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Color Constancy for Multiple Light Sources
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Abstract—Color constancy algorithms are generally based on
the simplifying assumption that the spectral distribution of a light
source is uniform across scenes. However, in reality, this assump-
tion is often violated due to the presence of multiple light sources.
In this paper, we will address more realistic scenarios where the
uniform light-source assumption is too restrictive. First, a method-
ology is proposed to extend existing algorithms by applying color
constancy locally to image patches, rather than globally to the en-
tire image. After local (patch-based) illuminant estimation, these
estimates are combined into more robust estimations, and a local
correction is applied based on a modified diagonal model. Quan-
titative and qualitative experiments on spectral and real images
show that the proposed methodology reduces the influence of two
light sources simultaneously present in one scene. If the chromatic
difference between these two illuminants is more than 1 °, the pro-
posed framework outperforms algorithms based on the uniform
light-source assumption (with error-reduction up to approximately
30%). Otherwise, when the chromatic difference is less than 1 ° and
the scene can be considered to contain one (approximately) uni-
form light source, the performance of the proposed method frame-
work is similar to global color constancy methods.

Index Terms—Color constancy, computer vision, illuminant
estimation.

I. INTRODUCTION

HE COLOR of a light source has a significant influence on
T object colors in the scene [1]. Therefore, the same object,
taken by the same camera but under different illumination, may
vary in its measured color values. This color variation may in-
troduce undesirable effects in digital images. Moreover, it may
negatively affect the performance of computer vision methods
for different applications such as object recognition, tracking,
and surveillance. The aim of color constancy is to correct for the
effect of the illuminant color, either by computing invariant fea-
tures, e.g., [2] and [3], or by transforming the input image such
that the effects of the color of the light source are removed, e.g.,
[1] and [4]. This paper focuses on the latter definition, which is
also called white balancing.
A considerable number of color constancy algorithms are
proposed; see [1], [4], and [5] for reviews. In general, pixel
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Fig. 1. Scenes with multiple different light sources, taken from the web.

values are exploited to estimate the color of the light source. Ex-
amples of such methods include approaches based on low-level
features [6], [7], gamut-based algorithms [8], and other methods
that use knowledge acquired in a learning phase [9]. Alterna-
tively, methods that use derivatives (i.e., edges) and even higher
order statistics are proposed [10]. These color constancy algo-
rithms are based on the assumption that the light source across
the scene is spectrally uniform. However, this assumption is
often violated as there might be more than one light source il-
luminating the scene. For instance, indoor scenes could be af-
fected by both indoor and outdoor illumination, each having
distinct spectral power distributions. Moreover, interreflections
can lead to the introduction of additional “virtual” light sources,
which have similar effects as true light sources and could be
therefore handled as such. For outdoor scenes, the shadowed re-
gions are dominated by skylight, whereas nonshadowed regions
are illuminated by a combination of skylight and sunlight. Ex-
amples of such scenarios are shown in Fig. 1.

Retinex [7] is one of the first color constancy methods de-
veloped and assumes that an abrupt change in chromaticity is
caused by a change in reflectance properties. This implies that
the illuminant smoothly varies across the image and does not
change between adjacent or nearby locations. Numerous imple-
mentations have been proposed, e.g., using very large scale in-
tegration for real-time image processing [11], using center/sur-
round for practical image processing applications [12], [13], or
using MATLAB to standardize evaluation of the Retinex [14].
Moreover, various extensions have been proposed by adding
additional knowledge about the scene into the method. For in-
stance, Finlayson et al. [15] and Barnard et al. [16] propose a
Retinex-based method that identifies and uses surface colors that
are illuminated by two different light sources. Xiong and Funt
[17] constructed an extension that uses stereo images to derive
3-D information on the surfaces that are present in the image.
This information is used to more accurately distinguish material
transitions from light color changes, but the stereo information
is often not available and is not trivial to obtain. Ebner [18] also
proposed a method that is based on the assumption that the il-
luminant transition is smooth. This method uses the local space
average color (LSAC) for local estimation of the illuminant by
convolving the image with a kernel function (e.g., a Gaussian or
Exponential kernel). However, all these methods are based on
the assumption that the illuminant transition is smooth, which
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is often not the case (see for example the two leftmost images in
Fig. 1). For such situations, Ebner proposes to use nonuniform
averaging [19].

Other algorithms that consider multiple light sources include
physics-based methods [20], biologically inspired models [21],
and methods requiring manual intervention [22]. The first
method [20] is specifically designed for outdoor images and
distinguishes between shadow and nonshadow regions. Various
other methods that distinguish between shadow and nonshadow
regions have been proposed, e.g., [23] and [24], but such
methods do not result in output images that have any visual
similarity to the original input image. The second method [21]
is based on retinal mechanisms and adaptation, simulating the
properties of opponent and double-opponent cells. The latter
method [22] requires spatial locations in the image that are
illuminated by different light sources to be manually specified
by a user.

In this paper, a new methodology is presented that enables
color constancy under multiple light sources. The methodology
is designed according to the following criteria: 1) it should be
able to deal with scenes containing multiple light sources; 2)
it should work on a single image; 3) no human intervention
is required; and 4) no prior knowledge or restrictions on the
spectral distributions of the light sources is required. Although
the proposed framework is designed to handle multiple light
sources, the focus in this paper is on scenes captured under one
or two distinct light sources (including linear mixtures of two
light sources), arguably the two most common scenarios in real-
world images. Furthermore, not only images recorded under
multiple light sources but also images that are recorded under
only one light source should be properly processed. Hence, the
improvement on multiple-light-source scenes should not be ob-
tained at the expense of a decreased performance on single-
light-source scenes.

