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Abstract—The aim of salient feature detection is to find distinctive local events in

images. Salient features are generally determined from the local differential

structure of images. They focus on the shape-saliency of the local neighborhood.

The majority of these detectors are luminance-based, which has the disadvantage

that the distinctiveness of the local color information is completely ignored in

determining salient image features. To fully exploit the possibilities of salient point

detection in color images, color distinctiveness should be taken into account in

addition to shape distinctiveness. In this paper, color distinctiveness is explicitly

incorporated into the design of saliency detection. The algorithm, called color

saliency boosting, is based on an analysis of the statistics of color image derivatives.

Color saliency boosting is designed as a generic method easily adaptable to existing

feature detectors. Results show that substantial improvements in information

content are acquired by targeting color salient features.

Index Terms—Image saliency, feature detection, image statistics, color imaging.

�

1 INTRODUCTION

INDEXING objects and object categories as an ordered collection of

salient image points has been successfully applied to image

matching, content-based retrieval, learning, and recognition [1],

[2], [3], [4], [5], [6]. Salient points are local features in the image

which exhibit geometrical structure, such as T-junctions, corners,

and symmetry points. The aim of salient point detection is to

represent objects more concisely and to be robust to varying viewing

conditions, such as changes due to camera zooming, object rotation,

and illumination changes.

Although the majority of image data is in color format nowadays,

most salient point detectors are luminance-based. They typically

focus on shape saliency rather than color saliency [7], [8]. For

example, they focus on corner points without distinguishing (low-

salient) black-and-white corners from (high-salient) red-green

corners. Only recently has color information been incorporated in

the detection phase. Montesinos et al. [9] propose an extension of the

luminance Harris corner detector to color [10]. Heidemann [11]

incorporates color into the generalized symmetry transform

proposed by Reisfeld et al. [12]. Both methods achieve a perfor-

mance gain for near isoluminant events. However, since the

luminance axis remains the major axes of variation in the RGB-

cube, results do not differ greatly from luminance-based feature

detection. Itti et al. [13] use color contrast as a clue for saliency. Their

method is based on a zero-order signal (normalized red, green, blue,

yellow) and is not easily extendable to differential-based features.

For the evaluation of salient point detectors, Schmid et al. [14]

propose two criteria: 1) repeatability, salient point detection should

be stable under varying viewing conditions; 2) distinctiveness, salient

points should focus on events with a low probability of occurrence.

Most salient point detectors are designed according to these criteria.

They focus on two-dimensional structures, such as corners, which

are stable and distinctive at the same time. Although color is

considered to play an important role in attributing image saliency

[15], the explicit incorporation of color distinctiveness into the

design of salient points detectors has been ignored.

Therefore, in this paper, we aim to incorporate color distinc-

tiveness into salient point detection. The extension should be

general and, hence, be easy to incorporate in existing salient point

detectors. For a color image, with values f ¼ R;G;Bð ÞT , salient

points are the maxima of the saliency map, which compares the

derivative vectors in a neighborhood fixed by scale �,

s ¼ H� fx; f y
� �

; ð1Þ

where H is the saliency function and the subscript indicates

differentiation with respect to the parameter. This type of saliency

maps include [7], [10], [11], [16], [17]. The impact of a derivative

vector on the outcome of the local saliency depends on its vector

norm, fxk k. Hence, vectors with equal norm have an equal impact

on the local saliency. Rather than deriving saliency from the vector

norm, the novelty of this paper is to adapt the saliency function in

order that vectors with equal color distinctiveness have equal

impact on the saliency function.

2 COLOR DISTINCTIVENESS

The efficiency of salient point detection depends on the distinc-

tiveness of the extracted salient points. At the salient points’

positions, local neighborhoods are extracted and described by local

image descriptors. The distinctiveness of the descriptor defines the

conciseness of the representation and the discriminative power of

the salient points. The distinctiveness of interest points is

measured by its information content [14].

