A wide variety of tight photometric color invariants for object retrieval werede-
rived in [59] from the analysis of the dichromatic reection model. They derive for
matte patchesunder white light the invariant color space( R � G

R + G ; � B � R
B + R ; G� B

G+ B ), only
dependent on sensorand surface albedo. For a shiny surface and white illumina-
tion, they derive the invariant representation as jR � Gj

jR � Gj+ jB � R j+ jG� B j and two more
permutations. The color models are robust against major viewpoint distortions.

Color constancy is the capability of humans to perceive the samecolor in the
presenceof variations in illumination which changethe physical spectrum of the per-
ceived light. The problem of color constancyhasbeenthe topic of much research in
psychology and computer vision. Existing color constancymethods require speci�c
a priori information about the observed scene(e.g. the placement of calibration
patches of known spectral reectance in the scene)which will not be feasible in
practical situations, [48], [52], [97] for example. In contrast, without any a priori
information, [73], [45] useillumination-in variant moments of color distributions for
object recognition. However, these methods are sensitive to object occlusion and
cluttering as the moments are de�ned as an integral property on the object as one.
In global methods in general,occludedparts will disturb recognition. [153] circum-
vents this problem by computing the color featuresfrom small object regionsinstead
of the entire object. Further, to avoid sensitivity on object occlusion and clutter-
ing, simple and e�ectiv e illumination-indep endent color ratio's have beenproposed
by [53], [121], [60]. These color constant models are basedon the ratio of surface
albedos rather than the recovering of the actual surface albedo itself. However,
these color models assumethat the variation in spectral power distribution of the
illumination can be modeled by the coe�cien t rule or von Kries model, where the
change in the illumination color is approximated by a 3x3 diagonal matrix among
the sensorbands and is equal to the multiplication of each RGB -color band by
an independent scalar factor. The diagonal model of illumination changeholds ex-
actly in the caseof narrow-band sensors. Although standard video camera's are
not equipped with narrow-band �lters, spectral sharpening could be applied [46] to
achieve this to a large extent.

The color ratio's proposedby [121] are given by: N (C~x 1 ; C~x 2 ) = C ~x 1 � C ~x 2

C ~x 2 + C ~x 1
and

those proposedby [53] are de�ned by: F (C~x 1 ; C~x 2 ) = C ~x 1

C ~x 2
expressingcolor ratio's

between two neighboring image locations, for C 2 f R; G; B g, where ~x1 and ~x2

denote the image locations of the two neighboring pixels.

The color ratio's of [60] are given by: M (C~x 1
1 ; C~x 2

1 ; C~x 1
2 ; C~x 2

2 ) = C ~x 1
1 C ~x 2

2

C ~x 2
1 C ~x 1

2

express-

ing the color ratio betweentwo neighboring image locations, for C1; C2 2 f R; G; B g
where ~x1 and ~x2 denote the image locations of the two neighboring pixels. All
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these color ratio's are device dependent, not perceptual uniform and they become
unstable when intensity is near zero. Further, N and F are dependent on the ob-
ject geometry. M has no viewing and lighting dependencies. In [55] a thorough
overview is given on color models for the purpose of image retrieval. Figure 1.5
shows the taxonomy of color models with respect to their characteristics. For more
information we refer to [55].

Figure 1.5. a. Overview of the dependenciesdi�er entiated for the various
color systems. + denotesthat the condition is satis�ed - denotesthat the con-
dition is not satis�ed.

Rather than invariant descriptions, another approach to cope with the inequal-
ities in observation due to surface reection is to search for clusters in a color
histogram of the image. In the RGB -histogram, clusters of pixels reected o� an
object form elongatedstreaks. Hence,in [126], a non-parametric cluster algorithm
in RGB -space is used to identify which pixels in the image originate from one
uniformly colored object.
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1.3.2 Shape
Under the name 'local shape' we collect all properties that capture conspicuous
geometric details in the image. We prefer the name local shape over other char-
acterization such as di�eren tial geometrical properties to denote the result rather
than the method.

Local shape characteristics derived from directional color derivativeshave been
used in [117] to derive perceptually conspicuousdetails in highly textured patches
of diversematerials. A wide, rather unstructured variety of image detectors can be
found in [159].

In [61], a scheme is proposedto automatic detect and classify the physical na-
ture of edgesin imagesusing reectance information. To achieve this, a framework
is given to compute edgesby automatic gradient thresholding. Then, a taxonomy
is given on edgetypesbasedupon the sensitivity of edgeswith respect to di�eren t
imaging variables. A parameter-freeedgeclassi�er is provided labeling color tran-
sitions into one of the following types: (1) shadow-geometry edges,(2) highlight
edges,(3) material edges. In �gure 1.6.a, six frames are shown from a standard
video often used as a test sequencein the literature. It shows a person against a
textured background playing ping-pong. The size of the image is 260x135. The
imagesare of low quality. The frames are clearly contaminated by shadows, shad-
ing and inter-reections. Note that each individual object-parts (i.e. T-shirt, wall
and table) is painted homogeneouslywith a distinct color. Further, that the wall
is highly textured. The results of the proposedreectance basededgeclassi�er are
shown in �gure 1.6.b-d. For more details see[61].

Combining shape and color both in invariant fashion is a powerful combination
as described by [58] where the colors inside and outside a�ne curvature maximums
in color edgesare stored to identify objects.

Scale space theory was devised as the complete and unique primary step in
pre-attentiv e vision, capturing all conspicuousinformation [178]. It provides the
theoretical basis for the detection of conspicuousdetails on any scale. In [109] a
seriesof Gabor �lters of di�eren t directions and scalehave been used to enhance
image properties [136]. Conspicuousshape geometric invariants are presented in
[135]. A method employing local shape and intensity information for viewpoint and
occlusion invariant object retrieval is given in [143]. The method relies on voting
among a complete family of di�eren tial geometric invariants. Also, [170] searches
for di�eren tial a�ne-in variant descriptors. From surfacereection, in [5] the local
sign of the Gaussiancurvature is computed, while making no assumptionson the
albedo or the model of di�use reectance.

1.3.3 Texture
In computer vision, texture is consideredasall what is left after color and local shape
have been consideredor it is given in terms of structure and randomness. Many
common textures are composedof small textons usually too large in number to be
perceived as isolated objects. The elements can be placed more or less regularly
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Figure 1.6. Frames from a video showing a person against a textured back-
ground playing ping-pong. From left to right column. a. Original color frame.
b. Classi�ed edges. c. Material edges. d. Shadowand geometry edges.

or randomly. They can be almost identical or subject to large variations in their
appearanceand pose. In the context of image retrieval, research is mostly directed
towards statistical or generative methods for the characterization of patches.