To construct color constant images from scenes that are
recorded under multiple sources, the proposed methodology
makes use of local image patches, rather than the entire image.
These image patches are assumed to have (local) uniform
spectral illumination and can be selected by any sampling
method. In this paper, grid-based sampling, key-point-based
sampling, and segmentation-based sampling are evaluated.
After sampling of the patches, illuminant estimation techniques
are applied to obtain local illuminant estimates, and these
estimates are combined into more robust estimations. This
combination of local estimates is done with two different ap-
proaches, i.e., clustering and segmentation. The first approach
is to cluster the illuminant estimates, taking the cluster centers
as final illuminant estimate for each of the regions. The second
approach is to take spatial relations between local estimates into
account by applying segmentation on the back-projected local
illuminant estimations. Finally, when the resulting illuminant
is estimated, a modified diagonal transform is applied to obtain
the color-corrected images.

This paper is organized as follows: First, in Section II, color
constancy is discussed. Next, in Section III, the proposed
methodology is explained in detail. Experiments are described
in Section IV, and Section V presents a discussion of the
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obtained results and some directions for future work in this line
of research.

II. COLOR CONSTANCY

In general, the goal of computational color constancy is to
estimate the chromaticity of the light source and then to correct
the image to a canonical illumination using the diagonal model.
Here, we will briefly outline this process.

A. Reflection Model

Image color I = (Ig, Ig,Ip)T for a Lambertian surface at
location x can be modeled as

I(x) = / B\ x)S( x)pe(A)dA )

w

where ¢ € {R, G, B} and E(\, x), S(\) and p.(A, x) are the il-
luminant spectrum distribution, surface reflectance, and camera
sensitivity, respectively. Furthermore, w is the visible spectrum.
Then, for a given location x, the color of the light source can be
computed as follows:

LR(X)
L) = | La(x) | = / EQx)pVdr @
Lp(x) Z

where it should be noted that, typically, color constancy is in-
volved with estimating the chromaticity of the light source (i.e.,
intensity information is not recovered). Estimating this chro-
maticity from a single image is an underconstrained problem as
both E(\,x) and p(\) = (pr, pg,ps)T are unknown. There-
fore, assumptions are imposed on the imaging conditions. Typi-
cally, assumptions are made about statistical properties of the
illuminants or surface reflectance properties. Moreover, most
color constancy algorithms are based on the assumption that the
illumination is uniform across the scene (i.e., E(\, x) = E(\)).
However, for real-world scenes, this assumption is very restric-
tive and often violated.

B. Illuminant Estimation: One Light Source

Most color constancy algorithms proposed are based on the
assumption that the color of the light source is uniform across
the scene. For instance, the white-patch algorithm [7] is based
on the assumption that the maximum response in a scene is
white, and gray-world algorithm [6] is based on the assumption
that the average color in a scene is achromatic. These assump-
tions are then used to make a global estimate of the light source
and correspondingly correct the images.

The framework proposed in [10] allows for systematically
generating color constancy as follows:

(75 )

where L™P? is used to denote different instantiations of
the framework. Furthermore, | - | is the Frobenius norm,
¢ = {R,G,B}, n is the order of the derivative, p is the
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Minkowski norm, and /. , = I. ® G, is the convolution of the
image with a Gaussian filter with scale parameter o. According
to the characteristics of the Gaussian filter, the derivative can
be further described by

aa+bIc_a
81170‘:(/1) -

8a+b Ga

X Dwe iy “)

where * denotes the convolution and a + b = n.

Using (3), many different color constancy algorithms can be
derived by varying one or more parameters (i.e., n, p, and/or o).
In this paper, we focus on the following methods [10]:

* Pixel-based color constancy algorithms (i.e., n = 0).
Minkowski norm p and smoothing parameter ¢ are depen-
dent on the images in the data set; thus, in this paper we
will show results for three variations, i.e., the gray-world
algorithm (with n = 0, the Minkowski-norm p = 1 and the
smoothing filter size o = 0, i.e., L%1:?), the white-patch
algorithm (with Minkowski-norm p = oo, i.e., L%°0),
and one specific instantiation of the general gray-world
algorithm, i.e., LO%!;

* Higher order color constancy methods (i.e., n = 1 and
n = 2), resulting in the first-order gray-edge (L™"!) and
the 2°"d-order gray-edge (L%%1).

C. Correction: Diagonal Model

After the color of the light source is estimated, the aim is
to transform the input images, taken under an unknown light
source, into colors as if they appear under a canonical light
source. Usually, this is done using the diagonal model or von
Kries model, i.e.,

I¢ = AU )

where I" is the image taken under an unknown light source
while I is the image transformed, which appears as if it is taken
under the canonical illuminant. A" is the mapping diagonal
matrix, i.e.,

L,
a 0 0 L 0 0
Ave=(0 g ol=|o0 Zz o (6)
G
0 0 ~ 0 o Lo

where L" is the unknown light source and L° is the canonical
light source.

III. COLOR CONSTANCY FOR MULTIPLE LIGHT SOURCES

The majority of color constancy methods are based on the as-
sumption of spectrally uniform lighting (e.g., one light source or
multiple identical light sources). However, in real-world scenes,
this assumption is often violated as more than one light source,
with different spectral distribution, is present. Here, a method-
ology is proposed that extends traditional methods to estimate NV
different light sources, where N is the number of light sources
that affect an image. The outline of this process is shown in
Fig. 2. The proposed framework consists of the following five
steps.

