
IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 4, APRIL 2014 1569

Evaluation of Color Spatio-Temporal Interest Points
for Human Action Recognition

Ivo Everts, Jan C. van Gemert, and Theo Gevers, Member, IEEE

Abstract— This paper considers the recognition of realistic
human actions in videos based on spatio-temporal interest points
(STIPs). Existing STIP-based action recognition approaches oper-
ate on intensity representations of the image data. Because of
this, these approaches are sensitive to disturbing photometric
phenomena, such as shadows and highlights. In addition, valuable
information is neglected by discarding chromaticity from the
photometric representation. These issues are addressed by color
STIPs. Color STIPs are multichannel reformulations of STIP
detectors and descriptors, for which we consider a number
of chromatic and invariant representations derived from the
opponent color space. Color STIPs are shown to outperform
their intensity-based counterparts on the challenging UCF sports,
UCF11 and UCF50 action recognition benchmarks by more than
5% on average, where most of the gain is due to the multichannel
descriptors. In addition, the results show that color STIPs are
currently the single best low-level feature choice for STIP-based
approaches to human action recognition.

Index Terms— Color, human activity recognition, evaluation.

I. INTRODUCTION

HUMAN activities play a central role in video data that
is abundantly available in archives and on the internet.

Information about the presence of human activities is therefore
valuable for video indexing, retrieval and security applications.
However, these applications demand recognition systems to
operate in unconstrained scenarios. For this reason, research
has shifted from recognizing simple human actions under
controlled conditions to more complex activities and events
‘in the wild’ [10]. This requires the methods to be robust
against disturbing effects of illumination, occlusion, viewpoint,
camera motion, compression and frame rates.

High-level approaches for unconstrained human activity
recognition aim at modeling image sequences based on
the detection of high level concepts [13], and may build
on low-level building blocks [20] which typically consider
generic video representations based on local photometric
features [7], [9], [26]. High-level approaches are based on
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Fig. 1. Examples of STIP detections in the sequence depicted above. For
illustration purposes we have polled the detectors for the 55 strongest STIPs
in the original 55-frame sequence, and show the detections on frame 48
(Color online).

complex, computationally expensive video processing opera-
tions but may be superior to low-level approaches in terms of
recognition rates. However, high-level approaches are sensitive
to local geometric disturbances such as occlusion, which limits
their applicability [13]. Low-level approaches are conceptually
simple, relatively easy to implement and potentially sparse
and efficient. Due to the local nature of features on which
low-level approaches are based, they are inherently robust
against recording disturbances such as occlusion and clutter.
Therefore, in this paper, we focus on low-level representations
for recognizing human actions in video.

Low-level action recognition approaches are often based on
spatio-temporal interest points (STIPs). Here, image sequences
are represented by descriptors that are extracted locally
around STIP detections, see Fig. 1 for example detections.
The descriptors are vector quantized based on a visual
vocabulary, and subsequent learning and recognition oper-
ates on these quantized descriptors, comprising the well
known bag-of-(spatio-temporal)-features framework. The for-
mulations of spatio-temporal feature detectors and descriptors
available in literature are based on single-channel intensity rep-
resentations of the video data. Due to the lack of photometric
invariance of the intensity channel [21], current approaches
are consequently sensitive to disturbing illumination con-
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Fig. 2. Joint distributions of partial intensity and color (hue) derivatives for
the spatial (a) and temporal (b) domain. The distributions are estimated from
5M pixels of one sequence of the FeEval dataset [19].

ditions such as shadows and highlights. More importantly,
discriminative information is ignored by discarding chromatic-
ity from the representation.

In the spatial (non-temporal) domain, color descriptors
outperform intensity descriptors in a variety of image matching
and object recognition tasks [2], [21]. The reason for this
improved balance between photometric invariance and dis-
criminative power is illustrated in Fig. 2(a) by an estimate of
the joint distribution of spatial intensity and color partial deriv-
atives, being the image features based on which descriptors
are formed. The figure shows that every intensity derivative is
associated with a distribution over color derivatives and vice
versa. Thus, information is lost when either intensity or chro-
matic representations are considered in isolation. For effective
feature detection and extraction based on multi-channel dif-
ferential representations in the spatio-temporal domain, it is
thus a precondition that similar conclusions hold for the joint
distribution of temporal intensity and color derivatives. This is
verified by observing Fig. 2(b), in which the joint distribution
of temporal color and intensity derivatives is shown to strongly
resemble the distribution of spatial derivatives in Fig. 2(a).

In this paper, we propose to incorporate chromatic represen-
tations in the spatio-temporal domain. The aim is to reformu-
late STIP detection and description for multi-channel video
representations. Videos are represented in a variety of color
spaces exhibiting different levels of photometric invariance.
By this enhanced appearance modeling, we aim to increase
the quality (robustness and discriminative power) of STIP
detectors and descriptors for recognizing human activities in
video. This is validated through a set of repeatability and
recognition experiments on challenging video benchmarks.
A previous version of this work appeared in [6].

A. Related Work

In the spatial domain, multi-channel photometric invari-
ant formulations of feature detectors are reported in
e.g. [18], [22], and [23]. These articles report increased
repeatability, entropy, and object categorization results as
compared to intensity-based detections. For descriptors, multi-
channel formulations [2], [21] propose various color SIFT
variants. Most notably, OpponentSIFT considerably improves
the performance. Based on this, we formulate a family of
increasingly invariant photometric representations which are
incorporated in multi-channel formulations of spatio-temporal
feature detectors and descriptors.

