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Abstract—Existing color constancy methods are all based on specific assumptions such as the spatial and spectral characteristics of

images. As a consequence, no algorithm can be considered as universal. However, with the large variety of available methods, the

question is how to select the method that performs best for a specific image. To achieve selection and combining of color constancy

algorithms, in this paper natural image statistics are used to identify the most important characteristics of color images. Then, based on

these image characteristics, the proper color constancy algorithm (or best combination of algorithms) is selected for a specific image.

To capture the image characteristics, the Weibull parameterization (e.g., grain size and contrast) is used. It is shown that the Weibull

parameterization is related to the image attributes to which the used color constancy methods are sensitive. An MoG-classifier is used

to learn the correlation and weighting between the Weibull-parameters and the image attributes (number of edges, amount of texture,

and SNR). The output of the classifier is the selection of the best performing color constancy method for a certain image. Experimental

results show a large improvement over state-of-the-art single algorithms. On a data set consisting of more than 11,000 images, an

increase in color constancy performance up to 20 percent (median angular error) can be obtained compared to the best-performing

single algorithm. Further, it is shown that for certain scene categories, one specific color constancy algorithm can be used instead of

the classifier considering several algorithms.

Index Terms—Color constancy, illuminant estimation, natural image statistics, scene semantics, computer vision.

Ç

1 INTRODUCTION

DIFFERENCES in illumination cause measurements of object
colors to be biased toward the color of the light source.

Fortunately, humans have, to some extent, the ability of
color constancy: They perceive the same color of an object
despite large differences in illumination [1], [2]. Various
computer vision-related topics like human-computer inter-
action [3], color feature extraction [4], [5], and color
appearance models [6] would benefit from a similar ability.

Many computational color constancy algorithms have
been proposed, see [7], [8] for recent overviews. In general,
color constancy algorithms can be divided into two groups.
The first group consists of algorithms based on low-level
image features that can be directly applied to images. One
of the first color constancy methods is based on the Retinex-
theory by Land and McCann [9]. Examples of algorithms
which are derived from this theory include the White-Patch
algorithm [10], the Gray-World algorithm [11], and more
recently, the Shades-of-Gray algorithm [12] and the Gray-
Edge algorithm [13].

The second group consists of algorithms that use
information acquired in a learning phase to obtain knowl-
edge about the images, like possible light sources and the
distribution of possible reflectance colors to be present in
natural scenes. This information is then used to estimate the

illuminant. One of the first algorithms of this type is the
gamut mapping algorithm by Forsyth [14]. This algorithm is
based on the assumption that in real-world images, for a
given illuminant, only a limited number of colors can
be observed. Using this assumption, the illuminant can be
estimated by comparing the distribution of colors in the
current image to a prelearned distribution of colors (called
the canonical gamut). Many algorithms have been derived
from the original algorithm including Color-by-Correlation
[15], the Gamut-constrained illuminant estimation [16], and
derivative-based gamut mapping [17]. Other approaches
that use a learning phase include probabilistic methods [18],
[19] and methods based on genetic algorithms [20].

Because the color constancy problem is an undercon-
strained problem (see, for example, [14], [15], [8]), all of the
above color constancy methods are based on specific
assumptions. These assumptions include constrained ga-
muts (limited number of image colors which can be observed
under a specific illuminant) and the distribution of colors
that are present in an image (e.g., white patch, gray-world,
gray-edge, etc.). As a consequence of the use of different
assumptions, no color constancy algorithm can be consid-
ered as universal. With the large variety of available
methods, the problem is how to select the method that is
most suitable for different image settings and scenes.
Furthermore, the subsequent question is how to combine
the different algorithms in a proper way.

Little research has been published on the selection and
fusion of color constancy methods. In [21], fusion is
performed by a weighted average of several methods.
More recently, a statistics-based method is combined with a
physics-based method [22]. Both methods are based on
weighting the output of the used color constancy algo-
rithms, where the weights are optimized for a specific data
set. However, the combination of the algorithms used still
depends on the type of images being processed.
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Therefore, in this paper, the most appropriate color
constancy algorithm for an image is selected based on the
statistical contents of this image. For instance, even though
edge-based color constancy algorithms are, on average,
preferred over pixel-based color constancy algorithms
[13], [17], this does not imply that edge-based color
constancy algorithms are the best methods for all images.
If only a few edges are present in an image, i.e., edge-based
methods only have a little information to work with, then it
is likely that pixel-based methods will perform better. To
this end, the Weibull parameterization is used to express
these image characteristics in terms of grain size (texture)
and contrast. Then, based on these image characteristics, the
proper color constancy algorithm (or best combination of
algorithms) is selected for a specific image. As Weibull
distributions are derived from higher order image statistics
(i.e., image derivatives), the choice of a proper set of
different color constancy methods should support this. To
this end, the color constancy framework proposed by [13] is
used. This framework incorporates higher order statistics
(e.g., first and second-order derivatives). Further, it allows
us to generate different color constancy algorithms in a
systematic way.

This paper is organized as follows: First, in Section 2,
color constancy based on low-level image features is
discussed. In Section 3, the concepts of natural image
statistics and scene semantics are provided. In Section 4,
several approaches are given to combine the different color
constancy algorithms, and in Section 5, the methods are
evaluated on a large data set containing over 11,000 images.
Finally, in Section 6, the results and contributions of the
paper are discussed in more detail.