Basic texture properties include the Markovian analysisdating back to Haralick
in 1973 and generalizedversions thereof [95], [64]. In retrieval, the property is
computed in a sliding mask for localization [102], [66].

Another important texture analysis technique usesmulti-scale auto- regressive
MRSAR-models,which considertexture as the outcomeof a deterministic dynamic
system subject to state and observation noise [168], [110]. Other models exploit
statistical regularities in the texture �eld [9].

Wavelets [33] have received wide attention. They have often beenconsideredfor
their locality and their compressione�ciency . Many wavelet transforms are gener-
ated by groups of dilations or dilations and rotations that have been said to have
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somesemantic correspondent. The lowest levels of the wavelet transforms [33], [22]
have been applied to texture representation [96], [156], sometimesin conjunction
with Markovian analysis [21]. Other transforms have also beenexplored, most no-
tably fractals [41]. A solid comparative study on texture classi�cation from mostly
transform-basedproperties can be found in [133].

When the goal is to retrieve imagescontaining objects having irregular texture
organization, the spatial organization of these texture primitiv es is, in worst case,
random. It has been demonstrated that for irregular texture, the comparison of
gradient distributions achievessatisfactory accuracy[122], [130]asopposedto frac-
tal or wavelet features. Therefore, most of the work on texture image retrieval is
stochastic from nature [12], [124], [190]. However, thesemethods rely on grey-value
information which is very sensitive to the imaging conditions. In [56] the aim is
to achieve content-based image retrieval of textured objects in natural scenesun-
der varying illumination and viewing conditions. To achieve this, image retrieval
is basedon matching feature distributions derived from color invariant gradients.
To cope with object cluttering, region-basedtexture segmentation is applied on the
target imagesprior to the actual image retrieval process. In Figure 1.7 results are
shown of color invariant texture segmentation for imageretrieval. From the results,
we can observe that RGB and normalized color � 1� 2, is highly sensitive to a change
in illumination color. Only M is insensitive to a change in illumination color. For
more information we refer to [56].

Query

Original image RGB Mq1q2

Figure 1.7. a. Query texture under di�er ent il lumination b. Target image c.
Segmentation result based on RGB . d. Segmentation result based on variant of
r gb. e. Segmentation result based on color ratio gradient M .

Texture search proved also to be useful in satellite images[100] and imagesof
documents [31]. Textures also served as a support feature for segmentation-based
recognition [106], but the texture properties discussedso far o�er little semantic
referent. They are therefore ill-suited for retrieval applications in which the user
wants to use verbal descriptions of the image. Therefore, in retrieval research,
in [104] the Wold features of periodicit y, directionalit y, and randomnessare used,
which agreereasonablywell with linguistic descriptions of textures as implemented
in [127].
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1.3.4 Discussion
First of all, imageprocessingin content-basedretrieval should primarily be engaged
in enhancing the image information of the query, not on describing the content of
the image in its entiret y.

To enhancethe image information, retrieval has set the spotlights on color, as
color has a high discriminatory power among objects in a scene,much higher than
gray levels. The purposeof most imagecolor processingis to reducethe inuence of
the accidental conditions of the sceneand sensing(i.e. the sensorygap). Progress
has been made in tailored color spacerepresentation for well-described classesof
variant conditions. Also, the application of geometrical description derived from
scale spacetheory will reveal viewpoint and sceneindependent salient point sets
thus opening the way to similarit y of imageson a few most informativ e regionsor
points.

In this chapter, we have made a separation between color, local geometry and
texture. At this point it is safe to conclude that the division is an arti�cial la-
beling. For example, wavelets say something about the local shape as well as the
texture, and so may scale spaceand local �lter strategies do. For the purposes
of content-based retrieval an integrated view on color, texture and local geometry
is urgently neededas only an integrated view on local properties can provide the
meansto distinguish among hundreds of thousandsdi�eren t images. A recent ad-
vancement in that direction is the fusion of illumination and scale invariant color
and texture information into a consistent set of localized properties [74]. Also in
[16], homogeneousregions are represented as collections of ellipsoids of uniform
color or texture, but invariant texture properties deserve more attention [167] and
[177]. Further research is neededin the designof complete setsof image properties
with well-described variant conditions which they are capableof handling.

1.4 Representation and Indexing

In the �rst subsection,we discussthe ultimate form of spatial data by grouping the
data into object silhouettes, clusters of points or point-sets. In the next subsection,
we leave the spatial domain, to condensethe pictorial information into feature
values.

1.4.1 Grouping data
In content-based imageretrieval, the image is often divided in parts beforefeatures
are computed from each part. Partitionings of the image aim at obtaining more
selective features by selectingpixels in a trade of against having more information
in features when no subdivision of the image is used at all. We distinguish the
following partitionings:

� When searching for an object, it would be most advantageousto do a complete
object segmentation �rst:
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Strong segmentation is a division of the image data into regions in such
a way that region T contains the pixels of the silhouette of object O in
the real world and nothing else, speci�e d by: T = O.

It should be noted immediately that object segmentation for broad domains of
general imagesis not likely to succeed,with a possibleexception for sophisticated
techniques in very narrow domains.

� The di�cult y of achieving strong segmentation may be circumvented by weak
segmentation where grouping is basedon data- driven properties:

Weak segmentation is a grouping of the image data in conspicuousre-
gions T internal ly homogeneous according to some criterion, hopefully
with T � O.

The criterion is satis�ed if region T is within the boundsof object O, but there is
no guarantee that the regioncoversall of the object's area. When the imagecontains
two nearly identical objects closeto each other, the weak segmentation algorithm
may falsely observe just one patch. Fortunately, in content-based retrieval, this
type of error is rarely obstructive for the goal. In [125], the homogeneity criterion
is implemented by requesting that colors be spatially coherent vectors in a region.
Color is the criterion in [49], [126]. In [16], [114], the homogeneity criterion is based
on color and texture. The limit caseof weak segmentation is a set of isolated points
[143], [59]. No homogeneity criterion is neededthen, but the e�ectiv enessof the
isolated points rest on the quality of their selection. When occlusion is present in
the image, weak segmentation is the best one can hope for. Weak segmentation is
usedin many retrieval systemseither as a purposeof its own or as a pre-processing
stagefor data-driven model- basedobject segmentation.

� When the object has a (nearly) �xed shape, like a tra�c light or an eye, we
call it a sign:

Localizing signs is �nding an object with a �xed shape and semantic
meaning, with T = x cen ter .