1) Spatio-Temporal Detectors: In the spatio-temporal
domain, pioneering work by Laptev [8] extends the Harris

function to 3D. Alternatively, the Gabor STIP detector pro-
posed by Dollàr et al. [4] applies a Gabor filter along the
temporal axis and is not based on differential image structure.
The authors [4] argue that differential based STIP detectors
are incapable of detecting subtle and periodic motion patterns.
Gabor STIPs are therefore essentially different from Harris
STIPs and we develop multi-channel formulations for both
detectors to study differential as well as raw spatio-temporal
image data.

As an alternative to STIP-based sampling, local descrip-
tors may be extracted along motion trajectories [25]. Here,
densely sampled points are tracked from frame to frame
based on optical flow. As the method involves tracking and
dense multi-scale optical flow computation, the associated
computational complexity is typically higher than that of
STIP-based approaches. Depending on the descriptor(s) that
are subsequently extracted, this sampling method may com-
pare favorably in terms of recognition rates. In this paper, we
focus on the sparser STIP-based approach for studying color
in the spatio-temporal domain.

Other color STIPs have been proposed earlier in [17].
However the formulation of the multi-channel spatio-temporal
structure tensor for the 3D Harris function is somewhat
erroneous. Also, the proposed color STIP descriptor is a
concatenation of a color histogram, an intensity-based gradient
(HOG) and optical flow (HOF) descriptor, which is not shown
to produce performance improvements with respect to other
existing STIP-based recognition methods. In this paper, we
extend the multi-channel structure tensor of [23] in a prin-
cipled manner to the spatio-temporal domain and investigate
various methods to incorporate color gradients in the HOG3D
descriptor.

2) Spatio-Temporal Descriptors: Among the local spatio-
temporal descriptors available in literature, the HOG3D
descriptor [7] appears well-suited for large scale video rep-
resentation and multi-channel extensions. In contrast to e.g.
HOG/HOF [9], MoSIFT [3] or MBH [25] descriptors, the
HOG3D algorithm serves as an integrated and efficient
approach, as it excludes optical flow which is computationally
expensive [11], [15]. Also, good results in a STIP-based bag-
of-features recognition framework using the HOG3D descrip-
tor have been achieved, especially in combination with the
Gabor STIP detector [26]. Moreover, motion-based descriptors
are shown in [11] to suffer from scalability issues. There-
fore, we derive several multi-channel variants of the HOG3D
descriptor and evaluate their performance for realistic human
action recognition.

Discriminability issues associated to motion descriptors
in large scale action recognition are shown in [11] to be
addressed by the motion boundary histograms (MBH) of [24].
As opposed to a direct motion description, MBH is based on
differential optical flow, which greatly reduces the confusion
between action categories. In recent work by Wang et. al. [25],
MBH descriptors extracted along motion trajectories and mod-
eled in a multiple kernel learning framework have achieved
state-of-the-art results on a large number of datasets.

Another recently proposed video descriptor for human
action recognition is Gist3D [16]. This is a global descriptor
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based on a 3D filter bank and describes the spatio-temporal
‘gist’ of a video. Reasonable recognition performance is
achieved in combination with STIPs.

The works mentioned comprise low/medium level
approaches to action recognition. Higher level approaches
such as Action Bank by Sadanand et al. [13] give good results
on some datasets. However, such high-level approaches are
typically not scalable. In contrast, low-level approaches are
widely applicable, conceptual simple, sparse and exhibit
reasonable computational complexity. Moreover, they
may serve as powerful building blocks for higher level
methods [20]. We contribute by considering a variety of
photometric representations for STIP detection and description
for enhancing low-level approaches to action recognition.

II. PHOTOMETRIC REPRESENTATIONS

We model the formation of images by the dichromatic
reflection model [14],

f = e(mbcb + mi ci ), (1)

where f = (R, G, B)T is the sum of the body reflectance color
cb with the interface reflection color ci . The contributions
of these reflectance colors are weighted by their respective
magnitudes mb and mi , that depend on the surface orientation
and illumination direction. Additionally, the specular reflection
mi is viewpoint dependent. The intensity of the light source
is represented by e.

Invariance against highlights (shifts in the signal) can be
achieved by representations that cancel out the additive inter-
face reflection term mi ci . Signal scalings, such as those caused
by shadows and shading, are ignored by dividing out the light
source intensity e. Here, we consider the transformation of the
RG B image to the opponent color space [2], [5], [21], [22]

⎛
⎝

O1
O2
O3

⎞
⎠ =

⎛
⎝

R − G
R + G − 2B
R + G + B

⎞
⎠ . (2)

The transformation approximately decorrelates the image
channels, resulting in intensity O3 and chromatic components
O1, O2. Based on these formulations, several photometric
properties can be derived.
Highlights. Due to subtraction of RG B components in eq. (2),
the reflection term from eq. (1) is subtracted in the for-
mulations of O1 and O2. Hence, the chromatic opponent
components are invariant to signal shifts such as those caused
by (white) highlights.
Shadow-shading. The chromatic components are normalized
by intensity O3, canceling out the light source intensity term
from eq. (1). This yields the shadow and shading invariants[

O1
O3

, O2
O3

]
.

Shadow-shading-highlights. Invariance against both scalings
and shifts in the signal is achieved by considering the ratio
of chromatic components: O1

O2
. This results in the shadow-

shading-highlight invariant hue representation.
We refer to these photometric image representations as

I (intensity), C(hromatic), N(ormalized chromatic) and H (ue).
These can be ordered with respect to their invariance level:

TABLE I

PHOTOMETRIC IMAGE REPRESENTATIONS. CHROMATIC COMBINATIONS

WITH THE INTENSITY CHANNEL YIELD IC, IN AND IH

H � N � C � I . The intensity I preserves most image
structures, which is the most discriminative representation.
Therefore the intensity-normalized representations N and H
have a higher level of photometric invariance than C , in which
the light source intensity is preserved. We summarize the
representations and their properties in Table I.