2 COLOR CONSTANCY

In this paper, color constancy is defined as correcting an
image that was taken under an unknown light source so
that it appears to be taken under a canonical (often white)
light source. This is computed by first estimating the color
of the light source, followed by a transformation of the
original image (e.g., [8]). To model this process, in
Section 2.1, the image formation model is considered first.
Then, in Section 2.2, several algorithms to estimate the color
of the light source are presented. Finally, in Section 2.3, the
model to transform images from one light source to another
is discussed.

2.1 Reflection Model

The image values f ¼ ðf
R
; f

G
; f

B
ÞT for a Lambertian surface

depend on the color of the light source Ið�Þ, the surface
reflectance Sðx; �Þ, and the camera sensitivity function
����ð�Þ ¼ ð�

R
ð�Þ; �

G
ð�Þ; �

B
ð�ÞÞT , where � is the wavelength of

the light and x is the spatial coordinate (e.g., [8], [14], [15]):

fcðxÞ ¼ mðxÞ
Z
!

Ið�Þ�cð�ÞSðx; �Þd�; ð1Þ

where ! is the visible spectrum,mðxÞ is Lambertian shading,
and c ¼ fR;G;Bg. It is assumed that the scene is illuminated
by one light source and the observed color of the light
source e depends on the color of the light source Ið�Þ as well
as the camera sensitivity function ����ð�Þ:

e ¼
e
R

e
G

e
B

0
@

1
A ¼

Z
!

Ið�Þ����ð�Þd�: ð2Þ

Color constancy can be achieved by estimating the color of
the light source e, given the image values of f , followed by a
transformation of the original image values using this
illuminant estimate. This transformation will leave the
intensity of every pixel unaltered as the proposed method
will only correct for the chromaticity of the light source.
More information on this transformation can be found in
Section 2.3. Since both Ið�Þ and ����ð�Þ are, in general,
unknown, the estimation of e is an underconstrained
problem that cannot be solved without further assumptions.
Therefore, in practice, color constancy algorithms are based
on simplifying assumptions such as restricted gamuts
(limited number of image colors which can be observed
under a specific illuminant), the distribution of colors that
are present in an image (e.g., white patch, gray-world, etc.),
and the set of possible light sources. In this paper, the focus
is on the distribution of colors that are present in an image
as the major assumption. In the next section, a framework is
discussed generating different color constancy methods,
where each method is based on a specific assumption about
the presence of colors and color edges in images.

2.2 Illuminant Estimation

Two well-established color constancy algorithms, using
pixel values, are based on the Retinex Theory proposed by
Land and McCann [9]. The White-Patch algorithm [10] is
based on the White-Patch assumption, i.e., the assumption
that the maximum response in the RGB-channels is caused by a
white patch. The Gray-World algorithm [11] is based on the
Gray-World assumption, i.e., the average reflectance in a scene
under a neutral light source is achromatic. In [12], these two
algorithms are proven to be important instantiations of the
Minkowski-norm:

LcðpÞ ¼
Z
fpc ðxÞdx

� �1
p

¼ kec; ð3Þ

where c ¼ fR;G;Bg and k is a multiplicative constant
chosen such that the illuminant color, e ¼ ðe

R
; e

G
; e

B
ÞT , has

unit length. When p ¼ 1 is substituted, (3) is equivalent to
computing the average of fðxÞ, i.e., LLLLð1Þ ¼ ðL

R
ð1Þ;L

G
ð1Þ;

L
B
ð1ÞÞT equals the Gray-World algorithm. When p ¼ 1, (3)

results in computing the maximum of fðxÞ, i.e., LLLLð1Þ
equals the White-Patch algorithm. In general, to arrive at a
proper value, p is tuned for the data set at hand. Hence, the
value of this parameter may vary for different data sets.

The assumptions of the above color constancy methods
are based on the distribution of colors (i.e., pixel values) that
are present in an image. The incorporation of higher order
image statistics (in the form of image derivatives) is
proposed in [13], where a framework is presented that
incorporates the well-known methods like (3), as well as
methods based on first and second-order statistics:

Z
@nfc;�ðxÞ
@xn

����
����
p

dx

� �1
p

¼ ken;p;�c ; ð4Þ

where j � j indicates the Frobenius norm, c ¼ fR;G;Bg, n is
the order of the derivative, and p is the Minkowski-norm.
Further, the derivative is defined as the convolution of the
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image with the derivative of a Gaussian filter with scale
parameter � [23]:

@sþtfc;�
@xs@yt

¼ fc �
@sþtG�

@xs@yt
; ð5Þ

where � denotes the convolution and sþ t ¼ n.
Using (4), many different color constancy algorithms can

be generated. For instance, algorithms based on zeroth-
order statistics like Gray-World, White-Patch, and general
Gray-World can be generated by substituting n ¼ 0:

1. e0;1;0 (� LLLLð1Þ) is equivalent to the Gray-World
algorithm,

2. e0;1;0 (� LLLLð1Þ) is equivalent to the White-Patch
algorithm, and

3. e0;p;� is called the general Gray-World algorithm,
where the values for p and � are dependent on the
type of images that are in the data set. In [13], it is
shown that for real-world images, p ¼ 13 and � ¼ 2
are found to produce proper results for a real-world
data set, i.e., e0;13;2.

Equation (4) extends these instantiations to higher order
statistics. For instance, when taking the first-order or
second-order derivative, the values for the Minkowski-
norm and the smoothing parameter are used to produce
different algorithms:

4. e1;p;� is the first-order Gray-Edge. The basic assump-
tion here is that the average edge (i.e., derivative) is
gray. The Minkowski-norm p and the smoothing
parameter � are dependent on the images in the data
set. In [13], p ¼ 1 and � ¼ 6 provide good results on
real-world data, i.e., e1;1;6.