Signsare helpful in content basedretrieval as they deliver an immediate and unique
semantic interpretation.

� The weakest form of grouping is partitioning:

A partitioning is a division of the data array regardless of the data,
symbolized by: T 6= O.

The area T may be the entire image, or a conventional partitioning as the central
part of the image against the upper, right, left and lower parts [75]. The feasibility
of �xed partitioning comesfrom the fact that imageare created in accordancewith
certain canonsor normative rules, such as placing the horizon about 2/3 up in the
picture, or keepingthe main subject in the central area. This rule is often violated,
but this violation, in itself, has semantic signi�cance. Another possibility of par-
titioning is to divide the image in tiles of equal size and summarize the dominant
feature values in each tile [129].
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1.4.2 Features accumulation
In the computational processgiven in Fig. 1.3, features are calculated next. The
general classof accumulating features aggregatethe spatial information of a par-
titioning irrespective of the image data. A special type of accumulativ e features
are the global features which are calculated from the entire image. F j (see Fig.
1.2) is the set of accumulativ e features or a set of accumulativ e features ranked in
a histogram. Fj is part of feature spaceF . Tj is the partitioning over which the
value of Fj is computed. In the caseof global featuresTj = void represents the image,
otherwiseTj represents a �xed tiling of the image. The operator h may hold relative
weights, for example to compute transform coe�cien ts.

A simple but very e�ectiv e approach to accumulating features is to use the
histogram, that is the set of features F(m) ordered by histogram index m.

One of the earlier approaches to color-basedimage matching, using the color
at pixels directly as indices, has been proposed by Swain and Ballard [162]. If
the RGB or normalized color distributions of two imagesare globally similar, the
matching rate is high. The work by Swain and Ballard hashad an enormousimpact
on color-basedhistogram matching resulting in many histogram variations.

For example, the QBIC system [42] allows for a user-de�ned computation of
the histogram by the intro duction of variable k denoting the number of bins of the
histogram. Then, for each 3xk cells, the averagemodi�ed Munsell color is computed
together with the �v e most frequently occurring colors. Using a standard clustering
algorithm they obtain k super cells resulting in the partitioning of the color system.

In [58] various color invariant features are selectedto construct color pattern-
cards. First, histograms are created in a standard way. Becausethe color distri-
butions of histograms depend on the scale of the recorded object (e.g. distance
object-camera), they de�ne color pattern-cards as thresholded histograms. In this
way, color pattern-cards are scale-independent by indicating whether a particular
color model value is substantially present in an imageor not. Matching measuresare
de�ned, expressingsimilarit y between color pattern-cards, robust to a substantial
amount of object occlusion and cluttering. Based on the color pattern-cards and
matching functions, a hashingschemeis presented o�ering run-time imageretrieval
independent of the number of imagesin the image database.

In the ImageRover system, proposedby [147], the L � u� v� color spaceis used
where each color axis has been split into 4 equally sized bins resulting in a total
of 64 bins. Further, [37] usesthe L � a� b� system to compute the averagecolor and
covariance matrix of each of the color channels. [158] usesthe H SV color spaceto
obtain a partition into 144 bins giving more emphasison hue H than value V and
saturation I . Further, [4] also focuseson the H SV color spaceto extract regionsof
dominant colors. To obtain colors which are perceptually the samebut still being
distinctiv e, [165]proposesto partition the RGB color spaceinto 220subspaces.[36]
computes the averagecolor describing a cell of a 4x4 grid which is superimposed
on the image. [149] usesthe L � a� b� color spacebecausethe color spaceconsistsof
perceptually uniform colors, which better matches the human perception of color.
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[65] roughly partitions the Munsell color space into eleven color zones. Similar
partitioning have beenproposedby [29] and [24].

Another approach, proposedby [161], is the intro duction of the cumulativ e color
histogram which generatemore densevectors. This enablesto cope with coarsely
quantized color spaces.[186] proposesa variation of the cumulativ e histograms by
applying cumulativ e histograms to each sub-space.

Other approachesare basedon the computation of moments of each color chan-
nel. For example, [6] represents color regions by the �rst three moments of the
color models in the H SV-space. Instead of constructing histograms from color in-
variants, [73], [45] proposethe computation of illumination-in variant moments from
color histograms. In a similar way, [153] computes the color features from small
object regions instead of the entire object.

[85] proposesto useintegrated wavelet decomposition. In fact, the color features
generatewavelet coe�cien ts together with their energydistribution amongchannels
and quantization layers. Similar approachesbasedon wavelets have beenproposed
by [175], [101].

All of this is in favor of the use of histograms. When very large data sets are
at stake, plain histogram comparison will saturate the discrimination. For a 64-
bin histogram, experiments show that for reasonableconditions, the discriminatory
power among imagesis limited to 25,000images[160]. To keepup performance,in
[125], a joint histogram is used providing discrimination among 250,000imagesin
their databaserendering 80%recall among the best 10 for two shots from the same
sceneusing simple features. Other joint histogramsadd local texture or local shape
[68], directed edges[87], and local higher order structures [47].

Another alternativ e is to add a dimension representing the local distance. This
is the correlogram [80], de�ned as a 3- dimensional histogram where the colors of
any pair are along the �rst and seconddimension and the spatial distance between
them along the third. The autocorrelogram de�ning the distancesbetween pixels
of identical colors is found on the diagonal of the correlogram. A more general
version is the geometric histogram [1] with the normal histogram, the correlogram
and several alternativ es as special cases. This also includes the histogram of the
triangular pixel values reported to outperform all of the above as it contains more
information.

A di�eren t view on accumulativ e features is to demand that all information (or
all relevant information) in the image is preserved in the feature values. When
the bit-content of the features is less than the original image, this boils down to
compressiontransforms. Many compressiontransforms are known, but the quest is
for transforms simultaneously suited as retrieval features. As proper querying for
similarit y is basedon a suitable distance function between images, the transform
has to be applied on a metric space. And, the components of the transform have
to correspond to semantically meaningful characteristics of the image. And, �nally ,
the transform should admit indexing in compressedform yielding a big computa-
tional advantage over having the image be untransformed �rst. [144] is just one
of many where the cosine-basedJPEG-coding scheme is used for image retrieval.
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The JPEG-transform ful�lls the �rst and third requirement but fails on a lack of
semantics. In the MPEG-standard the possibility to include semantic descriptors
in the compressiontransform is intro duced [27]. For an overview of feature indexes
in the compresseddomain, see[108]. In [96], a wavelet packet was applied to tex-
ture images and, for each packet, entropy and energy measureswere determined
and collected in a feature vector. In [83], vector quantization was applied in the
spaceof coe�cien ts to reduce its dimensionality. This approach was extended to
incorporate the metric of the color spacein [141]. In [86] a wavelet transform was
applied independently to the three channelsof a color image, and only the sign of
the most signi�cant coe�cien ts is retained. In [3], a scheme is o�ered for a broad
spectrum of invariant descriptors suitable for application on Fourier, wavelets and
splinesand for geometry and color alike.