Step 1)

Step 2)

Step 3)

Step 4)
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Sampling of image patches. The first step is to
sample P patches from the image. For each patch,
estimation is computed of the light source valid
for that patch. It is assumed that the color of the
light source is uniform over each patch, which is a
reasonable assumption in practice. Therefore, the
patch size should be limited but of sufficient size to
extract enough image properties to accurately esti-
mate the light source. Different sampling strategies
can be used, e.g., dense sampling, interest points,
and segmentation. Dense or grid-based sampling
and segmentation-based sampling ensure that the
union of all patches covers the full image. Further-
more, segmentation-based sampling can result in
boundaries between segments that naturally fol-
lows the boundary between light sources (as most
segmentation algorithms are sensitive to changes
in the illuminant). Grid-based sampling has the
advantage that the patches contain varied amount
of information, whereas patches that are selected
using segmentation will generally contain similar
colors (and hence less variation). Finally, key-point
sampling is specifically suited for edge-based color
constancy methods as the key points are located
around edges and junctions. In this paper, key
points are located using the Harris detector at mul-
tiple scales [25] (scales 1, 1.5, and 2), using a similar
patch size as the grid-based sampling, whereas seg-
mentation is performed using the c [26].
Patch-based illuminant estimation. As the illumi-
nant for each patch is assumed to be spectrally uni-
form, traditional color constancy methods are ap-
plied on every patch to estimate the local illuminant.
In this paper, several color constancy algorithms are
used, as explained in Section II-B. Color constancy
is applied on each patch resulting in one estimate of
the illuminant chromaticity per patch.

Combination of estimates. Since there is only a lim-
ited amount of information available when using
a relatively small patch for the estimation of the
light source, this may introduce estimation errors.
To overcome this lack of information, patches that
are taken from parts of the image that are illumi-
nated by the same light source are combined to form
a larger patch (and consequently result in a more ac-
curate estimate). Patches that are illuminated by the
same light source are likely to vote for the same il-
luminant, as illustrated in Fig. 2. Assuming that the
number of clusters is known (we assume N = 2
here), the chromaticities can be grouped together
using any clustering algorithm.

Back-projection of clusters. After the different esti-
mates are grouped together into N groups, the re-
sult can be back-projected onto the original image
to identify the locations in the image that are il-
luminated by each of the estimated light sources.
This results in an illuminant classification, where
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2. Estimation &

Input image

1. Sampling

3. Combination

4. Back-projection 5. Color correction

Fig. 2.

Tllustration of the proposed methodology. The input image, recorded under two different illuminants, is first sampled to obtain image patches. Different

approach for sampling can be employed, i.e., grid-based sampling, key-point-based sampling (at multiple scales, i.e., 1, 1.5, and 2), and segmentation-based sam-
pling (using graph-cut segmentation). Then, patchwise illuminant estimation is applied, and the obtained estimates are combined. Back-projecting the illuminant
estimates onto the image results in an pixel-based illuminant estimate, which can be finally used to color correct the input image.

every pixel is assigned to one of the estimated light
sources. After back-projection, a pixelwise illumi-
nant estimate is obtained.

Color correction. Finally, using the pixelwise
estimates, the output image is constructed. Trans-
forming the input image so that it appears to be
taken under a white light source is an instantiation
of chromatic adaptation, e.g., [27]. Many methods
to do this exist, e.g., [28] and [29], but all assume
that the color of the light source in the input image
is known. Since the focus in this paper is to estimate
the illuminant, the diagonal model, or von Kries
model [30], is used, as described in Section II.

Note that steps 3 and 4 could be merged into one segmentation
step, depending on the sampling strategy in step 1: If a pixelwise
illuminant estimate is obtained, which covers the entire image,
then the combination of local estimates can be done using any
segmentation algorithm that naturally incorporates spatial infor-
mation. This alleviates the requirement of presetting the number
of light sources, at the expense of introducing more parame-
ters into the methodology. In this paper, we will adopt both ap-
proaches.

Further note that the pipeline of traditional color constancy
methods assuming a uniform illuminant is a special instance of
the proposed algorithm by assuming that there are NV = 1 light
sources and sampling P = 1 patches, where the patch size is the
same dimensions as the original image. In this situation, steps
3 and 4 are trivial and can be omitted, and step 5 reduces to the
regular diagonal model.

Step 5)

A. Light-Source Estimators

Images in the proposed method are divided into patches,
which are assumed to be small enough such that it is consistent
with the uniform spectral assumption. For each patch, illumi-
nant estimation is obtained by using a standard color constancy

algorithm (based on a uniform light source). For simplicity,
although other color constancy methods can be used, we focus
on the five instantiations described in Section II-B, which in-
clude pixel and derivative-based methods. Multiple light-source
estimates can be simultaneously taken into account, but in this
paper, the focus is on single estimates per patch. Since the used
algorithms merely estimate the chromaticity of the light source,
every estimate is normalized for intensity, i.e.,

{r:R/(R+G+B)

9=G/(R+G + B). @)

The illuminant over each patch is represented by a 1 x 2
vector. The theoretical situation could occur where the illumi-
nant estimate results in a black light source, i.e., R = G =
B = 0. In such situations, albeit unlikely, we propose to use a
white-light source, i.e., 7 = g = 1/3.