5. e2;p;� is the second-order Gray-Edge. The basic
assumption here is that the average second-order
derivative is gray. Again, the Minkowski-norm p
and smoothing parameter � depend on the data set
used, where for a real-world data set, p ¼ 1 and � ¼
5 provide good results [13], i.e., e2;1;5.

In conclusion, a wide variety of color constancy algorithms
are obtained, corresponding to different instantiations of
(4), where each color constancy method has its own basic
assumption about the distribution of color values and edges
in the image.

2.3 Diagonal Model

The focus of this paper is on estimating the color of the light
source. However, in many cases, the color of the light source is
of less importance than the appearance of the input image
under a reference light (called the canonical light source).
Therefore, the aim of most of the color constancy methods is to
transform all colors of the input image, taken under an
unknown light source, to colors as they appear under this
canonical light source. This transformation can be considered
to be an instantiation of chromatic adaptation, e.g., [6].
Chromatic adaptation is often modeled using a linear
transformation, which, in turn, can be simplified to a diagonal
transformation when certain conditions are met [24], [25],
[26]. Other possible chromatic adaptation methods include
linearized Bradford [27] and CIECAM02 [28].

In this paper, the diagonal transform or von Kries Model
[29] is used, without changing the color basis [30] or
applying spectral sharpening [25]. These latter techniques

are shown to be able to improve the quality of the output
image with respect to the diagonal model, i.e., if the color of
the light source is known, then these modified algorithms
result in more realistic images than the diagonal model. For
simplicity, these steps are omitted in this paper, so the
diagonal model that is used is given by

f t ¼ Du;tfu; ð6Þ

where fu is the image taken under an unknown light source,
f t is the same image transformed so it appears as if it was
taken under the canonical illuminant, and Du;t is a diagonal
matrix which maps colors that are taken under an unknown
light source u to their corresponding colors under the
canonical illuminant c:

Rc

Gc

Bc

0
@

1
A ¼ d1 0 0

0 d2 0
0 0 d3

0
@

1
A Ru

Gu

Bu

0
@

1
A: ð7Þ

Even though this model is merely an approximation of
illuminant change and might not be accurately able to model
photometric changes due to disturbing effects like highlights
and interreflections, it is widely accepted as color correction
model [24], [25], [26] and underpins many color constancy
algorithms (e.g., the gamut mapping [14] and the used
framework of methods [13]). The diagonal mapping is used
throughout this paper to create output images after correc-
tion by a color constancy algorithm, where a perfect white
light, i.e., ð 1ffiffi

3
p ; 1ffiffi

3
p ; 1ffiffi

3
p ÞT , is used as the canonical illuminant.

3 NATURAL IMAGE STATISTICS AND SCENE

SEMANTICS

All methods that comprise the used color constancy frame-
work [13] are based on assumptions on the distribution of
colors (edges) that are present in an image. For instance, the
Gray-World algorithm assumes that the average color in a
scene taken under a neutral light source is achromatic, while
the Gray-Edge algorithm assumes that the average edge is
achromatic. It has also been shown that the incorporation of
spatial dependencies between colors (e.g., edges) produces
more constrained gamuts improving the accuracy of color
constancy in general [17]. This means that the set of possible
adjacent color values (i.e., color edges) in real-world images
is more restricted than the set of possible pixel values. Hence,
the use of local spatial information will provide more stable
gamuts than pixel values to compute color constancy.
Furthermore, a higher accuracy is obtained when there are
a large variety of edges in a scene [17]. The same observation
is valid for the Gray-World algorithm in terms of the number
of different surfaces, e.g., [32], [33].

Hence, color constancy methods are largely dependent
on the distribution of colors and color edges in an image. In
the next section, image statistics are used to describe these
distributions.

3.1 Spatial Image Structures

Image structures are valuable identification cues in deter-
mining which type of scene the image is taken from. In [34],
the authors show that the power spectrum (distribution of
edge responses) of an image is characteristic for the type
of scene. Further, in [35], it is shown that this distribution of
edge responses can be modeled by a Weibull distribution.
In the context of scene classification, features derived from
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the power spectrum and Weibull distributions have been
successfully applied [36], [35], [37]. In this paper, we focus
on modeling natural image statistics using the two parameter
integrated Weibull distribution [35]:

wðxÞ ¼ C exp � 1

�

x

�

����
����
�� �
; ð8Þ

where x is the edge responses in a single-color channel to
the Gaussian derivative filter, C is a normalization constant,
� > 0 is the scale parameter of the distribution, and � > 0 is
the shape parameter. The parameters of this distribution are
indicative for the edge statistics of an (natural) image. In
fact, the contrast of the image is indicated by � (i.e., the
width of the distribution) and the grain size by � (i.e., the
peakedness of the distribution). Hence, a higher value for �
indicates more contrast, while a higher value for � indicates
a smaller grain size (more fine textures).

To fit the Weibull distribution, edge responses are
computed by a Gaussian derivative filter. There exists a high
correlation between the Weibull parameters that are fitted
through the distribution of edges for the first derivative,
second derivative, and third derivative. Hence, a single filter
type, although measured in different orientations, is suffi-
cient to assess the spatial statistics of images [35].

In Fig. 1, examples are shown of images with their
corresponding edge distributions which are approximated
by a Weibull-fit. The intensity channel is chosen for the
ease of illustration because a six-dimensional edge dis-
tribution (i.e., � and � for each R, G, and B channel) is hard
to visualize. The edge distributions and corresponding
Weibull-fits computed for separate color channels show
similar plots. The images are examples on which the
different color constancy algorithms using the correspond-
ing type of information (i.e., pixel values, edges, or second-
order transitions) performs best (based on the angular error
that is explained in Section 5).