The lack of discriminative power associated with the chro-
matic representations C , N and H typically renders them
unsuitable for matching and recognition tasks. Combinations
of intensity and chromatic channels result in IC , I N and I H .
Note that the three-channel representation IC comprises the
original opponent channels [O1, O2, O3]. These representa-
tions are established first, i.e. , prior to any subsequent process-
ing. All channels are min-max normalized using the theoretical
extremal values per channel based on the transformations in
eq. (2) and Table I so as to weight them equally a-priori.

III. MULTI-CHANNEL STIP DETECTION

Multi-channel Harris STIPs. Harris STIPs are local max-
ima of the 3D Harris energy function based on the structure
tensor [8]. A multi-channel formulation of the structure tensor
has been developed in e.g. [23] which prevents opposing
color gradient directions to cancel each other out. Here, we
incorporate multiple channels in the spatio-temporal structure
tensor [8].

The multi-channel volume V consisting of nc channels is
denoted by V = (V 1, V 2, ..., V nc )T . The individual channels
are represented in scale space V j = g(·; σo, τo)∗ f j (·), where
g(·; ·, ·) is the 3D Gaussian kernel with equal scales along
the spatial dimensions, σo and τo are the spatial and temporal
observation scales and f j : R

3 → R is the imaging function of
channel j . The multi-channel spatio-temporal structure tensor
is then defined by

S = g(·; σi , τi ) ∗
⎛
⎝

Vx · Vx Vx · Vy Vx · Vt

Vy · Vx Vy · Vy Vy · Vt

Vt · Vx Vt · Vy Vt · Vt

⎞
⎠ , (3)

where σi and τi denote the spatial and temporal integration
scale respectively. In Fig. 3 we illustrate the response per rep-
resentation. Incorporating increasingly invariant photometric
representations clearly has an effect on the Harris energy. The
highlight on the shiny heart-shaped object surface part triggers
a strong response for the original I -based energy functions.
This effect is clearly dampened in the C representation.
However, the reflected illumination by the colored matte-shiny
(left) object part still triggers a response, as the nature of the
local object surface causes signal changes that are not captured
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Fig. 3. Superimposed Harris and Gabor responses for Intensity, Chromatic, Normalized chromatic and Hue on three images of a rotating object on which
a strong highlight is present. The Harris energy function mainly responds to differential changes in the signal, whereas the Gabor function fires on general
spatio-temporal fluctuations. Note the dampened response to the highlight in the invariant channels.

by a simple shift. Intensity normalization of the chromatic
components (N) then causes this response to be dampened,
while emphasizing colorful transitions on the object surface.
Finally, the scaling- and shift- invariant H representation
eliminates essentially all responses except for salient color
transitions.
Multi-channel Gabor STIPs. The Gabor STIP detector is
based on a Gabor filtering procedure along the temporal
axis [4]. Invoking multiple channels is straightforward because
the energy function is positive by formulation. Hence, no
additional care has to be taken to account for conflicting
response signs between channels

R =
nc∑

j=1

(g(·; σo) ∗ hev (·; τo) ∗ V j )2

+(g(·; σo) ∗ hod(·; τo) ∗ V j )2. (4)

Here, the 2D Gaussian smoothing kernel g(·; ·) is applied
spatially, whereas the Gabor filter pair {hev (·; ·), hod(·; ·)}
measures the periodicity of the observed signal along the tem-
poral dimension. As illustrated in Fig. 3, the I -Gabor energy
is mainly clustered around an incidental highlight, whereas the
response-triggering local photometric events become increas-
ingly rare and colorful along with the level of photometric
invariance level of the representation.

IV. MULTI-CHANNEL STIP DESCRIPTION

The HOG3D descriptor [7] is formulated as a discretized
approximation of the full range of continuous directions of
the 3D gradient in the video volume. That is, the unit sphere
centered at the gradient location is approximated by a regular
n-sided polyhedron with congruent faces. Tracing the gradient
vector along its direction up to intersection with any of the
polyhedron faces identifies the dominant quantized direction.
Quantization proceeds by projecting the gradient vector on the
axes running through the gradient location and the face centers
with a matrix multiplication of the 3D gradient vector g,

q = (q1, . . . , qn)T = P · g
||g||2 , (5)

where P is the n × 3 matrix holding the face center locations
and q is the projection result (i.e. the histogram of 3D gradient
directions). Note that the contribution is distributed among
nearby polyhedron faces. Descriptor dimensionality may be
reduced by allocating opposing gradient directions to the same
orientation bin. The descriptor algorithm proceeds by centering
a cuboid at the STIP location, which is tessellated into a spatio-
temporal grid. Histograms are computed for every grid cell and
concatenated to form the final descriptor [7].

Chromaticity is incorporated in the HOG3D descriptor by
considering the representations from section (II) in a multi-
channel formulation of the gradient vector g in eq. (5).
We follow the standard practice of concatenation of the per-
channel descriptors [2], [5], [21]:

g′ = {g j }, j = 1, . . . , nc. (6)

We also compute a single gradient variant where we prevent
the effect of opposing color gradient directions by using tensor
formulations. In tensors, opposing directions reinforce each
other by summing the gradient orientations as opposed to their
directions [23],

g′′ =
nc∑

j=1

g j · g j . (7)

This formulation of the gradient defines half of the full
sphere of directions which is one of the HOG3D flavors in [7].
Here, it naturally follows from a tensor formulation of the
multi-channel 3D gradient.