B. Overlapping Light Sources

The underlying assumption of the proposed framework is that
the different light sources are locally constant. For instance, in
outdoor images, the two light sources are light from the blue
sky and direct sunlight, which can be clearly distinguished by
the shadow boundary. However, for some images, the boundary
between the different light sources might not be so obvious. In
these cases, the true light source at locations in between two
light sources is a linear mixture of those two light sources. En-
forcing a sharp distinction will result not only in quantitative er-
rors but also in severe qualitative errors. To overcome this issue,
step 4 of the proposed method can be augmented with a filtering
of the back-projected clusters to smooth the transition from one
light source to another.

More formally, let d;(x) denote the chromatic distance (Eu-
clidean distance is used throughout this paper) of the estimated
illuminant of the patch located at spatial coordinate x in the
image to the jth illuminant (where j € {1,..., N}). First, from
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(b) (© (d

Fig. 3. Example of light mask maps. (a) There are two light sources in the syn-
thetic image. The illumination for each pixel is present in (b). (¢)—(d) Illuminant
mask maps: The contribution each light source makes to the light mixture in
which white means a big ratio, whereas dark, a small ratio.

distance d;(x), we compute d’;(x), which denotes the similarity
between the estimated illuminant of the patch and the 58 illu-
minant, i.e.,

0 = )

Then, mask map m(x), indicating the estimated probability
of the jth illuminant, is defined as the ratio of d’;(x) to the sum
of distances to all illuminants as

U
mj(x) = # ©)
> k=1 41, (%)

Filters are applied on this mask map to get the smooth il-
luminant distributions. In this paper, both linear and nonlinear
filters are considered. Specifically, Gaussian and median filters
are used. A Gaussian filter takes spatial information into consid-
eration so that a pixelwise probability can be computed of the
range of the estimated light sources. The advantage of the me-
dian filter is that it preserves the edges, which could be suited as
some scenes can have sharp transitions from one light source to
another. Such sharp transitions cannot be handled by Gaussian
smoothing filters (in fact, using Gaussian smoothing filters im-
plies an assumption of discontinuous illuminants).

®)

C. Image Correction

Before image correction, the illumination for each pixel is
estimated as follows:

N
Le(x) =Y Leimi(x) (10)
1=1

where L. is the illuminant estimation over the scene, L. ; is the
estimation for the ith illumination, and m; (x) is the contribution
of the sth light-source estimation to pixel x. A linear mixture of
light sources is controlled by this variable: A higher value of m;
indicates a larger influence of the sth light source on this pixel (
m;(x) = 1 indicates that pixel x is solely illuminated by light
source ). As shown in Fig. 3, the light mask map is of the same
size as the input image.

1V. EXPERIMENTS

This section presents the experimental validation of the pro-
posed method. First, the influence of several parameters on the
performance of the proposed method is studied using hyper-
spectral data. Then, the proposed method is applied on two data
sets of real images.
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Fig. 4. Example images: The first image is the original hyperspectral image,
whereas the others are generated using two light sources on the original image.
Note that all experiments are performed on linear images; gamma correction is
applied only for improved visualization.

A. Performance Measurement

Two performance measures are used in this paper: The clus-
tering performance is measured using misclassification rate,
whereas the angular error is used to evaluate the performance
of color constancy algorithms.

Misclassification Rate: Pixels are considered to be misclas-
sified if they are illuminated by L;, but the method assigns them
to another illuminant. Given that there are IV light sources, the
clustering performance is measured by

1 N
n= Zl S; (11)
where S; is the number of misclassified pixels illuminated by the
ith light source, whereas T is the total number of pixels in the
image. Note that, in order to compute 7, all pixels are assigned
to either of the light sources.

Angular Error: Given a pixel in an image, L;(x) is the
ground truth of the light source illuminating it, whereas L. (x)
is the corresponding estimation; then, the angular error ¢ is

e(x) = cos™! (ﬁt(x) ﬁe(x))

where the hat indicates the normalized vector. As scenes are illu-
minated by varying illuminations, the angular error is computed
pixel by pixel throughout the image. Then, the average angular
error across the scene is considered as the measurement.

Statistical Significance: Evaluating color constancy methods
on a range of images requires the need for a summarizing
statistic. Hordley and Finlayson [31] showed that the median
is an appropriate statistic in the field of color constancy since
the angular error is angular errors over a large set of images is
generally not normally distributed. Moreover, to test the signifi-
cance of the difference between two distributions, we adopt the
Wilcoxon sign test [31]. This test is based on the assumption
that if two methods A and B have the same median error on
a set of NV images (the null hypothesis), then the number of
images on which method A performs better then method B
(denoted W) is as high as the number of images on which
method B performs better than method A. In other words, if
the null hypothesis is true, then W is binomially distributed.
The Wilcoxon sign test is based on this statistic.