The relationship between the images in Fig. 1 and their
corresponding color constancy algorithm becomes clear from
the edge distributions that are shown together with the
images in Fig. 1. Pixel-based algorithms (i.e., zeroth order)
perform better than higher order methods (i.e., first and
second order) on images with only little texture. This reflects
in an edge distribution that densely sampled around the
origin, i.e., many edges with little or zero energy. Higher
order methods require more edge information for an accurate
illuminant estimate, which is reflected in an edge distribution
that is less sharply peaked. At this stage, it is important to note
the semantic similarity between images that correspond to
the same type of color constancy algorithms. For instance,
forest-like scenes show a similar edge distribution in Fig. 1b
and are all best solved by a first-order color constancy
algorithm. Hence, scene semantics can steer the process of
color constancy. Natural image statistics and scene semantics
will therefore be used in the next sections to achieve a proper
selection of color constancy algorithms.

4 COMBINATION OF ILLUMINANT ESTIMATION

METHODS

In this section, a novel strategy is proposed based on
natural image statistics to select the color constancy method
which performs best for a specific image. To combine and
compare different fusion strategies, in Section 4.1, a basic
approach is discussed based on using the output of multiple

algorithms. Then, in Section 4.2, natural image statistics are
used to identify the most important characteristics of color
images. Based on these image characteristics, the proper
color constancy algorithm is selected for a specific image.
Finally, scene semantics are used to find a category-specific
combination of color constancy algorithms.

4.1 Color Constancy Using Standard Fusion

When using the output of multiple algorithms to generate a
new estimate of the illuminant, the simplest method is to
take the average of the estimates over all algorithms. A
straightforward extension is to take the weighted average of
the estimated illuminants. If n algorithms are combined,
then the weighted average is defined as

e ¼
Xn
i¼1

wiei; ð9Þ

where
Pn

i¼1 wi ¼ 1. The average is just a special instance of
the weighted average: w1 ¼ w2 ¼ � � � ¼ wn. The estimates
can also be combined using a nonlinear committee.
However, in [21], it is shown that a nonlinear neural
network did not produce better results than the weighted
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Fig. 1. Examples of images that can be considered to be characteristic of
the corresponding color constancy algorithms, i.e., the corresponding
color constancy algorithm will perform best on these types of images.
Below each image, the distribution of edges in the intensity channel is
plotted. The images come from the data set published in [31]. (a) Zeroth-
order method. (b) First-order method. (c) Second-order method.



average. In fact, the weighted average outperformed a
multilayer Perceptron neural network.

In [22], two algorithms (one statistics-based and one
physics-based algorithm) were combined using a similar
approach. However, the output of the two used algorithms
are somewhat different than the output of a general color
constancy algorithm. Both methods produce a vector of
probabilities, where each element represents the probability
that the corresponding illuminant is the illuminant that was
used to create the current image. In the combination phase,
the weighted average of these two vectors is determined,
after which the illuminant with the highest probability is
selected to be correct. Since this method requires the output
of the color constancy algorithms to comply to a specific
(irregular) form, this approach is not further evaluated here.

4.2 Color Constancy Using Natural Image Statistics

In Section 3, the Weibull distribution is considered as the
parameterization of the edge distribution of images. Several
characteristics, like the number of edges and the amount of
texture and contrast, are captured by this parameterization,
i.e., � and �. In this section, it is proposed to select different
color constancy methods based on these statistics. In previous
work [39], it is shown that applying the k-means clustering on
the Weibull-features, combined with a Gaussian weighting
function, provides proper color constancy. In this paper, the
k-means approach is generalized to a probabilistic approach,
corresponding to a maximum likelihood classifier based on
mixture of Gaussians (MoGs). This provides a more
principled and probabilistic basis than k-means to relate
natural image statistics with color constancy.

This novel algorithm aims at combining the estimates of
several color constancy algorithms into a single more
accurate estimate. To be precise, letM be the set of algorithms
that are to be combined, where Mi denotes algorithm i.
Further, the accuracy of the estimate of algorithm i on image j
(i.e., the performance of algorithm i on image j) is denoted by
�iðjÞ. The algorithm consists of the following steps:

. First, the image statistics ! 2 IRp�q for all images are
computed, where p is the number of features that are
computed and q is the number of images, i.e., !ij is
the ith feature of the jth image. For simplicity, the
subscript i is omitted, so !j denotes the feature vector
representing the image statistics of the jth image.

. Then, all images that are in the training set are
labeled. The label yj of an image j is derived using
the performance of the algorithms on image j:

yj ¼ arg min
i
f�iðjÞg: ð10Þ

. Apply the MoG-classifier [40] on the training data.
The likelihood of the observed image statistics !j for
image j given color constancy algorithm yj is
computed as a weighted sum of k Gaussian
distributions:

pð!jjyjÞ ¼
Xk
m¼1

�mGð!j; 	m;�mÞ: ð11Þ

Here, �m are the positive weights of the Gaussian
components (with mean and variance defined as 	m
and �m, respectively) such that

Pk
m¼1 �m ¼ 1. The

parameters of the model are learned through training
using the Expectation-Maximization algorithm.

. Apply the learned MoG-classifier on the test data
and assign to the current image j the algorithm that
maximized the posterior probability.