1.4.3 Feature accumulation and image partitioning
The lack of spatial information for methods basedon feature accumulation might
yield lower retrieval accuracy. As for general image databases,a manual segmenta-
tion is not feasibledue to the sensorygap, a simple approach is to divide images
into smaller sub-imagesand then index them. This is known as �xed partition-
ing. Other systemsuse a segmentation scheme, prior to the actual image search,
to partition each image into regions. Nearly all region-basedpartitioning schemes
usesomekind of weak segmentation decomposing the image into coherent regions
rather than complete objects (strong segmentation).

Fixed Partitioning

The simplest way is to usea �xed image decomposition in which an image is parti-
tioned into equally sizedsegments. The disadvantage of a �xed partitioning is that
blocks usually do not correspond with the visual content of an image. For example,
[65] splits an image into nine equally sized sub-images,where each sub-region is
represented by a color histogram. [67] segments the image by a quadtree, and [99]
usesa multi-resolution representation of each image. [36] also usesa 4x4 grid to
segment the image. [148] partitions imagesinto three layers, where the �rst layer
is the whole image, the secondlayer is a 3x3 grid and the third layer a 5x5 grid. A
similar approach is proposedby [107]wherethree levelsof a quadtree is usedto seg-
ment the images. [37] proposesthe useof inter-hierarchical distancesmeasuringthe
di�erence betweencolor vectors of a region and its sub-segments. [20] usesan aug-
mented color histogram capturing the spatial information between pixels together
to the color distribution. In [59] the aim is to combine color and shape invariants
for indexing and retrieving images. Color invariant edgesare derived from which
shape invariant featuresare computed. Then computational methods are described
to combine the color and shape invariants into a uni�ed high-dimensionalhistogram
for discriminatory object retrieval. [81] proposesthe use of color correlogramsfor
image retrieval. Color correlograms integrate the spatial information of colors by
expressingthe probabilit y that a pixel of color ci lies at a certain distance from a
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pixel of color cj . It is shown that color correlogramsare robust to a changein back-
ground, occlusion, and scale(camera zoom). [23] intro ducesthe spatial chromatic
histograms, where for every pixel the percentage of pixels having the samecolor is
computed. Further, the spatial information is encoded by baricenter of the spatial
distribution and the corresponding deviation.

Region-based Partitioning

Segmentation is a computational method to assessthe set of points in an image
which represent one object in the scene.As discussedbefore, many di�eren t com-
putational techniques exist, none of which is capable of handling any reasonable
set of real world images. However, in this case,weak segmentation may be su�-
cient to recognizean object in a scene.Therefore, in [12] an image representation
is proposedproviding a transformation from the raw pixel data to a small set of
image regions which are coherent in color and texture space. This so-calledBlob-
world representation is basedon segmentation using the Expectation-Maximization
algorithm on combined color and texture features. In the Picassosystem [13], a
competitiv e learning clustering algorithm is usedto obtain a multiresolution repre-
sentation of color regions. In this way, colors are represented in the l � u� v� space
through a set of 128 referencecolors as obtained by the clustering algorithm. [63]
proposesa method basedon matching feature distributions derived from color ra-
tio gradients. To cope with object cluttering, region-basedtexture segmentation
is applied on the target images prior to the actual image retrieval process. [26]
segments the image �rst into homogeneousregionsby split and mergeusing a color
distribution homogeneity condition. Then, histogram intersection is usedto express
the degreeof similarit y betweenpairs of image regions.

1.4.4 Salient features
As the information of the image is condensedinto just a limited number of feature
values, the information should be selectedwith precision for greatest saliency and
proven robustness. That is why saliency in [103] is de�ned as the special points,
which survive longestwhengradually blurring the imagein scalespace.Also in [137]
lifetime is an important selectioncriterion for salient points in addition to wiggliness,
spatial width, and phasecongruency. To enhancethe quality of salient descriptions,
in [170] invariant and salient featuresof local patcheshave beenconsidered.In each
case,the image is summarized in a list of conspicuouspoints. In [143] salient and
invariant transitions in gray value images are recorded. Similarly, in [59], [54],
photometric invariance is the leading principle in summarizing the image in salient
transitions in the image. Salient feature calculations lead to setsof regionsor points
with known location and feature valuescapturing their salience.

In [16], �rst the most conspicuoushomogeneousregionsin the imageare derived
and mapped into feature space. Then, expectation- maximization [35] is used to
determine the parameters of a mixture of Gaussiansto model the distribution of
points into the feature space. The meansand covariance matrices of these Gaus-
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sians, projected on the image plane, are represented as ellipsoids characterized by
their center x, their area, eccentricit y, and direction. The average values of the
color and texture descriptions inside the ellipse are also stored.

Various color image segmentation methods have been proposedwhich account
for the imageformation process,seefor instancethe work collectedby Wol�, Shafer
and Healey[181]. [150]presented the dichromatic reection model, a physical model
of reection which states that two distinct types of reection - surface and body
reection - occur, and that each type can be decomposed into a relative spectral
distribution and a geometricscalefactor. [93] developed a color segmentation algo-
rithm basedon the dichromatic reection model. The method is basedon evaluating
characteristic shapesof clusters in red-green-blue(RGB ) spacefollowed by segmen-
tation independent of the object's geometry, illumination and highlights. To achieve
robust image segmentation, however, surfacepatchesof objects in view must have
a rather broad distribution of surface normals which may not hold for objects in
general. [10] developed a similar image segmentation method using the H -S color
spaceinstead of the RGB-color space. [73] proposeda method to segment images
on the basis of normalized color. However, [92] showed that normalized color and
hue are singular at someRGB valuesand unstable at many others.

1.4.5 Shape and object features
The theoretically best way to enhanceobject-speci�c information contained in im-
agesis by segmenting the object in the image. But, as discussedabove, the brit-
tlenessof segmentation algorithms prevents the use of automatic segmentation in
broad domains. And, in fact, in many casesit is not necessaryto know exactly
where an object is in the image as long as one can identify the presenceof the
object by its unique characteristics. When the domain is narrow a tailored segmen-
tation algorithm may be neededmore, and fortunately also be better feasible.