(12)

B. Hyperspectral Data

First experiments are performed on a data set that is gener-
ated using hyperspectral data taken by Foster et al. [32]. This
data set consists of a mixture of rural and urban scenes. Im-
ages (the sizes of the images slightly vary but approximately



702

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 21, NO. 2, FEBRUARY 2012

TABLE I
PERFORMANCE OF COLOR CONSTANCY ALGORITHMS COMPUTED FOR THE HYPERSPECTRAL DATA SET. THE COLOR CONSTANCY ALGORITHMS BASED ON A
SINGLE LIGHT SOURCE ASSUMPTION ARE USED AS BASELINE (I.E., THE RELATIVE IMPROVEMENT DENOTED BETWEEN PARENTHESES ARE COMPUTED WITH
RESPECT TO THESE BASELINES); THE LSAC METHOD IS THE METHOD PROPOSED BY [18]. DIFFERENT SAMPLING STRATEGIES FOR THE PROPOSED METHOD ARE
EVALUATED, AND SEGMENTATION-BASED COMBINATION (WITH NO ASSUMPTIONS ON THE NUMBER OF LIGHT SOURCES) IS APPLIED TO GRID-BASED SAMPLING

| Method | Median Method | Median |
Do Nothing (DN) 26.3° general Grey-World (gGW) 11.5°
Grey-World (GW) 14.0° 1%t-order Grey-Edge (GE-1) 16.8°
White-Patch (WP) 12.5° 2nd_order Grey-Edge (GE-2) 16.7°
LSAC Exponential filter | 10.5° LSAC Gaussian filter 10.2°
Retinex (Impl. from [14]) | 11.7° Retinex (Impl. from [34]) | 9.9°
Proposed: GW 10.0° (-29%) Proposed: GW 10.9° (-22%)
grid-based WP 9.5° (-24%) keypoint-based WP 12.8° (+2%)
sampling, then GGW 9.9° (-14%) sampling, then GGW 12.1° (+5%)
clustering GE-1 15.4° (-8%) clustering GE-1 15.9° (-5%)
(k-means, k = 2) | GE-2 15.0° (-10%) (k-means, k = 2) GE-2 15.4° (-8%)
Proposed: GW 10.0° (-29%) Proposed: GW 12.3° (-12%)
grid-based WP 10.2° (-18%) segmentation-based | WP 10.1° (-19%)
sampling, then GGW 10.2° (-11%) sampling GGW 13.2° (+15%)
segmentation GE-1 16.8° (-0%) then clustering GE-1 13.0° (-23%)
(mean-shift) GE-2 16.1° (-4%) (k-means, k = 2) GE-2 15.4° (-8%)

correspond to 335 x 255 pixels) are illuminated by two dif-
ferent light sources, randomly selected from a set of 81 illumi-
nant spectra [33]. Together with the camera sensitivity functions
specified by [33] and (1), the hyperspectral data are converted
into ( R, G, B)-values. Gaussian filtering is used to generate
smooth transitions from one light source to the other, and dif-
ferent filter sizes are used. Using this approach, a data set with
1437 images is generated, containing a wide variety of com-
binations of light sources, with chromatic differences between
the two light sources ranging from 0 ° to roughly 40 °. Scenes
with small chromatic differences between the two light sources
are considered to be illuminated by one (approximate) uniform
light source. Several examples are shown in Fig. 4. Note that
the experiments on this data set are mainly used to systemat-
ically demonstrate the characteristics and behavior of the pro-
posed algorithm.

Single Light Source: In order to validate how the proposed
method improves the color constancy performance, we first per-
form experiments based on the assumption that there is only one
light source illuminating the scene, while in fact there are two
distinct light sources. The performance of five color constancy
algorithms is measured using median angular errors shown in
Table I. These results are considered as the baseline as they rep-
resent the performance of standard color constancy methods as-
suming a single light source.

Multiple Light Sources: The experiments on the hyperspec-
tral data set are used to evaluate the effects of different param-
eter settings of the proposed method. In Table I, the results of
the different sampling strategies are shown. It can be observed
that grid-based sampling outperforms all other sampling strate-
gies (except segmentation-based sampling combined with first-
order gray-edge, which performs better than grid-based sam-
pling). The reason for this is the combination of total coverage
of the image by patches and the variety of image colors in every
patch. The grid-based sampling has the advantage over key-
point-based sampling that the full image is covered by patches.
Segmentation-based sampling obtains this same effect, but seg-
mentation will group “similar” pixels into segments. The simi-
larity of the pixels in one segment will result in local estimations

that are less accurate than the local estimations of the grid-based
sampling. All results are obtained using k-means clustering.
Differences with clustering based on Gaussian mixture mod-
eling are small (not shown here). Furthermore, it is important
to note that all differences between baseline methods and pro-
posed extensions are statistically significant (at 95% confidence
level), according to the Wilcoxon sign test [31].

An important parameter for the grid-based sampling is the
patch size that is considered. Fig. 5 shows the influence of the
patch size on the performance of the different color constancy
algorithms. It can be derived that the performance roughly de-
creases as the patch size increases. Since a larger patch size log-
ically implies more information, one might expect that an in-
creased patch size would result in a better performance. How-
ever, a larger patch size includes more pixels; therefore, a mis-
classified patch at a large scale results in more misclassified
pixels than a misclassification at a small scale. Even though the
probability of misclassification decreases, the penalty of mis-
classification increases as a function of the patch size. More-
over, a large patch size implies that a patch covers a large il-
lumination variation, hence decreasing the classification accu-
racy. Misclassification in this context means that pixels that are
actually recorded under illuminant ¢ are used to estimate illu-
minant j. Obviously, there is a tradeoff between the amount of
information required for the local estimation of the illuminant
on one side and the misclassification rate on the other. Gener-
ally, the trend for the different algorithms is the same.