Weibull-parameters can be computed for each R, G, and
B channel separately. However, these color channels are
highly correlated [41]. Therefore, the image is first trans-
formed to a decorrelated color space before computing these
parameters. To this end, the opponent color space is used:

O1 ¼
R�Gffiffiffi

2
p ; ð12Þ

O2 ¼
RþG� 2Bffiffiffi

6
p ; ð13Þ

O3 ¼
RþGþBffiffiffi

3
p : ð14Þ

The selection of the most appropriate color constancy
algorithm for the current image is done by computing the
maximum posterior probability of the classifier. The
corresponding color constancy algorithm is selected for
the current image. The other algorithms are ignored.

In Fig. 2, an example of the output of the algorithm is
shown. For this example, the Weibull-features representing
the amount of texture and contrast (i.e., � and �,
respectively) that are computed using the gradient of the
intensity channel are used, along with three different color
constancy algorithms: a zeroth-order algorithm (e0;1;0), a
first-order algorithm (e1;1;1), and a second-order algorithm
(e2;2;1). Again, intensity (i.e., O3) is used for ease of
illustration (instead of the six-dimensional space, i.e., �
and � for O1, O2, and O3). Note that the final classifier is
computed based on the complete six-dimensional feature
space. In this figure, the different color constancy methods
that are assigned to the images are visualized by different
colors. It can be observed that images on which a certain
algorithm generally performs well are grouped together.

4.3 Color Constancy Using Scene Semantics

Natural image statistics are known to provide identification
cues for the classification of different types of scenes like
forest, coast, and street [34]. Further, in [42], it is shown that
using high-level visual information in the form of class-
specific information improves the accuracy of the estimated
illuminant. Van de Weijer et al. [42] assume that an image
can be modeled as a mixture of semantic classes. The
information on the different classes that are present in an
image is used to estimate the color of the light source. In this
section, we aim at using scene semantics to find a category-
specific combination of color constancy algorithms that
optimize the performance of the illuminant estimation.

Before discussing the category-specific combination
method, the selection of the most appropriate color
constancy algorithm based on scene semantics is examined
first. In [38], a data set is provided consisting of eight urban
and natural scene categories (e.g., Coast & Beach, Open
country, Forest, Mountain, Highway, Street, City center,
and Tall building). The corresponding Weibull-parameters
of the images of a selection of these categories are shown in
Fig. 3, along with the Weibull-parameters of the images that
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are derived from the real-world data set [31]. It can be

observed that images from the same category have similar

edge distributions, resulting in similar Weibull-parameters.
Some categories have a larger variance in edge distribu-

tion than others. For instance, most of the images of the

category Highway have a low value for � and a low value for

�, indicating a low contrast and few edges. Images of the

category Mountain, on the other hand, generally have a

large variance. However, even for this category, it can be

observed that most images have higher values for � and �,

indicating higher contrast and more edges.
From these observations, a supervised selection of a

color constancy algorithm for images from all scene

categories can be achieved. By classifying an input image

as one of these image categories (either supervised by user

intervention or unsupervised by a scene recognition system

like [36], [37], [43]), the corresponding color constancy

algorithm can be applied to the image to obtain a
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Fig. 3. Scatter plots of the Weibull-parameters based on O3 derived from images coming from several categories (defined in [38]), overlayed on the
Weibull-parameters of the images that are in the real-world set [31]. From this plot, it can be seen that images from the same scene category have
similar Weibull-parameters.

Fig. 2. A scatter plot of the � and � of the gradient in the O3-channel. Each point represents the Weibull-parameters of one image. The parameters of
more than 11,000 images (the real-world set by Ciurea and Funt [31]) are plotted. The differently colored parts in the graphs represent clusters of
images that are best solvable by a single-color constancy algorithm. The images are merely used as illustration and are taken from [38].



performance that is similar to the proposed automatic
selection algorithm.

5 EXPERIMENTS

In this section, the proposed method is evaluated and
compared to state-of-the-art methods on large-scale data
sets. First, the data sets that are used for training and testing
are introduced in Section 5.1 and the performance measure
is discussed in Section 5.2. In Section 5.3, the performance of
several state-of-the-art algorithms on a large-scale data set is
shown, and in Sections 5.4 and 5.5, the performance of the
standard and the proposed fusion algorithms is discussed
and analyzed. Finally, in Section 5.6, experiments are
performed using scene semantics.

5.1 Data Set

A training data set is created based on spectral reflectance
data presented in [44]. This data set originally comprises
only surface and illuminant spectra, which are first
combined into ðR;G;BÞ-values. Then, using these gener-
ated pixel colors, several Mondrian-like images are created
which all have different properties in the number of edges
and the amount of texture and contrast. Since only material
surfaces are present in the original data set, shadow
gradients are added to several images to enlarge their
photometrical variety. Note that the resulting images
contain up to tens of different surfaces, and hence, many
different transitions, simulating the statistics of real-world
images as close as possible. A few examples are shown in
Fig. 4a. This data set will be called the Mondrian data set in
the remainder of the paper and will be made available
together with the source-code of the proposed algorithm
(http://www.colorconstancy.com).

As a second set, the color constancy data set of Ciurea
and Funt [31] is used. In this data set, over 11,000 images are
present, extracted from 2 hours of video recorded under a
large variety of imaging conditions (including indoor,
outdoor, desert, cityscape, and other settings). In total, the
images are divided into 15 different clips taken at different
locations. Some example images are shown in Fig. 4b and
some example results of various algorithms applied to the
images in this data set are shown in Fig. 7. The data set
provides the ground truth of the color of the illuminant.