The object internal features are largely identical to the accumulativ e features,
now computed over the object area. They needno further discussionhere.

An abundant comparisonof shape for retrieval can be found in [113],evaluating
many features on a 500-element trademark data set. Straightforward features of
general applicabilit y include Fourier features and moment invariants of the object
this time, sets of consecutive boundary segments, or encoding of contour shapes
[40].

For retrieval, we needa shape representation that allows a robust measurement
of distancesin the presenceof considerabledeformations. Many sophisticatedmod-
els widely used in computer vision often prove too brittle for image retrieval. On
the other hand, the (interactive) useof retrieval makessomemismatch acceptable
and, therefore precision can be traded for robustnessand computational e�ciency .

More sophisticated methods include elastic matching and multi- resolution rep-
resentation of shapes. In elastic deformation of image portions [34], [123] or modal
matching techniques [145] image patches are deformed to minimize a cost func-
tional that depends on a weighedsum of the mismatch of the two patches and on
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the deformation energy. The complexity of the optimization problem depends on
the number of points on the contour. Hence, the optimization is computationally
expensive and this, in spite of the greater precision of these methods, has limited
their di�usion in image databases.

Multi-scale models of contours have been studied as a representation for im-
age databasesin [118]. Contours were extracted from images and progressively
smoothed by dividing them into regions of constant sign of the secondderivative
and progressively reducing the number of such regions. At the �nal step, every
contour is reducedto an ellipsoid which could be characterized by someof the fea-
tures in [47]. A di�eren t view on multi-resolution shape is o�ered in [98], where
the contour is sampledby a polygon, and then simpli�ed by removing points from
the contour until a polygon survivesselecting them on perceptual grounds. When
computational e�ciency is at stake an approach for the description of the object
boundaries is found in [189] where an ordered set of critical points on the bound-
ary are found from curvature extremes. Such sets of selectedand ordered contour
points are stored in [112] relative to the basis spannedby an arbitrary pair of the
points. All point pairs are used as a basis to make the redundant representation
geometrically invariant, a technique similar to [182] for unordered point sets.

For retrieval of objects in 2D-images of the 3D-worlds, a viewpoint invariant
description of the contour is important. A good review of global shape invariants
is given in [138].

1.4.6 Structure and lay-out
When feature calculations are available for di�eren t entities in the image, they
may be stored with a relationship between them. Such a structural feature set
may contain feature values plus spatial relationships, a hierarchically ordered set
of feature values,or relationships betweenpoint setsor object sets. Structural and
layout feature descriptions are captured in a graph, hierarchy or any other ordered
set of feature valuesand their relationships.

To that end, in [111], [49] lay-out descriptions of an object are discussedin the
form of a graph of relations between blobs. A similar lay-out description of an
image in terms of a graph representing the spatial relations betweenthe objects of
interest was used in [128] for the description of medical images. In [51], a graph is
formed of topological relationships of homogeneousRGB -regions. When selected
features and the topological relationships are viewpoint invariant, the description
is viewpoint invariant, but the selectionof the RGB -representation as used in the
paper will only suit that purpose to a limited degree. The systemsin [78], [157]
studies spatial relationships between regions each characterized by locations, size
and features. In the later system,matching is basedon the 2D-string representation
founded by Chang [17]. For a narrow domain, in [128], [132] the relevant element of
a medical X-ray image are characterized separately and joined together in a graph
that encodestheir spatial relations.

Starting from a shape description, the authors in [98] decomposean object into
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its main components making the matching betweenimagesof the sameobject easier.
Automatic identi�cation of salient regions in the image based on non-parametric
clustering followed by decomposition of the shapes found into limbs is explored in
[50].

1.4.7 Discussion
Generalcontent-basedretrieval systemshave dealt with segmentation brittleness in
a few ways. First, a weaker versionof segmentation hasbeenintro ducedin content-
basedretrieval. In weak segmentation the result is a homogeneousregion by some
criterion, but not necessarilycovering the complete object silhouette. It results in
a fuzzy, blobby description of objects rather than a precisesegmentation. Salient
features of the weak segments capture the essential information of the object in a
nutshell. The extreme form of the weak segmentation is the selection of a salient
point setasthe ultimately e�cien t data reduction in the representation of an object,
very much like the focus- of-attention algorithms for an earlier age. Only points on
the interior of the object can be used for identifying the object, and conspicuous
points at the bordersof objects have to be ignored. Little work hasbeendonehow to
make the selection. Weaksegmentation and salient featuresare a typical innovation
of content-based retrieval. It is expected that saliencewill receive much attention
in the further expansionof the �eld especially when computational considerations
will gain in importance.

The alternativ e is to do no segmentation at all. Content-based retrieval has
gainedfrom the useof accumulativ e features,computed on the global imageor par-
titionings thereof disregarding the content, the most notable being the histogram.
Where most attention has gone to color histograms, histograms of local geomet-
ric properties and texture are following. To compensate for the complete loss of
spatial information, recently the geometric histogram was de�ned with an addi-
tional dimension for the spatial layout of pixel properties. As it is a superset of
the histogram an improved discriminabilit y for large data setsis anticipated. When
accumulativ e features they are calculated from the central part of a photograph
may be very e�ectiv e in telling them apart by topic but the center doesnot always
reveals the purpose. Likewise, features calculated from the top part of a picture
may be e�ectiv e in telling indoor scenesfrom outdoor scenes,but again this holds
to a limited degree.A danger of accumulativ e features is their inabilit y to discrim-
inate among di�eren t entities and semantic meaningsin the image. More work on
semantic-driv en groupings will increasethe power of accumulativ e descriptors to
capture the content of the image.

Structural descriptions match well with weak segmentation, salient regionsand
weak semantics. One has to be certain that the structure is within one object and
not an accidental combination of patcheswhich haveno meaningin the object world.
The samebrittleness of strong segmentation lurks here. We expect a sharp increase
in the research of local, partial or fuzzy structural descriptors for the purposeof
content-based retrieval especially of broad domains.
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1.5 Similarit y and Search

When the information from imagesis captured in a feature set, there are two pos-
sibilities for endowing them with meaning: one derivesan unilateral interpretation
from the feature set or one comparesthe feature set with the elements in a given
data set on the basisof a similarit y function.

1.5.1 Semantic interp retation
In content-basedretrieval it is useful to push the semantic interpretation of features
derived from the image as far as one can.

Semantic features aim at encoding interpretations of the image which
may be relevant to the application.