For luminance-based descriptors, the information content is

measured by looking at the distinctiveness of the differential

structure described by the local two-jet [18] at the detected points

[4]. Montesinos et al. [9] argue that, due to the extra information

available in color images, the color one-jet is sufficient for the local

structure description. The color one-jet descriptor is given by

v ¼ R G B Rx Gx Bx Ry Gy Byð ÞT : ð2Þ

From information theory, it is known that the information content
of an event is dependent on its frequency or probability

I vð Þ ¼ � log p vð Þð Þ; ð3Þ

where p vð Þ is the probability of the descriptor v, i.e., events which

occur rarely are more informative. The information content of the

descriptor, given by (2), is approximated by assuming independent

probabilities of the zeroth order signal and the first order derivatives

p vð Þ ¼ p fð Þp fxð Þp f y
� �

: ð4Þ

Hence, the information content of the salient point detector,

defined by (1), will increase if the probability of the derivatives,

p fxð Þ, is small.

By adapting the saliency map to focus on rare color derivatives,

the color distinctiveness of the detector is improved. Traditionally,

for saliency maps based on (1), derivatives with an equal vector

norm fxk k have equal influence on the saliency map. We now

adapt this by requiring vectors with equal information content to
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have equal influence on the saliency map. Hence, the aim is to find

a transformation g : <3 ! <3 for which it holds that

p fxð Þ ¼ p f 0x
� �

$ g fxð Þk k ¼ g f 0x
� ��� ��: ð5Þ

The transformation, attained by function g, is called color saliency

boosting. Once a function g has been found, the color boosted

saliency can be computed by

s ¼ H� g fxð Þ; g fy
� �� �

: ð6Þ

The traditional saliency map, which derives saliency from the

gradient strength of the derivatives, is after color boosting based on

the information content of these derivatives. Gradient strength has

been replaced by information content, thereby aiming for higher

saliency.

3 STATISTICS OF COLOR IMAGES

As discussed in Section 2, the information content of a feature

descriptor depends on the probability of the derivatives. In this

section, we investigate the statistics of color derivatives to find a

mathematical description of surfaces of equal probability, so-called

isosalient surfaces. A description of these surfaces leads to the

solution of (5).

The channels of fx, Rx;Gx;Bxf g, are correlated due to the physics

of the world. Photometric events in the real-world, such as shading,

shadows, and specularities, influenceRGB values in a well-defined

manner [19]. Before investigating the statistics of color derivatives,

the derivatives need to be transformed to a color space which is

uncorrelated with respect to these photometric events. For this

purpose, we apply the color transformation as proposed in [20]. An

overview is given in Table 1. These coordinate transformations

contain axes which are photometric variant with respect to a

physical cause (see column three of Table 1) and photometric

invariant axes which are invariant with respect to this cause. For

more information on the derivation and the assumptions from

which these color spaces are derived, we refer to [19], [20].

The statistics of color images are shown for the Corel database,

which consists of 40,000 images of 256� 384 pixels (for a more

extensive elaboration on the Corel set see, e.g., [21]). In Fig. 1, the

distributions of the first order derivatives, fx, are given for the

various color coordinate systems. The isosalient surfaces form

simple structures similar to ellipsoids. For all three color spaces, the

third coordinate coincides with the axis of maximum variation (i.e.,

the intensity). For the opponent and the spherical coordinate system,

the distribution on the plane spanned by the first and second

coordinate form an ellipse of which the axes do not align with the

coordinates. To accomplish a correct alignment between our

coordinate axes and the axes of the ellipsoid, we rotate, with

rotation matrix R, the color coordinate system to coincide with the

axes of the ellipsoid:
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TABLE 1
The Color Coordinate Transformations, Their Color Derivatives, and the Physical Event Related to the Transformation

Fig. 1. The histograms of the distribution of the transformed derivatives of the Corel image database in, respectively, the (a) RGB coordinates, (b) the opponent
coordinates, and (c) the spherical coordinates. The three planes correspond to the isosalient surfaces which contain (from dark to light), respectively, 90 percent,
99 percent, and 99.9 percent of the total number of pixels.