This ground truth is acquired by making use of the small
gray sphere in the bottom right corner of the images. Note
that this gray sphere is omitted while estimating the
illuminant in the experiment. Further, since some of the
images in this set are rather correlated due to the nature of
the set, we make sure that, if applicable, this correlation is
taken into account when separating the data set, e.g., for
training purposes. Hence, in this way, images, or similar
images, that are used for testing a method do not appear in
the training set.

One of the basic assumptions in machine learning is that
the distribution of the test data should be similar to the
distribution of the training data. Hence, the variety of images
used for training the algorithm should be similar to the
variety of the images that are used to test it. To this end, we
propose two different experiments. The first experiment
consists of a training phase using the Mondrian-like images
shown in Fig. 4a and a test phase using the real-world data
shown in Fig. 4b. In this way, the date sets for training and
testing are completely different. This scenario reflects the
case when little information on the data set (used for testing
the method) is known. The second experiment is based on
cross validation: The data will be divided into 15 parts,
where we make sure that correlated images are grouped in
the same part. This means that images that are taken from
the same video shot are not separated. Next, the method is
trained on 14 parts of the data and tested on the remaining
part. This procedure is repeated 15 times, so every images
are in the test set exactly once and all images from one shot
will either be in the training set or in the test set.

5.2 Performance Measure

For all images in the data set, the correct color of the light
source el is known a priori. To measure how close the
estimated illuminant resembles the true color of the light
source, the angular error � is used:

� ¼ cos�1 el � ee
kelk � keek

� �
; ð15Þ

where el � ee is the dot product of the two vectors represent-
ing the true color of the light source el and the estimated color
of the light source ee and k � k indicates the euclidean norm.
To measure the performance of an algorithm on a data set,
the median angular error is reported as summarizing
statistic, as this is considered to be the most appropriate
measure [33], [45].

5.3 Color Constancy Algorithms

In Table 1, the results for several (state-of-the-art) algo-
rithms are shown for the real-world data set of Ciurea and
Funt [31]. Results of the Gray-World algorithm are compar-
able to not applying any method at all (i.e., the estimate of
the illuminant is set to white), while the White-Patch
performs slightly better. Instantiations of the framework
that have been previously reported as best-performing on
real-world data [13] are also tested on the same data set. The
results for e0;13;2, e1;1;6, and e2;1;5 are shown in Table 1 and
the three instantiations have similar performance on this
data set, outperforming the Gray-World and the White-
Patch algorithms. However, choosing a more appropriate
set of parameters can significantly improve the results
(denoted by “Best . . . ” in Table 1). Further, the performance
of these more carefully selected parameters confirms the
findings of van de Weijer et al. [13], where it is concluded
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Fig. 4. Examples of images that are in the two data sets that are used in
this paper. The first data set consists of images that are generated using
surface reflectance spectra combined with illuminant spectra. The
second data set consists of real-world images [31]. (a) Mondrian
images. (b) Real-world images.



that the first-order Gray-Edge algorithm outperforms other
algorithms on the real-world data. Note, however, the
difference in performance between the two parameter
settings, while both settings are found to be optimal for a
certain data set. The fact that, for this data set, a different
optimal parameter setting exists than for the data sets used
in [13] confirms the need for an algorithm to dynamically
tune the parameters for the different instantiations.

For the experiments based on gamut mapping, the same
implementation as in [32], [46] is used.1 The software
provides an option to apply segmentation as a preprocessing
step, and several different parameter settings are tested (the
reported results are computed by using the best parameter
settings obtained for data set used). Further, experiments
using two different canonical gamuts are performed. The first
experiment uses a canonical gamut that is constructed using a
large Mondrian data set [44], and the second experiment uses
a canonical gamut that is constructed on real-world data.

To avoid overfitting by learning on the test set, for the
second experiment, the same setup is used that was
described earlier as cross validation. The data set is
divided into 15 parts, keeping all images that are extracted
from the same clip together. The canonical gamut is
constructed on 14 parts, and the remaining part of the data
is used for testing. This procedure is repeated 15 times,
excluding each scene exactly once from the training data to
use it as test data.

As expected, the best results are obtained when using the
real-world data to construct the canonical gamut. When
using the Mondrian data to calibrate the canonical gamut,
the median angular error is 5.5 degrees. This is close to the
performance of the White-Patch algorithm. However, by
learning the canonical gamut from the real-world data, the
error drops to a respectable 4.8 degrees. However, the best-
performing algorithm remains the first-order Gray-Edge.
Note that the performance of the gamut mapping too is
obtained by optimizing the segmentation parameters that
can be set using the gamut software provided by [32], [46],
and hence, the performance is considered to be best-case.

In Fig. 5, the angular errors of all the methods are shown,
together with error bars indicating a confidence interval of
95 percent. These error bars are obtained using resampling:

Let �A be the set of error measurements for a methodA on all
images of the data set. By taking n bootstrap samples (i.e.,
samples drawn at random with replacement) from this set of
measurements, n sets of error measurements are obtained.
For every set of error measurements �Ai , the mean and
median can be computed, resulting in n values for the mean
and n values for the median (i.e., distributions for the mean
and median). Finally, a p percent confidence interval is
obtained from the p=2 and 1� p=2 quantiles of these
distributions [33].

5.4 Color Constancy Using Standard Fusion

To evaluate the different combination strategies, the
algorithms of [13] are used as instantiations of combination
methods, as described in Section 4. Therefore, the best-
performing instantiation is used as a baseline to compare
the algorithms with.