Since the proposed method makes use of a clustering algo-
rithm, the patch-based illuminant estimates should be easily sep-
arable. However, when an image is illuminated by two similar
light sources, the patch-based illuminant estimates will be sim-
ilar as well. Consequently, the clustering performance is influ-
enced by the nature of the light sources. Fig. 6 (top row) shows
the clustering performance in terms of misclassification rate as a
function of the chromatic distance between the two light sources
(note that the misclassification rate for all baseline algorithms
is the same for all scenes. Since both light sources cover ap-
proximately half of the image, the misclassification rate when
assuming that there is only one light source is 50%). As ex-
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TABLE 11
PERFORMANCE OF COLOR CONSTANCY ALGORITHMS COMPUTED FOR A SUBSET OF THE HYPERSPECTRAL DATA SET CONTAINING IMAGES WITH ROUGHLY
GLOBAL ILLUMINATION (1.E., THE ILLUMINATION DIFFERENCE WITHIN THE IMAGE IS LESS THAN 1 °). THE COLOR CONSTANCY ALGORITHMS BASED ON A
SINGLE LIGHT-SOURCE ASSUMPTION ARE USED AS BASELINE (I.E., THE RELATIVE IMPROVEMENT DENOTED BETWEEN PARENTHESES ARE COMPUTED WITH
RESPECT TO THESE BASELINES). THE PROPOSED METHODOLOGY IS APPLIED USING GRID-BASED SAMPLING

[ Method [ Median || Method | Median |
Grey-World (GW) 8.9° Proposed methodology using GW 8.1°(—9%)
White-Patch (WP) 7.9° Proposed methodology using WP 8.4°(4+6%)
general Grey-World (gGW) 5.5° Proposed methodology using gGW | 8.1°(+47%)
15t-order Grey-Edge (GE-1) 15.1° Proposed methodology using GE-1 | 15.0°(—1%)
2nd_order Grey-Edge (GE-2) | 14.9° Proposed methodology using GE-2 | 14.8°(—1%)

pected, it can be observed that the misclassification decreases as
the chromatic difference between light sources increases. Ob-
viously, a higher misclassification rate is of influence on the
color constancy performance: If more pixels are biased toward
the wrong illuminant, then the overall estimation accuracy will
diminish. The effect of the misclassification rate is shown in
Fig. 6 (bottom row): Better illuminant estimates are achieved for
scenes with a large chromatic difference between the two light
sources. However, the proposed method performs (at least) as
good on scenes with a small chromatic difference between the
light sources (i.e., scenes with approximate uniform illumina-
tion) as the baseline algorithms. To illustrate this, we extracted
a subset of images from the hyperspectral data set, consisting of
images with roughly uniform illumination (i.e., images with an
illuminant difference of less than 1 °, a total of 74 images meet
this requirement). In Table II, the performance of this subset
is shown for both the algorithms assuming global illumination
and the proposed methodology assuming two illuminants. It is

shown that the performance of the proposed methodology is
similar to the algorithms assuming global illumination, except
when the general gray world is used. In the other situations, the
performance of the proposed methodology is similar to the base-
line method (assuming only one illuminant is present). This im-
portant conclusion shows that the proposed method can, without
loss of accuracy, be applied to images with one and two light
sources present.

The proposed methodology can be also applied to images
without the assumption that there are at most two distinct light
sources in a scene. The local illuminant estimates can be ob-
tained using mean-shift segmentation [35] on the patch-based
illuminant estimates: Instead of clustering the estimates, the spa-
tial relations between the different patches can be taken into ac-
count by applying segmentation, rather than clustering. The ad-
vantage of this approach with respect to clustering is that no ad-
ditional information on the number of light sources is required.
Results in Table I demonstrate that an increase in performance



704

with respect to the baseline is obtained even without the assump-
tion of two different light sources. However, note that the per-
formance of this approach is not as good as the clustering ap-
proach reported in Table I. This is explained by the additional
knowledge that is available to the clustering-based approach:
When applying clustering to the local estimates, the number of
light sources is assumed to be fixed (and known). When using
segmentation to combine the local illuminant estimates, this as-
sumption is relaxed, and therefore, the performance slightly de-
creases with respect to clustering-based combination. Hence,
the advantage of segmentation-based combination is that there
are no assumptions on the number of light sources. However,
this comes at the cost of introducing additional parameters to
take into account and a slightly decreasing performance, al-
though this approach still improves with respect to algorithms
assuming a single uniform light source.

For comparison, two versions of the Retinex are evaluated,
i.e., [13] and [14], as well as the color constancy algorithm based
on the LSAC [18]. Note that both Retinex methods actually cor-
rect for more than just the chromaticity of the light source and
do not explicitly use the diagonal model. In order to be still able
to quantify the angular error, (5) is used on the input image and
the output image of the Retinex-method to retrieve the diagonal
model and hence extract the chromaticity of the light source at
each pixel. Furthermore, several parameter settings for all algo-
rithms are evaluated. The results reported on the LSAC-methods
are obtained with the parameter setting as implied in [18], i.e.,
0.18 s for the Gaussian kernel and 0.17 s for the exponential
kernel (where s = max(n,,n,)/2 and n, and n, are the width
and height of the image, respectively). The results of the Retinex
are optimal for a single scale (in the case of [13]) and for a
single iteration (in the case of [14]). It is shown in Table I that
both the Retinex and the LSAC outperforms the baseline algo-
rithms. However, using grid-based sampling combined with the
white-patch algorithm results in a median angular error of 9.5
°, whereas the Retinex results in a median angular error of 9.9
°. This difference is statistically significant at 95% confidence
level, using the Wilcoxon sign test [31]. Hence, it can be con-
cluded that when the number of light sources is known, the pro-
posed method in combination with the gray-world algorithm can
significantly outperform the Retinex method.