We formulate another variation as the summation of per-
channel full direction descriptors. Together with the tensor-
based approach, we call this descriptor integration as opposed
to concatenation. The variant benefits from the expressiveness
associated with the full set of multi-channel directions while
maintaining the same dimensionality as a single channel
descriptor. Note that the differences between integration and
concatenation of channels do not apply to single-channel
descriptors. The descriptor variants and their associated dimen-
sionalities are summarized in Table II.
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TABLE II

MULTI-CHANNEL HOG3D VARIANTS. C DENOTES SOME PHOTOMETRIC

REPRESENTATION COMPRISING nc CHANNELS. THE DIMENSIONALITY

OF AN INTEGRATED DIRECTION-BASED DESCRIPTOR IS CONSIDERED

DEFAULT (1D , WHICH IS 360 IN THIS PAPER), BASED ON WHICH WE

DERIVE THE DIMENSIONALITY OF THE OTHER DESCRIPTOR VARIANTS.

VARIANTS OF C ARE DENOTED BY SUBSCRIPT FLAGS, INDICATING

CHANNEL COMBINATION (INTEGRATION/CONCATENATION) AND

GRADIENT QUANTIZATION (ORIENTATION/DIRECTION)

V. EXPERIMENT

We evaluate the multi-channel STIP detectors and descrip-
tors through a set of repeatability and action recognition
datasets.

A. Implementation Details and Notation

We base our implementation of STIP detectors on the
activity recognition toolbox by Dollàr et al. [4] while re-
implementing the HOG3D descriptor of Kläser et al. [7].
STIP scale: For the Gabor detector, we set the spatial scale
σo = 2 and the temporal scale τo = √

8 in eq. (4). Note
that this setting for τo is in conflict with e.g. [26], but we
have found that the proposed default setting of τo = 4 is
too large for descriptor extraction in short sequences. For the
Harris detector, we consider a reduced set of spatial scales with
respect to prior work, as we have found this to be satisfactory
in terms of discriminative power and computational load.
Specifically, for computing the Harris energy based on eq. (3),
we consider σo = √

2i , i ∈ {2, 3, 4} and τo = √
2 j , j ∈

{1, 2}. As in e.g. [26] and [9], we do not perform STIP
scale selection because of its high computational costs and
decreased recognition performance [8].
Cuboids: Descriptors are extracted from cuboids centered at
STIP locations. The spatio-temporal extent as well as the grid
layout of these cuboids may be discriminatively optimized
such as in [7]. In this paper, we refrain from such an optimiza-
tion scheme in order to maintain focus on the integration of
chromatic channels. Instead, we consider one particular setting
(from e.g. [26]) in which the extent of a cuboid is defined as
�x = �y = 18σo and �t = 8τo. For feature aggregation, we
employ a 3 ×3 ×2 spatio-temporal pooling scheme. This grid
layout is attractive due its compactness, whereas we have not
found significant dependencies of our results on these settings
for our purpose.
Descriptors: We consider the four variants of the multi-
channel HOG3D descriptor as summarized in Table II. The
variants are denoted by flagging the descriptor names. The
first flag denotes whether the descriptor channels are inte-
grated (or otherwise concatenated), whereas the second flag
denotes the usage of gradient orientations (as opposed to
directions). For example, IC0,1 denotes the concatenated
orientation-based Opponent-HOG3D descriptor. Integrated,

Fig. 4. Examples from FeEval dataset. From left to right: original, noise,
darken.

Fig. 5. Examples from UCF sports, UCF11 and UCF50 datasets (images
are cropped).

orientation-based descriptors such as I N1,1 follow from the
tensor-based approach in eq. (7). There is no difference
between I0,· and I1,· as I comprises a single channel.

We use integral video histograms for aggregating features
over grid cells. We refrain from gradient approximation based
on integral video representations of the partial derivatives
as in [7], because this affects the information that we wish
to study. For descriptor normalization, we adopt the method
proposed by Brown et al. [1] in which the normalization
cut-off threshold is a discriminatively optimized function of
the descriptor dimensionality. By this, we discard the time
consuming task of determining the optimal normalization
parameters per descriptor variant.

In summary, apart from the photometric representations,
our HOG3D implementation differs slightly from the original
version [7] by 1) exact gradient computation, 2) descriptor
normalization and 3) spatio-temporal pooling.
Recognition. Based on the multi-channel STIP detectors and
descriptors, we perform action recognition in a standard bag-
of-features learning framework. Unless stated otherwise, we
closely follow the setup of [26]. Here, codebooks are created
by clustering 200K randomly sampled HOG3D descriptors
using k-means in 4000 clusters. A sequence is then represented
by quantizing the extracted HOG3D descriptors based on
the learned codebook. An SVM is trained based on the
χ2 distance between codebook descriptors. Evaluation of
the learned classifier is usually performed in a leave-n-out
cross validation setup. Every experiment is repeated three
times for different codebooks, which produces typical standard
deviations between 0.2 and 1 percentage point (depending on
dataset size and the number of STIP detections).

B. Datasets

We measure STIP repeatability and descriptor entropy for
videos taken from the FeEval dataset [19]. This dataset
consists of 30 videos taken from television series, movies
and lab recordings where each video is artificially distorted
by applying different types of photometric and geometric
transformations. Every transformation type is associated to a
challenge, in which the distortion is applied in increasingly
severe steps. We consider the videos from the television series
up to the first occurring shot boundary. That is, we do not aim
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Fig. 6. Entropy of descriptor variants extracted around STIPs from several detector variants. Multi-channel descriptors are associated to higher entropies
than their single-channel counterparts. This holds for both integration and concatenation of channels. The figure looks similar for Harris and Gabor STIPs.