r sin ~’’ ~��x; r~’’x
� �T¼ R� r sin’�x; r’xð ÞT ;
~oo1x; ~oo2xð ÞT¼ R� o1x; o2xð ÞT :

ð7Þ

The tilde is used to indicate that all axes are aligned with the axes of

the ellipsoid. Consequently, the aligned transformations are given

by ~SS fxð Þ ¼ f ~ss
x and ~OO fxð Þ ¼ f ~oo

x.
After the alignment of the axes, isosalient surfaces of the

derivative histograms can be approximated by ellipsoids

�h1
x

� �2þ �h2
x

� �2þ �h3
x

� �2¼ R2; ð8Þ

where hx ¼ h fxð Þ ¼ h1
x; h

2
x; h

3
x

� �T
and h is one of the color

transformations ~SS, ~OO, or H.

4 BOOSTING COLOR SALIENCY

In this section, the goal is to incorporate color distinctiveness into

salient point detection. Or, mathematically, to find the transforma-

tion for which vectors with equal information content have equal

impact on the saliency function. In the previous section, it was shown

that derivatives of equal saliency form ellipsoids. Since (8) is equal to

�h1
x

� �2þ �h2
x

� �2þ �h3
x

� �2¼ �h fxð Þk k2; ð9Þ

the following holds:

p fxð Þ ¼ p f 0x
� �

$ �h fxð Þk k ¼ �Th f 0x
� ��� ��; ð10Þ

where � is a 3� 3 diagonal matrix with �11 ¼ �, �22 ¼ �, and

�33 ¼ �. � is restricted to �2
11 þ �2

22 þ �2
33 ¼ 1. The desired color

saliency boosting function (see (5)) is obtained by

g fxð Þ ¼ �h fxð Þ; ð11Þ

where h is one of the color transformations ~SS, ~OO, or H. By a rotation

of the color axes followed by a rescaling of the axis, the oriented

isosalient ellipsoids are transformed into spheres and, thus, vectors

of equal saliency are transformed into vectors of equal length.

4.1 Influence of Color Saliency Boosting on Repeatability

The two criteria for salient point detection are distinctiveness and

repeatability. The color boosting algorithm is designed to focus on

color distinctiveness while adopting the geometrical characteristics

of the operator to which it is applied. In this section, we examine

the influence of color boosting on the repeatability. We identify

two phenomena which influence the repeatability of g fxð Þ. First, by

boosting the color saliency, an anisotropic transformation is carried

out which will negatively reduce the signal-to-noise ratio. Second,

by boosting the photometric invariant directions (more than the

photometric variant directions), the robustness is improved with

respect to scene accidental changes.

Loss of signal-to-noise ratio: For isotropic uncorrelated noise, ",

the measured derivative f̂fx can be written as f̂fx ¼ fx þ " and, after

color saliency boosting, by

g f̂fx

� �
¼ g fxð Þ þ�": ð12Þ

Note that isotropic noise remains unchanged under the orthonor-
mal curvilinear transformations. Assume the worst case in which
fx only has a signal along the photometric variant axis. In this case,
the noise can be written as

g fxð Þk k
�"k k �

�33 fxk k
�11 "k k : ð13Þ

Hence, the signal-to-noise ratio reduces by �11

�33
. The loss of signal

will negatively influence repeatability to geometrical and photo-
metrical changes.

Gain in photometric robustness: By boosting color saliency, the

influence of the photometric variant direction diminishes while the

influence of the invariant directions increases. As a consequence,

the repeatability under photometric changes, such as changing

illumination and viewpoint, increases.