When assuming no a priori knowledge on the number of
light sources, i.e., replacing the clustering step with a segmen-
tation step, the proposed methodology in combination with
the gray-world algorithm obtains a median angular error of
10.0 °. The median angular error of the Retinex method is
slightly lower ( 9.9°), but the Wilcoxon sign test still favors the
proposed methodology. In other words, the proposed method
(in combination with the gray world, the white patch, or the
general gray world) statistically significantly outperforms the
Retinex method. This can be explained by the relatively stable
performance of the Retinex method, compared with the pro-
posed method, i.e., the Retinex method results in fewer outliers
than the proposed methodology as the proposed method shows
a poor performance on a small number of images.

To conclude, the proposed methodology increases the perfor-
mance of all algorithms based on the assumption of a single
light source, either when assuming the number of distinct light
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sources is at most two or without assumptions on the number
of light sources. For instance, the median angular error of the
gray-world algorithm is improved with 29% with respect to the
corresponding baseline method (i.e., the color constancy algo-
rithm based on a single light source assumption), whereas the
median angular error of the gray edge is improved with 8%.

C. Real Images

Here, the proposed method is validated on a new data set of
real RGB images. This data set consists of images captured
under laboratory settings and of natural real scenes. All images
differ in size but roughly correspond to 0.1 megapixels (e.g., 384
x 256). The set is captured using a Sigma SD10 camera with
Foveon X3 sensor. The white balancing of the camera is kept
fixed at the preset overcast, and the lens is Sigma DC 18-200,
3.5-6.3. The images are captured in raw format and transferred
using Sigma Photo Pro (v2.1). All images are stored in sRGB
color space but are converted to linear RG' B space for the ex-
periments.

In the images under laboratory settings, two halogen lights
with the same specification are used. Four color filters are used
to obtain different colors of the light source. To ensure diffuse
radiation of the light sources, a white tent is installed between
the light sources and the objects. For the ease of the ground truth
of each illuminant, gray boards are fixed in the scene. In all the
settings, to get the ground truth of each pixel, the area of every
light source is manually annotated. Seven different objects are
illuminated by a combination of two light sources. Images of
the same scene are aligned at the pixel level for comparison,
and after removing the images that are misaligned, 59 images
remain.

The natural scenes are obtained outdoors around the campus.
To provide the ground truth of the light sources, several gray
balls are placed in the scene. To reduce the amount of inter-
reflection, the balls are posed on tripods. The ground truth of the
illumination is computed by applying the gray-world algorithm
to the brightest region gray balls (of which the exact locations
are manually annotated). In total, nine outdoor images are ac-
quired, with illuminant chromaticity differences ranging from
1.5 ° to 13 °. Some examples are shown in Fig. 7.

Results: The data sets are processed with the following pa-
rameters: grid-based dense sampling with patch-size 10 x 10
(approximately 5% of the image-size). The results on the scenes
that are illuminated with two distinct light sources are shown in
Table III(a). It can be derived from this data set that the obtained
improvement is similar to the obtained improvement on the hy-
perspectral images. For instance, the obtained improvement of
the proposed method using the white-patch algorithm on this
set of images is 11%, whereas the improvement on the hyper-
spectral data set is 9%. The results on the natural scenes are
shown in Table III(b). The performance of the proposed method
on these images considerably increases, even though this data
set consists of images with similar and dissimilar light sources.
Moreover, the proposed methodology outperforms the LSAC
and Retinex methods on the natural scenes [see Table III(b)].
On the images under laboratory settings, the proposed method-
ology using the gray world and the second-order gray edge out-
performs the LSAC and the Retinex. The pairwise comparisons
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Fig. 7. Examples of the real-world data set. (Upper row) The natural scenes and (bottom row) images captured in laboratory settings. Note that all experiments
are performed on linear images; gamma correction is applied only for improved visualization.

TABLE III
PERFORMANCE OF COLOR CONSTANCY ALGORITHMS FOR THE REAL-WORLD IMAGES. THE PERFORMANCE ON THE IMAGES UNDER LABORATORY SETTING ARE
SHOWN IN TABLE (A), AND THE PERFORMANCE ON THE NATURAL SCENES ARE SHOWN IN TABLE (B)

| Method | Median | Method | Median |

Do Nothing (DN) 18.7° Do Nothing (DN) 3.6°
Grey-World (GW) 12.8° Grey-World (GW) 8.9°
White-Patch (WP) 14.8° White-Patch (WP) 7.8°
general GW (GGW) 14.9° general GW (GGW) 8.9°
1%t-order GE (GE-1) 14.4° 1%t-order GE (GE-1) 6.4°
2nd_order GE (GE-2) 14.6° 2nd_order GE (GE-2) 5.0°
Exp. filter 13.2° Exp. filter 7.4°
LSAC Gauss. filter 12.9° LsAC Gauss. filter 7.4°
. (Impl. from [14]) | 13.0° . (Impl. from [14]) | 7.7°
Retinex | (1mpl. from [34]) | 14.1° Retinex | (1mpl. from [34]) | 7.6°

GW 11.7° (-9%) GW 6.4° (-28%)

Proposed: WP 13.2° (-11%) Proposed: WP 6.7° (-14%)

grid based | GGW 13.1° (-12%) grid based | GGW 7.0° (-21%)

sampling GE-1 13.4° (-7%) sampling GE-1 5.6° (-13%)

GE-2 12.3° (-16%) GE-2 5.1° (+2%)

(@)

between these methods are shown to be statistically significant
using the Wilcoxon sign test [31]. The methodology using the
remaining three methods (i.e., the white patch, the general gray
world, and the first-order gray edge) on the images under lab-
oratory settings resulted in performance that is on par with the
LSAC and the Retinex methods [see Table III(a)], again com-
puted using the Wilcoxon sign test on the pairwise comparisons.