TABLE III

STIP REPEATABILITY FOR MULTI-CHANNEL HARRIS AND GABOR

DETECTORS BASED ON THE CONSIDERED PHOTOMETRIC

REPRESENTATIONS

at studying STIP behavior in controlled settings, cartoons or in
typical movie settings for which editing effects are frequent.
We consider the full set of challenges: blur, compression,
darken, lighten, median filter, noise, sampling rate and scaling
and rotation. Some examples are shown in Fig. 4.

For an in-depth evaluation of detector and descriptor settings
we use the UCF sports dataset [12]. The dataset exhibits
10 sports action categories in 150 videos, all of which are
horizontally flipped to increase the dataset size. Performance is
evaluated in a leave-one-out cross validation scheme, in which
the flipped version of the considered test video is removed
from the training set. The best performing experimental set-
tings are applied to the UCF11 [10] and UCF50 [11] datasets.
The datasets contain 11 and 50 human action classes in about
1200 and 6700 videos respectively; UCF50 is a superset of
UCF11. These challenging datasets comprise youtube videos
exhibiting real human activities. Here, performance is evalu-
ated through a leave-one-group-out cross validation scheme
over 25 groups, in which we exactly follow the authors’
guidelines.1 See Fig. 5 for some examples of the datasets.

C. STIP Repeatability

We poll the detectors for an average number of 10 STIPs per
frame of the FeEval videos. A repeatability score is obtained
by considering the detections in the challenge sequence, and
computing the relative overlap of the cuboid around the
detected STIP location with the corresponding location in
the original sequence. We take the spatio-temporal extent
of the cuboid to be equal to the observation scale. The
repeatability scores averaged over all sequences and challenges
are presented in Table III.

Harris STIPs are more stable than Gabor STIPs. Nonlinear
differential spatio-temporal signal changes are more distinctive
than temporal fluctuations only. As the representation becomes
increasingly invariant, repeatability progressively decreases.

1http://crcv.ucf.edu/data/UCF50.php

Also, combining the invariants with intensity does not increase
repeatability with respect to using intensity only (marginal
improvements for the IC representation). Moreover, the I H
representation attains lower repeatability scores than I . The
reason for these reduces scores is that, as disturbing conditions
are effectively ignored, so are spatio-temporal image structures
on which stable STIPs are detected. Adding C or N to the
intensity I basically leaves the repeatabililty unaltered for this
dataset. However, the STIP discriminability experiments will
show different recognition scores for these representations.

From here on, the pure chromatic representations are dis-
carded from the experimental batch due to the associated lack
of discriminative power.

D. Descriptor Entropy

Here, we study the amount of information contained in each
of the considered descriptors. For this, we extract unnormal-
ized descriptors from the cuboids around STIP detections in
the set of undistorted FeEval videos. The descriptors Di are
then L1-normalized to allow for the computation of entropy:

entropy(Di ) = −
|Di |∑
j=1

D j
i log2(D j

i ). (8)

The above is illustrated in Fig. 6 for Gabor STIPs. Entropies
are averaged over all descriptors and sequences. The figure
is essentially similar for descriptors extracted around Harris
STIPs.

Standing out from the figure is the high entropy asso-
ciated to the IC0,0 descriptor (i.e. concatenated direction-
based Opponent-HOG3D). This is partly explained by its
high dimensionality due to concatenation. Note however the
increased entropy with respect to I N0,0, which has the same
dimensionality. In that respect it also stands out that the
entropy associated to the 2-channel descriptor I H0,0 is higher
than that of the 3-channel descriptor I N0,0. We conclude from
this that the chromatic ratio constituting H exhibits more
(differential) variation than the intensity-normalized channels
in N , whereas most variance is associated with C .

The single-channel descriptor I0,0 is associated with a
considerable lower entropy than its multi-channel counter-
parts. These differences are dampened when the channels
are integrated instead of concatenated, by which the multi-
channel dimensionality is equalized to that of a single channel.
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Fig. 7. Recognition performance on the UCF sports dataset per photometric representation for varying amounts of Harris (a) and Gabor (b) STIPs. Influence
of the photometric representations on descriptor variants (c). Combinations of the top-performing IC-Gabor STIPs and IC1,0-descriptors for varying codebook
sizes (d).

However, the integrated descriptors IC1,0 and I H1,0 are still
clearly associated to higher entropies, whereas the difference
between I N1,0 and I0,0 is marginal.

Orientation-based descriptors exhibit lower entropies than
direction-based descriptors. This follows from their defini-
tion: two opposing gradient directions are indistinguishable in
terms of their orientation. Observations regarding photometric
representations and channel integration with respect to the
direction-based descriptors also hold for orientation-based
descriptors.

With respect to varying photometric representations in the
detector, we observe a considerable drop in entropy for the
I H detector as compared to the other representations. This
is explained by the fact that H causes the detector to fire
on signal fluctuations that do not necessarily correspond to
strong structures in the intensity profile. There appears no sub-
stantial differences between the other representations, although
slightly higher entropies are attained for IC detections.

E. Color STIP Detector Discriminability

For evaluating action recognition performance on the
UCF sports dataset, we consider the photometric variants of
both the Harris and Gabor detectors. Direction-based inten-
sity HOG3D (I·,0) descriptors are extracted around multi-
channel STIP detections, so as to seperate the analyses regard-
ing STIP detection and description. Recognition accuracy is
computed for an average of {10, 20, 30, 40, 50} STIPs per
frame by varying the detection threshold. Results are given in
Fig. 7(a) and (b).

We first validate our implementation by comparing recog-
nition accuracies with the evaluation reported on intensity
in [26]. Here, the average number of Harris STIPs is 33,
for which an accuracy of 79.9% is attained. We obtain 80.4%
for 30 STIPs per frame. As for the Gabor detector, [26] reports
an accuracy of 82.9% for 44 STIPs. This is comparable to our
performance of 83.4% for 40 STIPs.