A simple average of the output results does not seem to
improve the results as compared to the baseline algorithm
(see Table 2): The median angular error is slightly worse.
Using a weighted average instead of a simple average levels
the median angular error with the best-performing single
algorithm. The main advantage of this fusion method is that
there are less outliers. This results in a slightly better mean
angular error (5.5 over 5.7 degrees).

694 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 33, NO. 4, APRIL 2011

TABLE 1
Median Angular Errors for Several (Single) Algorithms

on the Complete Data Set of 11,346 Images

Fig. 5. Median angular errors for all the methods plotted with a 95 percent
confidence interval.

1. http://kobus.ca/research/programs/colour_constancy.

TABLE 2
The Performance of Several Different Methods

to Combine the Output of Single-Color Constancy Methods

The color constancy methods used include one zeroth-order method
(General Gray-World e0;5;1), one first-order method (Gray-Edge e1;1;2),
and one second-order method (second-order Gray-Edge e2;1;1). The
entry NIS-Mondrian denotes the proposed algorithm trained on the
independent Mondrian data set and tested on the real-world data set,
and the entry NIS real world denotes the proposed algorithm evaluated
using cross validation on the real-world data set.



5.5 Color Constancy Using Natural Image Statistics

The proposed fusion algorithm, learned on the Mondrian
data set and tested on the real-world data set (denoted by
NIS in Table 2), performs significantly better than the
baseline and the weighted average: An improvement of the
median angular error of nearly 10 percent is obtained. In
fact, in this experiment, test data are unknown and
correspond to the most generic approach of the proposed
method. No learning step is required for a new data set
since the resulting classifier is independent of the test data.

Results of the second experiment, denoted by NIS cross
validation in Table 2, correspond to the situation where the
circumstances under which the system is used are known a
priori. Training is done using part of the real-world data,
and testing is done using an independent part, where
images that are similar are either in the training set or in the
test set. Hence, no similarities exist between the training
data and test data. Results show a significant improvement
over the first case (with no a priori knowledge): The median
angular error drops to 3.7 degrees, an improvement of nearly
20 percent over the baseline method. In this experiment, test
data are known, making the proposed method less generic.
Hence, a learning step is required for each new data set.

The proposed algorithm requires data with enough
variety to train the method. However, from the experi-
ments, it can be concluded that the proposed method can be
trained using a completely independent training set, and
still perform significantly better than the baseline algorithm.
Also, note that this baseline algorithm is the best-case
performance of the single methods since it was manually
selected among the single algorithms as the color constancy
method with the highest performance on the current data
set. Still, the worst-case performance of the proposed
method (NIS-Mondrian in Table 2) is significantly higher.

SNR performance analysis. In order to analyze the signal-
to-noise sensitivities of pixel-based, edge-based, and higher
order statistics-based methods, the following experiment is
conducted: A Mondrian-like image is created using eight
patches with different colors, keeping the difference between
two consecutive colors fixed. After that, an illuminant is
selected at random from the set of light sources proposed by
Barnard et al. [44]. Based on the diagonal model, this
illuminant is used to transform the image so that it appears
to be taken under a different light source. Finally, the three-
color constancy algorithms are used to estimate the
illuminant and the performance of these algorithms is
evaluated with respect to the signal-to-noise ratio (SNR).
The signal-to-noise ratio is defined by the average difference
between two consecutive patches ai and aj:

SNR ¼ ai � aj
�noise

; ð16Þ

where �noise is kept fixed.
In Fig. 6, the sensitivities of the zeroth-order, the first-

order, and the second-order algorithm (i.e., White-Patch,
first-order Gray-Edge, and second-order Gray-Edge, respec-
tively) are shown with respect to the SNR. As expected, it can
be derived that for a higher signal-to-noise ratio, on average,
the accuracy of all algorithms is improved. However, it is
also shown that the performance of the pixel-based method
degrades less than edge-based and higher order statistics-
based methods when the SNR decreases. For higher values
of the SNR, the first and second-order Gray-Edge algorithms
outperform the pixel-based method; the performance of the

three algorithms converge when the SNR reaches very high
values.

To conclude, the Gray-Edge algorithms (first and second
order) provide better performance than the pixel-based one,
but they need a medium to high SNR. Pixel-based methods
obtain better performance for a low SNR. In other words,
edge-based is preferred when the image contains a reason-
able number of (sufficiently) contrasted edges. Otherwise,
pixel-based color constancy is preferred. This principle is
reflected by the Weibull-distribution parameters contrast �
and grain size �, and forms the basis of the proposed
algorithm. The MoG classifier learns the correlation
between these parameters.

5.6 Color Constancy Using Scene Semantics

Color constancy using scene semantics is evaluated on the
real-world data set as follows: Images from the real-world
data set are annotated to obtain images that can be classified
as coming from the same scene category. In total, 75 images
from five clips of the complete data set (15 images per
category) are annotated as open country and 70 images from
seven clips (10 per category) as street, indoor, and forest.
During annotation, the selected images are different enough
to avoid the overfitting problem. The performance of the
proposed method using scene semantics is compared to the
combination method using natural image statistics.

In Table 3, the results are shown. In this table, scene
semantics refers to applying a one-color constancy algorithm
to all images of a specific scene category. This one-color
constancy algorithm is selected in a supervised manner,
based on the Weibull-parameters of images from that scene
category. It can be observed that for some categories, the
performance is similar to the method using natural image
statistics, even though only one-color constancy method is
applied to all images of the same scene category.