Results on the natural scenes are interesting. Although the
proposed methodology using grid-based sampling outperforms
both global algorithms, as well as Retinex and LSAC, the best
performance is obtained by doing nothing. This remarkable fact
is explained by the small variation in the data set (consisting
of only nine images, recorded in small time frame). Hence,
for some images, the colors of the two light sources deviate
only marginally from white. However, for those images that do
strongly deviate from white (which is the case for four images),
the proposed methodology outperforms the “do nothing” ap-
proach (with average improvements of 4% to 9%).

Examples: Finally, some results are shown on several im-
ages captured from the web. Since these images come without
ground truth, the comparison between the algorithms can be
only done qualitatively. Fig. 8 shows results on three images.
Each of the original images, shown in Fig. 8(a), is influenced
by two different light sources. Fig. 8(b) and (c) are created by

(b)

applying global correction using either of the two (manually an-
notated) light sources. It can be observed that global correction
for these images is inappropriate: The mountain image, for in-
stance, corrected for the reddish sunlight results in an image that
contains shadow regions that are too blue. On the other hand,
when the shadow regions are correctly adjusted, then the sunlit
regions appear too red. A tradeoff is shown in Fig. 8(d), obtained
by applying the gray-world algorithm to the image. Fig. 8(e)
shows the result of applying local correction using the proposed
methodology. Although the color appearance of these images
could be question of debate, it can be observed that the effects
of the two different light sources are less visible in the images
in Fig. 8(e). For instance, the snow in the top (e) is corrected
to white, without overcorrecting the shadow region, as in (b).
Furthermore, the blue cast that appears in the middle row of (c)
and (d) is not visible in (e), whereas this does not come at the
cost of a yellow cast, as in (b). Aesthetically, one might prefer
other corrections, but this discussion is beyond the scope of this
article.

V. DISCUSSION

In this paper, a new methodology that can be used to apply
color constancy to images that are recorded in the presence
of multiple different light sources has been proposed. Most
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Fig. 8. Results of color constancy on some real-world images, taken from the web. (a) The original image. (b)—(c) The result of global correction with one of the
two illuminants that are present (manually approximated). (d) The result of global correction with the gray-world algorithm and (e) the result of local correction with
the proposed method (using gray world). Note that all experiments are performed on linear images; gamma correction is applied only for improved visualization.

existing algorithms are based on the assumption that the
spectral distribution of the light source is uniform across the
scene, but this assumption is often violated in reality. We
have shown that many existing methods can be locally applied
to image patches, rather than globally to the entire image.
Interestingly, grid-based sampling outperformed segmenta-
tion-based and key-point-based sampling. This observation
can be explained by the nature of the information that is
sampled. Segmentation-based sampling will generally result
in patches with similar colors (and, hence, less variation),
whereas key-point-based sampling increases the likelihood of
misclassifications (interest-point detectors usually trigger on
boundaries that could be also a light-source transition). As
a future work, texture-preserving segmentation methods can
be used to overcome the disadvantage of segmentation-based
sampling. Alternatively, other color constancy methods could
be used in combination with segmentation-based sampling that
are less sensitive to the limited variety of colors (for instance,
physics-based methods using the dichromatic reflection model
like [36]). One important parameter that needs to be taken into
account when implementing the grid-based sampling procedure
is the patch size. This parameter is closely related to the used
color constancy algorithm, as well as to the contents of the
image. Ideally, implementation should be combined with a
calibration procedure to find the appropriate patch size for the
used type of images and color constancy algorithm. Without
such calibration, it is best to estimate the patch size conserva-
tively (e.g., a patch size of approximately 2%—5% of the image
dimensions).

Experiments on spectral and real images show that the
proposed method properly reduces the influence of two light

sources present in one scene simultaneously. If the chromatic
difference between these two illuminants is more than 1 °, the
proposed method outperforms algorithms based on the uniform
light-source assumption (with an average error reduction of
roughly 10%—15%). Otherwise, when the chromatic difference
is less than 1 © and the scene can be considered to contain
one (approximately) uniform light source, the performance
of the proposed method is similar to existing methods. The
proposed methodology is able to improve existing algorithms
even without assumptions on the number of light sources by
applying mean-shift segmentation [35] on the back-projected
illuminant estimates. However, the performance of this segmen-
tation approach is less than the clustering-based approach as
clustering-based approaches have the advantage of additional
information on the number of light sources. An alternative to
the segmentation-based approach would be the automatic de-
tection of the number of light sources (and, hence, the number
of clusters). To this end, a dynamic clustering algorithm that
automatically determines the correct number of clusters could
be adapted. Alternatively, spatial relations between the image
patches could be taken into account by applying any segmen-
tation algorithm to the patchwise illuminant estimates. Both
approaches, however, come at the cost of additional parameters
to learn.

To conclude, the methodology in this paper has been shown
to be able to extend existing methods to more realistic scenarios
where the uniform light-source assumption is too restrictive. We
have shown that patch-based illuminant estimation can be as ac-
curate as global illuminant estimation when the light source is
(approximately) uniform. Furthermore, when there are two dis-
tinct light sources present in an image, the proposed method-
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ology is able to increase the performance of existing algorithms
considerably.
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