1) Color STIPs: It is shown in Fig. 7(a) and (b) that
discriminative power is severely hampered by integrating H
in the energy functions. This is expected because H is asso-
ciated to the highest level of photometric invariance. As more
detections are requested, however, performance converges
to that of I -STIPs. Considering Harris STIPs in Fig. 7(a),
integrating the C and N representations leads to marginal
performance differences compared to I . For small to mod-
erate amounts of STIPs, recognition accuracy is somewhat

improved, in particular for I N . The primary characterization
of Harris STIPs in terms of distinctiveness and sparsity is
mainly due to nonlinear fluctuations in the spatio-temporal
intensity signal. Adding chromatic components to the formu-
lation of the energy function does not drastically alter this
characterization.

Regarding the multi-channel Gabor detector in Fig. 7(b),
discriminative STIPs are detected for the C and especially
N channels as compared to using I alone. While I by
itself contains the most important information regarding
spatio-temporal signal fluctuations, invariants may prevent the
detector to fire on disturbing factors such as highlights and
shadows. Also, we assume the specific colorfulness of local
spatio-temporal events associated to certain actions to be
informative (e.g. ‘Diving’ (skin color, blue water) and ‘Riding-
Horse’ (brown horse, green field and trees)).

2) Discussion on Sparsity, Distinctiveness and Scale: Harris
STIPs are more discriminative than Gabor STIPs for a rela-
tively small number of detections. This relative performance
difference reverses as more STIPs are considered. The reason
for this is related to sparsity, distinctiveness and scale.

As can be derived from Fig. 3, the Harris function is
sparser than the Gabor energy. The Harris function fires only
on relatively rare events - nonlinear signal changes in both
space and time - which are also distinctive in scale space, and
are usually caused by human activity rather than background
and/or camera motion. As a consequence, Harris STIPs are
highly discriminative, but very sparse: there resides a large and
indifferent gap between the thresholds of a good quality Harris
STIP detector and a noise detector. Opposed to this, the Gabor
detector is more generic and covers the image sequences more
densely. This results in improved recognition results as more
STIPs are requested, whereas the performance of the Harris
detector as a function of the number of STIPs quickly plateaus
and even degrades.

Whereas the Harris function is typically computed over
multiple scales, the Gabor detector (as originally proposed)
operates at a single scale. In fact, we have found in the recog-
nition experiments in which we poll the detectors for a fixed
number of interest points, that a multi-scale Gabor implemen-
tation seriously hampers the recognition performance (results
not shown). The reason for this is that the across-scale Gabor
responses are highly correlated. This results in overly redun-
dant overlapping detections for local volumes exhibiting strong
periodic signal fluctuations, whereas other discriminative local
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TABLE IV

COLOR STIP ACTION RECOGNITION RESULTS ON UCF11 AND UCF50 DATASETS. THE FIRST 5 COLUMNS SHOW RESULTS FOR DIRECTION-BASED

DESCRIPTORS, WHEREAS RESULTS FOR ORIENTATION-BASED DESCRIPTORS ARE SHOWN IN THE REMAINING COLUMNS

volumes may not be detected at all. Applying the Gabor
filters at a single scale only is therefore not so much a
choice of design; it is rather instrumental to the method.
These arguments do not apply to the Harris detector due
to its associated sparsity, i.e. single scale Harris STIPs are
insufficient for effective recognition. The unnecessity of multi-
scale processing grants a large advantage to the Gabor detector
over the Harris detector in terms of computational efficiency.
The experimental summary over all datasets in Table VI shows
the effectiveness of the Gabor detector.

F. Color STIP Descriptor Discriminability

For the action recognition experiments on the UCF sports
dataset, descriptors are extracted around Gabor STIPs as
these have shown superior recognition performance over
Harris STIPs in Fig. 7(a) and (b). The detector representation
is fixed to I . We adopt the detection threshold that yields
50 STIPs per frame on average. Recognition accuracies are
reported in Fig. 7(c).

General conclusions about photometric invariance relate
to the discriminative power of the descriptors. That is, the
IC-based descriptors typically outperform I N descriptors,
which in turn are favored over I H . Multi-channel descrip-
tors usually outperform the I -based descriptor. We observe
a general preference for direction-based descriptors over
orientation-based descriptors (Table II). This is due to the
associated wider range of expressiveness. Most apparent in
this respect is the IC representation, i.e. IC0,0 improves over
IC0,1 by almost 4 percentage points, whereas IC1,0 attains
2 percentage points more than IC1,1. Thus, every channel
exhibits discriminative power in the full range of gradient
directions. It may even be the case that the (implicit) preser-
vation of opposing gradient directions between channels is
informative. Furthermore, IC-based descriptors favor channel
integration over concatenation, which is not the case for
I N- and I H - based descriptors. In fact, one would expect
concatenation-based descriptors to perform better in general
due the enhanced expressiveness associated with multiple
channels and increased dimensionality. This is also the most
widely adopted approach to multi-channel descriptors, e.g.
[2], [21], and [5]. However, we obtain the positive side-
effect of increased recognition performance against reduced
descriptor dimensionality. That is, the multi-channel descriptor
dimensionality remains equal to that of a single channel.
Although the difference with IC0,0 is marginal, we report a
top performance of 85.6% for IC1,0 against 1) our I·,0 baseline

of 83.4% and 2) 82.9% reported in [26]. A summary over all
datasets in Table VI illustrated the power of IC .