Of course, such interpretations are a subset of the possible interpretations of an
image. To that end, considera feature vector F derived from an imagei . For given
semantic interpretations z from the set of all interpretations Z , a strong semantic
feature with interpretation zj would generatea P(zjF) = � (z � zj ). If the feature
carriesno semantics, it would generatea distribution P(zjF) = P(z) independent of
the value of the feature. In practice, many feature typeswill generatea probabilit y
distribution that is neither a pulsenor independent of the feature value. This means
that the feature value skewsthe interpretation of the image,but doesnot determine
it completely.

Under the umbrella weak semantics we collect the approaches that try to com-
bine featuresin somesemantically meaningful interpretation. Weak semantics aims
at encoding in a simple and approximate way a subsetof the possibleinterpretations
of an image that are of interest in a given application. As an example, the system
in [28] usescolor featuresderived from Itten's color theory to encode the semantics
associated to color contrast and harmony in art application.

In the MAVIS2-system[90] data are consideredat four semantic levels, embod-
ied in four layers called the raw media, the selection, the selection expressionand
conceptual layers. Each layer encodesinformation at an increasinglysymbolic level.
Agents are trained to create links betweenfeatures, feature signaturesat the selec-
tion layer, inter-related signatures at the selection expressionlayer, and concept
(expressedas textual labels) at the conceptual layer. In addition to the vertical
connections,the two top layers have intra-layer connectionsthat measurethe simi-
larit y betweenconceptsat that semantic level and contribute to the determination
of the similarit y betweenelements at the lower semantic level.

1.5.2 Similarit y between features
A di�eren t road to assigna meaningto an observed feature set, is to comparea pair
of observations by a similarit y function. While searching for a query image i q(x)
among the elements of the data set of images,i d(x), knowledgeof the domain will
be expressedby formulating a similarit y measureSq;d betweenthe imagesq and d
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on the basis of somefeature set. The similarit y measuredepends on the type of
features.

At its best use,the similarit y measurecan be manipulated to represent di�eren t
semantic contents; imagesare then grouped by similarit y in such a way that close
images are similar with respect to use and purpose. A common assumption is
that the similarit y between two feature vectors F can be expressedby a positive,
monotonically non increasing function. This assumption is consistent with a class
of psychological models of human similarit y perception [152], [142], and requires
that the feature spacebe metric. If the feature spaceis a vector space,d often is a
simple Euclidean distance, although there is indication that more complex distance
measuresmight be necessary[142]. This similarit y model was well suited for early
query by example systems, in which images were ordered by similarit y with one
example.

A di�eren t view seessimilarit y asan essentially probabilistic concept. This view
is rooted in the psychological literature [8], and in the context of content-based
retrieval it has beenproposed,for example, in [116].

Measuring the distance betweenhistograms has beenan active line of research
since the early years of content-based retrieval, where histograms can be seenas
a set of ordered features. In content-based retrieval, histograms have mostly been
used in conjunction with color features, but there is nothing against being used in
texture or local geometric properties.

Various distance functions have beenproposed. Someof theseare generalfunc-
tions such as Euclidean distance and cosinedistance. Others are specially designed
for image retrieval such as histogram intersection [162]. The Minkowski-form dis-
tance for two vectors or histograms~k and ~l with dimension n is given by:

Dk
M (~k;~l) = (

nX

i =1

jki � l i j � )1=� (1.5.1)

The Euclidean distance betweentwo vectors ~k and ~l is de�ned as follows:

DE (~k;~l) =

vu
u
t

nX

i =1

(ki � l i )2 (1.5.2)

The Euclidean distance is an instance of the Minkowski distance with k = 2.
The cosinedistance comparesthe feature vectors of two imagesand returns the

cosineof the angle betweenthe two vectors:

DC (~k;~l) = 1 � cos� (1.5.3)

where � is the angle between the vectors ~k and ~l. When the two vectors have
equal directions, the cosinewill add to one. The angle � can also be described as a
function of ~k and ~l:



Section 1.5. Similarit y and Search 29

cos� =
~k � ~l

jj~kjj jj~l jj
(1.5.4)

The cosinedistance is well suited for features that are real vectors and not a col-
lection of independent scalar features.

The histogram intersection distance comparestwo histograms ~k and ~l of n bins
by taking the intersection of both histograms:

DH (~k;~l) = 1 �
P n

i =1 min(ki ; l i )P n
i =1 ki

(1.5.5)

When considering imagesof di�eren t sizes,this distance function is not a metric
due to DH (~k;~l) 6= DH (~l ;~k). In order to becomea valid distance metric, histograms
needto be normalized �rst:

~kn =
~k

P n
i ki

(1.5.6)

For normalized histograms (total sum of 1), the histogram intersection is given by:

Dn
H (~kn ;~ln ) = 1 �

nX

i

jkn
i � ln

i j (1.5.7)

This is again the Minkowski-form distance metric with k = 1. Histogram intersec-
tion has the property that it allows for occlusion, i.e. when an object in one image
is partly occluded, the visible part still contributes to the similarit y [60], [59].

Alternativ e, histogram matching is proposedde�ned by normalized crosscorre-
lation:

Dx (~k;~l) =
P n

i =1 ki l iP n
i =1 k2

i
(1.5.8)

The normalized crosscorrelation has a maximum of unit y that occurs if and only
if ~k exactly matches~l.

In the QBIC system [42], the weighted Euclidean distance has been used for
the similarit y of color histograms. In fact, the distance measureis based on the
correlation betweenhistograms~k and ~l:

DQ (~k;~l) = (ki � l i )t A(ki � l j ) (1.5.9)

Further, A is a weight matrix with term aij expressingthe perceptual distance
betweenbin i and j .

The averagecolor distance has been proposedby [70] to obtain a simpler low-
dimensional distance measure:

DHaf(
~k;~l) = (kavg � lavg)t (kavg � lavg) (1.5.10)
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where kavg and lavg are 3x1 averagecolor vectors of ~k and ~l.
As stated before, for broad domains, a proper similarit y measureshould be ro-

bust to object fragmentation, occlusionand clutter by the presenceof other objects
in the view. In [58], various similarit y function were comparedfor color-basedhis-
togram matching. From these results, it is concluded that retrieval accuracy of
similarit y functions depend on the presenceof object clutter in the scene.The his-
togram crosscorrelation provide best retrieval accuracywithout any object clutter
(narrow domain). This is due to the fact that this similarit y functions is symmetric
and can be interpreted as the number of pixels with the samevalues in the query
image which can be found present in the retrieved image and vice versa. This is a
desirableproperty whenoneobject per imageis recordedwithout any object clutter.
In the presenceof object clutter (broad domain), highest image retrieval accuracy
is provided by the quadratic similarit y function (e.g. histogram intersection). This
is becausethis similarit y measurecount the number of similar hits and henceare
insensitive to false positives.