Depending on the task at hand, color distinctiveness may be

less desired than signal-to-noise. For this purpose, the � parameter

is proposed, which allows for choosing between best signal-to-

noise characteristics, � ¼ 0, and best information content, � ¼ 1:

g� fxð Þ ¼ ��h fxð Þ þ 1� �ð Þh fxð Þ: ð14Þ

5 EXPERIMENTS AND ILLUSTRATIONS

Color saliency boosting is tested on information content and

repeatability. The salient points based on color saliency boosting

are compared to luminance fxk k1, RGB gradient, fx, and the quasi-

invariant-based salient point detectors. The quasi-invariants are

derived from the same color transformation as given in Table 1 by

only using the invariant coordinates of the transformation: the

shadow-shading quasi-invariant ~SScx ¼ r sin’ �x; r’x; 0ð Þ, the spec-

ular quasi-invariant ~OOc
x ¼ o1x; o2x; 0ð Þ, and the shadow-shading-

specular quasi-invariant Hc
x ¼ s hx; sx; 0ð Þ. An extensive analysis of

the quasi-invariants can be found in [17], [20]. Finally, the

generality of the approach is illustrated by applying color boosting

to several existing feature detectors.

5.1 Initialization

Experiments are performed on a subset of 1,000 randomly chosen

images from the Corel data set. Before color saliency boosting can be

applied, the �-parameters (9) have to be initialized by fitting ellipses

to the histogram of the data set. The axes of the ellipsoid are derived

by fitting the isosaliency surface, which contains 99 percent of the

pixels of the histogram of the Corel data set. Changing this parameter

to 99.9 or 99.99 percent changes matrix � only slightly. The results for

the various transformations are summarized in Table 2. The relation

between the axes in the various color spaces clearly confirms the

dominance of the luminance axis in the RGB-cube since �33, the

multiplication-factor of the luminance axis, is much smaller than the

color-axes multiplication factors, �11 and �22.

To give an idea on how the �-parameters vary when changing

the data set, we have estimated the � parameters for two other

data sets, the Soil data set [22], which is an uncompressed set of

object images, and a table tennis sequence, given in Figs. 2a and 2c.

For the Soil data set and the opponent color model, the

�-parameters are �11 ¼ 0:542, �22 ¼ 0:780, and �33 ¼ 0:313. Since

this set consists of colorful objects the luminance axis is less

suppressed than for the Corel set. For the tennis sequence, the

difference with the Corel data set is smaller, �11 ¼ 0:588,

�22 ¼ 0:799, and �33 ¼ 0:124. A change in �-parameters can have

various causes such as the quality of the camera, the applied

compression, and the different color content of the image data.

To test the influence of compression on the shape of the ellipsoids,

we have repeated the ellipse fitting procedure for the same Corel
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TABLE 2
The Diagonal Entries of � for the Corel Data Set
Computed for Gaussian Derivatives with � ¼ 1



images but after jpeg compression with a quality of 30 percent. For

the opponent color model, we obtained: �11 ¼ 0:822, �22 ¼ 0:567,

and �33 ¼ 0:062, which only slightly differ from the parameters

found in Table 2. Hence, jpeg compression has been found to have

little influence on the shape of the fitting procedure of the ellipses.

We have chosen the color Harris point detector [9], [10] to test

color boosting in the following experiments. It is computed with

H� fx; f y
� �

¼ fx � fx f y � f y � fx � fy
2 � k fx � fx þ fy � f y

� �2 ð15Þ

by substituting fx and f y by g fxð Þ and g f y
� �

and with k ¼ 0:04. The

bar �:: indicates convolution with a Gaussian filter and the dot

indicates the inner product. We applied Gaussian derivatives of

� ¼ 1 and Gaussian smoothing with � ¼ 3.

5.2 Color Distinctiveness

Here, the extent in which color boosting improves the color

distinctiveness of the Harris detector is examined. In [14], the Harris

detector has been shown to outperform other detectors both on

“shape” distinctiveness and repeatability. The color distinctiveness

of salient point detectors is described by the information content of

the descriptors extracted at the locations of the salient points. From

the combination of (3) and (4), it follows that the total information is

computed by summing up the information of the zeroth and first

order part, I vð Þ ¼ I fð Þ þ I fxð Þ þ I f y
� �

. The information content of

the parts is computed from the normalized histograms by

I fð Þ ¼ �
X
i

pi log pið Þ; ð16Þ

where pi are the probabilities of the bins of the histogram of f .