We conduct a final experiment on the codebook size.
We consider ‘Opponent STIP’ combinations of I and IC
Gabor STIPs with I·,0 and IC1,0 HOG3D descriptors. We drop
the orientation-based descriptors for now. Recognition results
for varying codebook sizes are depicted in Fig. 7(d). We
observe that the I -IC (detector-descriptor) combination per-
forms best up to a codebook size of 4000. Top performance is
marginally improved to 85.7% by the IC-IC combination for
a codebook size of 8000. The computational load associated
to such a vocabulary is not worth the effort, considering the
performance of 85.5% attained by the I -IC combination for a
much smaller codebook size of 1000. We have not observed a
relationship between descriptor dimensionality and codebook
size.

In contrast to these low/medium level action recognition
approaches, the high level Action Bank approach of [13]
reaches an accuracy of 95% on UCF sports. Here, we focus on
low-level approaches, and our best performance for 50 STIPs
per frame is on par with the performance of 85.6% for densely
sampled I -HOG3D descriptors in [26], which on average
yields over 600 descriptors per frame. Based on a combination
of HOG, HOF and MBH descriptors extracted along dense
motion trajectories, a performance of 88% is achieved in [25].
Compared to this, our STIP-based approach does a good job
considering that it outperforms all reported individual features
on UCF sports.

G. UCF11

Based on the in-depth evaluations on UCF sports, we select
the I , IC and I N representations for both STIP detection and
description for evaluation on the UCF11 and UCF50 datasets.
Results are presented in Table IV and summarised in Table VI.

Differences between performance in the detectors are
again small, but we observe a consistent top-performing
combination of I N-Gabor STIPs with IC-based HOG3D.
Thus, we conclude that a certain amount of invariance against
local photometric events is beneficial for STIP detection,
whereas the descriptor should be extracted from the most
discriminative representation.

We achieve a baseline result of 73.8% on the UCF11 dataset
for the intensity-based STIP variant. Adding chromaticity
increases the recognition accuracies substantially. Also here,
best performance is achieved by the direction-based IC
descriptors: 78.4% for IC1,0 on IC-Gabor STIPs and 78.6%
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Fig. 8. Confusion difference matrix between UCF11 categories. Depicted
is the element-wise difference between the confusion matrices of (best
performing) color and intensity STIPs.

for IC0,0 on I N-Gabor STIPs. The representation of the
detector appears to be more influential on this dataset, although
its contribution is marginal on average.

The results compare favourably to the trajectory-based har-
vesting of HOG and HOF features in [25], for which 72.6%
and 70% is achieved respectively. However, they report a
superior performance of 84.1% for their motion boundary
histograms.

1) Discussion on Inter-Class Confusion: For a detailed
analysis of the results on UCF11 we have included a
confusion-difference matrix in Fig. 8. The usage of color
causes most performance gain for the category ‘basketball’.
Corresponding videos in the dataset exhibit mostly practicing
individuals, whereas considerable variations are observed in
other facets such as indoor/outdoor, solid/shaking camera
work and clothing. These observations are supportive for the
argument that multi-channel processing is useful for feature
extraction in general, irrespective of the actual color itself. In
addition to this, category-specific motion patterns are more
accurately described by using color. For example, a basketball
generally has the same orange color, which makes the descrip-
tion of its associated motion (bouncing) more accurate. Fur-
thermore, the usage of color decreases the confusion between
‘basketball’ and ‘horse riding’, and especially ‘tennis swing’.
The initial confusion (i.e. based on intensity-STIPs) between
‘basketball’ and ‘tennis swing’ is comprehensible, as most
videos of both categories exhibit, in general, an individual
performing the activities in isolation. Specific information
associated to e.g. the colors of the basketball and tennis
courts alleviate much of the confusion. The same line of
reasoning applies to the confusion between ‘tennis swing’ and
‘golf swing’, and to a lesser extent ‘basketball’ and ‘vollyball
spiking’, as the associated videos exhibit a single, sudden burst
of activity performed by an individual. Less evident is the
reason for resolved confusion between ‘basketball’ and ‘horse
riding’. Videos associated to the latter exhibit a walking or
galopping horse, which is characterized by a periodic motion
pattern resembling that of a person shooting a basketball.

TABLE V

RECENT UCF50 RESULTS AVAILABLE IN LITERATURE

It is probably the case that a bouncing basketball also renders
similar motion patterns, while its color then provides the power
to discriminate. Opposed to this, it stands out that color STIPs
increase the confusion between ‘tennis swing’ and ‘soccer
juggling’. This is mainly due to the fact that in one ‘soccer jug-
gling’ video group the activity is performed on a typical tennis
hardcourt, which renders similar patterns in all color channels.

H. UCF50

Considering the results on UCF50 in Table IV, we observe
that best performance is achieved with orientation-based
descriptors, as opposed to the direction-based descriptors that
are favoured for UCF sports and UCF11. As the number
of categories increases, descriptor robustness becomes more
important. We observe a baseline result of 68.8% for I·,1.
This is substantially higher than the results reported in [13]
for Action Bank (57.9%) and Harris STIP + HOG/HOF
(47.9%) (see Table V for an overview of recent results
on UCF50). We conclude that the Action Bank method is
not scalable and suffers from increased geometric varia-
tions. As for Harris STIP + HOG/HOF, we conclude that
the high degree of distinctiveness of spatio-temporal cor-
ners limits generalization capacity for these descriptors. A
performance of 76.9% is reported in [11] for a combina-
tion of scene context and spatio-temporal descriptors. Here,
the best performing spatio-temporal descriptor is MBH on
Harris STIPs, which achieves 71.9%. This shows the gen-
eralization capacity of differential optical flow descriptors,
as well as the capacity of MBH to differentiate between
video content around Harris STIPs, as opposed to HOG and
HOF descriptors. It should however be noted here that MBH
performance comprises a complex multiple kernel combina-
tion of a horizontal MBHx and vertical MBHy component.
In [16], a recognition accuracy of 73.7% is reported for a
combination of Gist3D and Harris STIP + HOG/HOF descrip-
tors. However, performance of the individual descriptors is
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Fig. 9. Per-class recognition performances on UCF50 dataset. Color-
STIP (I N -Gabor+IC1,1) performance is depicted in red, intensity-STIP
(I -Gabor+I·,1) in black and their difference in yellow (Color online).

at most 65.3%. In the recent work of Wang et. al. [25],
trajectory-based HOG, HOF and MBH attain 68%, 68.2%
and 82.2% respectively, while a multiple kernel combination
yields state of the art performance of 84.5%. Finally, in [15] a
result of 72.4% is obtained based on dense random sampling
of HOG3D descriptors, whereas 83.3% is achieved with a
multiple kernel combination of HOG, HOF, HOG3D and MBH
descriptors.