6 DISCUSSION

Natural image statistics are indicative for the performance
of the different color constancy algorithms. For instance, the
Gray-Edge algorithm performs better on images with a
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Fig. 6. Experiment monitoring the sensitivity of the different color
constancy algorithms to the signal-to-noise ratio. It can be derived that
all methods perform better as the SNR increases. Further, first-order
and second-order Gray Edges have a higher error than the zeroth-order
method for low signal-to-noise ratios, but a lower error for higher signal-
to-noise ratios.



reasonable number of edges than on images with only a few
edges. Moreover, if the contrast of these edges is rather low,
then the accuracy of the estimate, in general, will decrease.
The effect of the SNR is analyzed in Section 5.5. From this
analysis, it is derived that if the SNR is high, then it is
beneficial to use methods based on higher order statistics.
However, the performance of such methods decreases as
the SNR decreases, resulting in a preference for methods
based on first-order statistics for images with a medium
SNR. For a very low SNR (i.e., no edge information), pixel-
based methods are preferred.

This principle is also reflected in the resulting classifier
that is learned on the Mondrian data set. From the analysis of
this classifier, it is observed that the method based on
second-order statistics is preferred, provided that there is
enough information to give an accurate estimate. This means
that the distribution of the second-order statistics is balanced
and not easily biased toward noisy measurements. Since the
available information of second-order statistics decreases
rapidly, depending on the content of an image, the
performance of color constancy methods based on second-
order statistics decreases also. Hence, color constancy
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Fig. 7. Examples of images that are in the data set used for evaluation in Section 5 and results of some color constancy algorithms. The
corresponding angular errors are shown in the lower right corner of the images. (a) Original images. (b) Ideal correction. (c) Correction using natural
image statistics. (d) Correction using Gray-Edge (baseline). (e) Correction using White-Patch. (f) Correction using Gray-World.



methods using edge information are preferred for images
with a medium amount of information, and pixel-based
methods are preferred when the amount of information
becomes low. The amount of information is dependent on
the content of an image, and natural image statistics
parameterize the amount of available information. For
instance, a high contrast of colors (i.e., the � of the edge
distributions of theO1 andO2 channels) combined with only
a few edges (i.e., a high value for �) indicates that there are
only a few edges with enough energy and that the estimate
that is based on this information is likely to be biased toward
the color of the high contrast. Consequently, in such
situations, it is better to select pixel-based color constancy
methods. On the other hand, when the value of � is low, this
means that there are relatively many edges with a strong
response, making the estimates of methods based on first
and second-order statistics more reliable.

In summary, the three basic indicators for the perfor-
mance of color constancy methods based on pixel and edge
information are:

. Image features. The set of possible adjacent color
values (i.e., color derivatives) in real-world images is
more restricted than the set of possible pixel values.
Hence, the use of derivatives provides more stable
gamuts than pixel values alone to compute color
constancy. The order of best performance in terms of
image features is then second-order statistics first,
followed by first-order and zeroth-order statistics.

. Number of features. A higher color constancy
accuracy is obtained when there is a large variety
of different edges in an image [17]. The same
argument holds for the Gray-World algorithm for
the number of different surfaces in a scene, e.g., [32],
[33]. From [17], it is derived that if the image
contains a limited number of edges, pixel-based
color constancy is preferred. In case of sufficient
edges (e.g., more than eight different edges), edge-
based color constancy is preferred. The order of the
best performance in terms of the number of edges
(from low to high) is then zeroth-order statistics first,
followed by first-order and second-order statistics.

. SNR. Pixel-based methods obtain a better perfor-
mance for a low SNR. The order of best performance

in terms of the amount of SNR (from low to high) is
then zeroth-order statistics first, followed by first-
order and second-order statistics.

The above principles are reflected by the Weibull-
distribution parameters contrast � and grain size �. The
amount of texture and the number of edges and contrast are
captured by this parameterization. The proposed algorithm
exploits this information to select and combine the different
order color constancy methods as follows:

. Image features. The value � corresponds to grain
size and is related to the amount of texture.

. Number of features. The value � corresponds grain
size and is related to the number of edges.

. SNR. The value � corresponds to contrast and is
related to SNR.

The MoG classifier computes the correlation between the
values of the image features, number of features, and SNR
and the values of the Weibull-distribution parameters
contrast � and grain size �.

7 CONCLUSION

In this paper, the Weibull parameterization (texture and
contrast) has been used to identify the most important
characteristics of color images. It is shown that the Weibull
parameterization (grain size and contrast) is related to the
number of edges, amount of texture, and signal-to-noise ratio
to which the used color constancy methods are sensitive. An
MoG-classifier has been used to learn the correlation and
weighting between the Weibull-parameters (grain size and
contrast) and these image attributes (number of edges and
amount of texture and SNR). The output of the classifier is
the selection of the best performing color constancy method
for a certain image.

Experimental results show a large improvement over
state-of-the-art single algorithms. On a data set consisting of
more than 11,000 images, the best-performing single
algorithm is found to be the first-order Gray-Edge.
Comparing the median angular error of this algorithm with
our proposed algorithm, an increase of nearly 20 percent
can be obtained when the circumstances under which the
algorithm will be used are known a priori. When this is not
the case, i.e., when no information about the test images is
known, a prelearned system can be used that is trained on
the Mondrian set. This system only needs to be trained once
and is completely independent of the test data. Using this
classifier, the median angular error still decreases signifi-
cantly (nearly 10 percent) compared to the best-case
performance of the single algorithms. Finally, we showed
that for certain scene categories, one specific color con-
stancy algorithm can be used instead of the classifier
considering several algorithms.
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