Finally, the natural measureto compare ordered sets of accumulativ e features
is non-parametric test statistics. They can be applied to the distributions of the
coe�cien ts of transforms to determine the likelihood that two samplesderive from
the samedistribution [14], [131]. They can also be applied to comparethe equality
of two histograms and all variations thereof.

1.5.3 Similarit y of object outlines
In [176]a good review is given of methods to compareshapesdirectly after segmen-
tation into a set of object points t(x) without an intermediate description in terms
of shape features.

For shape comparison, the authors make a distinction betweentransforms, mo-
ments, deformation matching, scalespacematching and dissimilarit y measurement.
Di�culties for shape matching basedon global transforms are the inexplicabilit y of
the result, and the brittleness for small deviations. Moments, speci�cally their in-
variant combinations, have beenfrequently usedin retrieval [94]. Matching a query
and an object in the data �le can be done along the ordered set of eigen shapes
[145], or with elastic matching [34], [11]. Scalespacematching is basedon progres-
sively simplifying the contour by smoothing [118]. By comparing the signature of
annihilated zero crossingsof the curvature, two shapesare matched in a scaleand
rotation invariant fashion. A discrete analoguecan be found in [98] where points
are removed from the digitized contour on the basisof perceptually motivated rules.

When based on a metric, dissimilarit y measureswill render an ordered range
of deviations, suited for a predictable interpretation. In [176], an analysis is given
for the Hausdor� and related metrics between two shapeson robustnessand com-
putational complexity. The directed Hausdor� metric is de�ned as the maximum
distance between a point on query object q and its closestcounterpart on d. The
partial Hausdor� metric, de�ned as the k-th maximum rather than the absolute
maximum, is usedin [71] for a�ne invariant retrieval.
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1.5.4 Similarit y of object arrangements
The result of a structural description is a hierarchically orderedset of feature values
H . In this sectionwe considerthe similarit y of two structural or layout descriptions.

Many di�eren t techniqueshave beenreported for the similarit y of feature struc-
tures. In [180], [82]a Bayesianframework is developed for the matching of relational
attributed graphsby discreterelaxation. This is applied to line patterns from aerial
photographs.

A metric for the comparison of two topological arrangements of named parts,
applied to medical images, is de�ned in [166]. The distance is derived from the
number of edit-stepsneededto nullify the di�erence in the Voronoi-diagramsof two
images.

In [18], 2D-strings describingspatial relationships betweenobjects are discussed,
and much later reviewed in [185]. From such topological relationships of image
regions, in [79] a 2D- indexing is built in trees of symbol strings each representing
the projection of a region on the co-ordinate axis. The distancebetweenthe H q and
Hd is the weighednumber of editing operations required to transform the one tree
to the other. In [151],a graph is formed from the imageon the basisof symmetry as
appears from the medial axis. Similarit y is assessedin two stagesvia graph-based
matching, followed by energy-deformationmatching.

In [51], hierarchically ordered trees are compared for the purpose of retrieval
by rewriting them into strings. A distance-basedsimilarit y measureestablishesthe
similarit y scoresbetweencorresponding leavesin the trees. At the level of trees, the
total similarit y scoreof corresponding branchesis takenasthe measurefor (sub)tree-
similarit y. From a small sizeexperiment, it is concludedthat hierarchically ordered
feature setsare more e�cien t than plain feature sets,with projected computational
shortcuts for larger data sets.

1.5.5 Similarit y of salient features
Salient featuresareusedto capture the information in the imagein a limited number
of salient points. Similarit y betweenimagescan then be checked in several di�eren t
ways.

In the �rst place, the color, texture or local shape characteristics may be usedto
identify the salient points of the data as identical to the salient points of the query.

A measureof similarit y betweenthe feature valuesmeasuredof the blobs result-
ing from weak segmentation consistsof a Mahalanobis distancebetweenthe feature
vector composedof the color, texture, position, area, eccentricit y, and direction of
the two ellipses[16].

In the secondplace,onecanstoreall salient points from oneimagein a histogram
on the basisof a few characteristics, such as color on the inside versuscolor on the
outside. The similarit y is then basedon the group-wisepresenceof enoughsimilar
points [59]. The intersection model has beenusedin image retrieval in [153], while
keeping accessto their location in the image by back-projection [162]. Further,
a weight per dimension may favor the appearanceof some salient features over
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another. Seealso [77] for a comparisonwith correlograms.
A third alternativ e for similarit y of salient points is to concentrate only on the

spatial relationships amongthe salient points sets. In point by point basedmethods
for shape comparison, shape similarit y is studied in [89], where maximum curva-
ture points on the contour and the length between them are used to characterize
the object. To avoid the extensive computations, one can compute the algebraic
invariants of point sets,known as the cross-ratio. Due to their invariant character,
these measurestend to have only a limited discriminatory power among di�eren t
objects. A more recent version for the similarit y of namelesspoint-sets is found in
geometric hashing [182] where each triplet spansa basefor the remaining points of
the object. An unknown object is comparedon each triplet to seewhether enough
similarly located points are found. Geometric hashing, though attractiv e in its con-
cept, is too computationally expensive to be used on the very large data sets of
image retrieval due to the anonymit y of the points. Similarit y of two points sets
given in a row-wise matrix is discussedin [179].

1.5.6 Discussion
Whenever the image itself permits an obvious interpretation, the ideal content-
based system should employ that information. A strong semantic interpretation
occurs when a sign can be positively identi�ed in the image. This is rarely the case
due to the large variety of signs in a broad class of images and the enormity of
the task to de�ne a reliable detection algorithm for each of them. Weak semantics
rely on inexact categorization induced by similarit y measures,preferably online by
interaction. The categorization may agreewith semantic conceptsof the user, but
the agreement is in general imperfect. Therefore, the use of weak semantics is
usually paired with the abilit y to gear the semantics of the user to his or her needs
by interpretation. Tunablesemantics is likely to receive more attention in the future
especially when data setsgrow big.

Similarit y is an interpretation of the imagebasedon the di�erence with another
image. For each of the feature types a di�eren t similarit y measureis needed. For
similarit y betweenfeature sets,special attention has goneto establishing similarit y
among histograms due to their computational e�ciency and retrieval e�ectiv eness.

Similarit y of shape hasreceived a considerableattention in the context of object-
basedretrieval. Generally, global shape matching schemesbreak down when there
is occlusion or clutter in the scene. Most global shape comparison methods im-
plicitly require a frontal viewpoint against a clear enoughbackground to achieve a
su�cien tly precisesegmentation. With the recent inclusion of perceptually robust
points in the shape of objects, an important step forward has beenmade.