We report a top performance of 72.9% for IC1,1-HOG3D
extracted around I N-Gabor STIPs. This result constitutes the

best performing STIP-based approach to action recognition,
while state of the art results are achieved by trajectory-based
harvesting or dense sampling of MBH descriptors and multiple
kernel modeling thereof.

1) Discussion on Per-Class Results: The results on UCF50
are further analyzed based on the per-category results in
Fig. 9. The recognition performance for 44 out of 50 action
categories is improved by using color. The largest improve-
ment is observed for ‘BenchPress’. The main reason for this
is that the barbell weights are often (red) colored and thus
render discriminative periodic motion patterns, see Fig. 10 for
examples. Another influential factor is the associated typical
indoor setting (gym), which often consists of solidly colored
walls contrasting with the motion patterns in the foreground.
Apart from that, we observe a large variety in terms of, for
example, the specific background color or the clothing of
the actors. Another action category with large recognition
improvement is ‘TaiChi’. We observe from corresponding
examples that the activity is often performed outdoors on green
grass by individuals wearing colorful clothes. Furthermore, it
turns out that two ‘TaiChi’ video groups are composed of
the same person performing the activity in the same pink
clothes, which provides an obvious advantage to color based
methods. A similar line of reasoning applies to the decreased
recognition performance of ‘PlayingTabla’ activity, as one of
the video groups contains grayscale samples only (in which all
RG B channels are consequently identical). The subtraction of
‘RG B’ channels in the transformation to ‘chromatic’ opponent
space in eq. 2 then yields NU L L channels. However, it is
also possibly the case that the cast shadows of the fingers
on the tabla exhibit discriminative motion patterns which may
be better detected by an unnormalized (intensity-only) STIP
detector. Another category for which intensity STIPs perform
better is ‘JumpingJack’. Also here, there is one video group
containing essentially black/white footage which influences
the results. We conclude from these observations that the usage
of color for action recognition provides a performance boost
in general, while the extremal result cases exhibit rather trivial
characteristics.

I. Discussion on Entropy and Discriminative Power

Consider the descriptor with the highest entropy:
IC0,0-HOG3D. This is the best performing descriptor
on UCF11, suggesting that high entropy is an indicator for
discriminative power. On UCF50, however, IC1,1-HOG3D
is the best performing descriptor, which has considerably
lower entropy compared to most other descriptors. When
larger datasets exhibiting higher intra-class variability and
lower inter-class variability are considered, it becomes
more important for descriptors to be robust, as opposed to
discriminative only. Another illustrative example of this phe-
nomenon would be a raw pixel descriptor (list of pixel values)
which typically has high entropy and is very discriminative
but not at all robust. Another high-entropy descriptor is the
2-channel I H0,0-HOG3D. This is remarkable at first sight
because its dimensionality is lower than e.g. the 3-channel
I N0,0-HOG3D descriptor. That is, entropy is generally
expected to increase along with dimensionality. Furthermore,
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Fig. 10. Example frames from UCF50 dataset. The top row contains samples from the categories for which recognition performance based on color STIPs
has improved the most over intensity STIPs. The bottom row shows examples from the 6 categories for which recognition performance has decreased. The
samples are sorted from left to right based on the difference in recognition rates (Color online).

TABLE VI

SUMMARY OF BEST RECOGNITION RESULTS OVER ALL DATASETS

the results on UCF sports show that I H descriptors perform
worse than other descriptors in general which can be attributed
to the instability of the hue representation for unsaturated
colors resulting in high entropy in the extracted descriptor.

In conclusion, high descriptor entropy indicates either
discriminative power or instability of the underlying
representation. Discriminative power does not guarantee best
performance because descriptor robustness becomes more
important as the problem becomes more difficult.

VI. CONCLUSION

We have reformulated STIP detectors and descriptors to
incorporate multiple photometric channels in addition to image
intensities, resulting in color STIPs. The enhanced modeling of
appearance results in an improved balance between photomet-
ric invariance and discriminative power, as chromaticity pro-
vides more information, based on which better representations
are formed. Color STIPs are thoroughly evaluated and shown
to significantly outperform their intensity-based counterparts
for recognizing human actions on a number of challenging
video benchmarks. In Table VI we show an overview of the
best results over all datasets. The best detector is consistently
I N , although differences between I and I N are small. Consis-
tent across all results is the superior performance of descriptors
extracted from the unnormalized opponent representation IC .
Differences are observed between variations of the IC descrip-
tor in terms of channel integration/concatenation and gradient
orientation/direction, where the best descriptor choice depends
on the difficulty and size of the dataset. For a small to moderate
amount of visually relatively distinct categories such as in the
UCF11 dataset, it is best to use a discriminative descriptor
such as IC0,0 (channel concatenation + gradient direction).

For larger datasets such as UCF50 it is better to use the robust
descriptor IC1,1 (channel integration + gradient orientation),
which has the additional advantage of low dimensionality.
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