Similarit y of hierarchically ordereddescriptionsdeservesconsiderableattention,
as it is one mechanism to circumvent the problems with segmentation while main-
taining some of the semantically meaningful relationships in the image. Part of
the di�cult y here is to provide matching of partial disturbancesin the hierarchical
order and the inuence of sensor-relatedvariancesin the description.
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1.6 Interaction and Learning

1.6.1 Interaction on a semantic level
In [78], knowledge-basedtype abstraction hierarchies are usedto accessimagedata
basedon context and a user pro�le, generatedautomatically from cluster analysis
of the database. Also in [19], the aim is to createa very large concept-spaceinspired
by the thesaurus-basedsearch from the information retrieval communit y. In [117]
a linguistic description of texture patch visual qualities is given, and ordered in a
hierarchy of perceptual importance on the basis of extensive psychological experi-
mentation.

A more generalconcept of similarit y is neededfor relevancefeedback, in which
similarit y with respect to an ensemble of imagesis required. To that end, in [43]
more complex relationships are presented betweensimilarit y and distancefunctions
de�ning a weighted measureof two simpler similarities S(s;S1; S2) = w1 exp(� d(S1; s))+
w2 exp(� d(S2; s)). The purposeof the bi-referential measureis to �nd all regions
that are similar to two speci�ed query points, an idea that generalizesto similarit y
queriesgiven multiple examples.The approach can be extendedwith the de�nition
of a complete algebra of similarit y measureswith suitable composition operators
[43], [38]. It is then possibleto de�ne operators corresponding to the disjunction,
conjunction, and negation of similarit y measures,much like traditional databases.
The algebra is useful for the user to manipulate the similarit y directly as a means
to expresscharacteristics in speci�c feature values.

1.6.2 Classi�cation on a semantic level
To further enhancethe performanceof content-based retrieval systems,image clas-
si�cation has been proposedto group imagesinto semantically meaningful classes
[171], [172], [184], [188]. The advantage of theseclassi�cation schemesis that sim-
ple, low-level imagefeaturescan be usedto expresssemantically meaningful classes.
Imageclassi�cation is basedon unsupervisedlearning techniquessuch asclustering,
Self-OrganizationMaps (SOM) [188]and Markov models [184]. Further, supervised
grouping can be applied. For example, vacation imageshave beenclassi�ed based
on a Bayesianframework into city vs. landscape by supervised learning techniques
[171], [172]. However, these classi�cation schemesare entirely basedon pictorial
information. Aside from image retrieval ( [44], [146]), very little attention has
beenpaid on using both textual and pictorial information for classifying imageson
the Web. This is even more surprisingly if one realizesthat imageson Web pages
are usually surrounded by text and discriminatory HTML tags such as IMG, and
the HTML �elds SRC and ALT. Hence, WWW imageshave intrinsic annotation
information induced by the HTML structure. Consequently , the set of imageson
the Web can be seenas an annotated image set.
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1.6.3 Learning
As data sets grow big and the processingpower matches that growth, the oppor-
tunit y arises to learn from experience. Rather than designing, implementing and
testing an algorithm to detect the visual characteristics for each di�eren t semantic
term, the aim is to learn from the appearanceof objects directly.

For a review on statistical pattern recognition, see [2]. In [174] a variety of
techniques is discussedtreating retrieval as a classi�cation problem.

One approach is principal component analysisover a stack of imagestaken from
the sameclassz of objects. This can be donein feature space[120]or at the level of
the entire image, for examplesfacesin [115]. The analysis yields a set of eigenface
images,capturing the common characteristics of a facewithout having a geometric
model.

E�ectiv e ways to learn from partially labeleddata have recently beenintro duced
in [183], [32] both using the principle of transduction [173]. This savesthe e�ort of
labeling the entire data set, infeasibleand unreliable as it grows big.

In [169] a very large number of pre-computed features is considered,of which a
small subset is selectedby boosting [2] to learn the image class.

An interesting technique to bridge the gapbetweentextual and pictorial descrip-
tions to exploit information at the level of documents is borrowed from information
retrieval, called latent semantic indexing [146], [187]. First a corpus is formed
of documents (in this caseimages with a caption) from which features are com-
puted. Then by singular value decomposition, the dictionary covering the captions
is correlated with the features derived from the pictures. The search is for hidden
correlations of features and captions.

1.6.4 Discussion
Learning computational models for semantics is an interesting and relatively new
approach. It gains attention quickly as the data setsand the machine power grow
big. Learning opens up the possibility to an interpretation of the image with-
out designing and testing a detector for each new notion. One such approach is
appearance-basedlearning of the common characteristics of stacks of imagesfrom
the sameclass. Appearance-basedlearning is suited for narrow domains. For the
successof the learning approach there is a trade-of between standardizing the ob-
jects in the data set and the sizeof the data set. The more standardized the data
are the lessdata will be needed,but, on the other hand, the lessbroadly applicable
the result will be. Interesting approaches to derive semantic classesfrom captions,
or a partially labeledor unlabeleddata set have beenpresented recently , seeabove.

1.7 Conclusion

In this chapter, we have presented an overview on the theory, techniquesand appli-
cations of content-based image retrieval. We took patterns of useand computation
as the pivotal building blocks of our survey.
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From a scienti�c perspective the following trends can be distinguished. First,
large scaleimage databasesare being created. Obviously, large scaledatasetspro-
vide di�eren t image mining problems than rather small, narrow- domain datasets.
Second,research is directed towards the integration of di�eren t information modali-
ties such astext, pictorial, and motion. Third, relevancefeedback will be and still is
an important issue. Finally, invariance is necessaryto get to general-purposeimage
retrieval.

From a societal/commercial perspective, it is obvious that there will beenormous
increasein the amount of digital imagesusedin various communication frameworks
such as promotion, sports, education, and publishing. Further, digital imageshave
becomeone of the major multimedia information sourceson Internet, where the
amount of image/video on the Web is growing each day. Moreover, with the in-
tro duction of the new generation cell-phones,a tremendousmarket will be opened
for the storageand management of pictorial data. Due to this tremendousamount
of pictorial information, image mining and search tools are required as indexing,
searching and assessingthe content of large scale image databasesis inherently
a time-consuming operation when done by human operators. Therefore, product
suites for content-based video indexing and searching is not only necessarybut es-
sential for future content owners in the �eld of entertainment, news, education,
video communication and distribution.

We hope that from this review that you get the picture in this new pictorial
world...
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