The results for 20 and 100 salient points per image are shown in

Table 3. Next to the absolute information content, we have also

computed the relative information gain with respect to the

information content of the color gradient-based Harris detector.

For this purpose, the information content of a single image is

defined as

I ¼ �
Xn
j¼1

log p vj
� �� �

; ð17Þ

where j ¼ 1; 2; . . .n and n is the number of salient points in the

image. Here, p vj
� �

is computed from the global histograms, which

allows comparison of the results per image. The information

content change is considered substantially for a 5 percent increase

or decrease.

The highest information content is obtained with f ~oo
x, which is

the color saliency boosted version of the opponent derivatives. The

boosting results in an increase of 7 percent to 13 percent of the

information content compared to the color gradient-based detector.

In the images of the Corel set, this resulted in a substantial increase

for 22 percent to 63 percent of the images. The advantage of color

boosting diminishes when increasing the number of salient points

per image. This is caused by the limited number of color clues in

many of the images, which is especially visible for the results of the

photometric quasi-invariants, ~SScx, ~OOc
x, or Hc

x. Note that these

detectors discard all intensity information, which, in the case of

100 salient points per image, results in many images with a

substantial decrease in information content. Finally, it is note-

worthy to observe how small the difference is between luminance

and RGB-based Harris detection. Since the intensity direction also
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TABLE 3
The Information Content of Salient Point Detectors

Measured in 1) information content and 2) the percentage of images for which a substantial decrease (-5 percent) or increase (+5 percent) of the information content
occurs. The experiment is performed with both 20 or 100 salient points per image. The experiment is repeated with a normalized descriptor which is invariant for
luminance changes.

Fig. 2. (a) Example Soil data set and (c) frame from table-tennis sequence. (b) and (d) results of Harris detector (red dots) and the Harris detector with color boosting

(yellow dots). The red dots mainly coincide with black and white events, while the yellow dots are focused on colorful points.



dominates the RGB derivatives, using the RGB-gradient instead of

the luminance-based Harris detection only results in a substantial

increase in information content in 1 percent of the images.

It is often desirable for the descriptor to be invariant for scene

incidental events like shading and shadows. In these cases, the

information content of the normalized descriptor, which is

invariant to luminance changes, better reflects the information

content of the salient point detector

v ¼ R

fk k ;
G

fk k ;
B

fk k ;
Rx

fxk k
;
Gx

fxk k
;
Bx

fxk k
;
Ry

f y
�� �� ; Gy

f y
�� �� ; By

f y
�� ��

 !
: ð18Þ

The results of the normalized descriptor are given in the right half of

Table 3. The increase in information content of the quasi-invariants

and the color boosted detectors stands out even more, with

substantial gains in information content up to 90 percent. Here,

the quasi-invariants based detectors outperform the other detectors.

In Fig. 3, results of the RGB-gradient-based and color boosted

Harris detector are depicted. From a color information point of

view, the performance of the RGB-gradient-based method is poor.

Most of the salient points have a black and white local

neighborhood. The salient points after color boosting focus on

more distinctive points. Similar results are depicted in Figs. 2b and

2d, where the results are shown computed with the �-parameters

belonging to their data sets.

5.3 Repeatability: Signal-to-Noise

Repeatability measures the stability with respect to varying viewing

conditions. As indicated in Section 4.1, color saliency boosting

reduces the signal-to-noise ratio. Repeatability with respect to

geometrical changes, scaling, and affine transformations is con-

sidered an inherent property of the detector and will not be

considered here. The loss of repeatability caused by color saliency

boosting is examined by adding uniform, uncorrelated Gaussian

noise of � ¼ 10. This yields a good indication of loss in signal-to-

noise, which, in its turn, will influence the results of repeatability

under other variations, such as zooming, illumination changes, and

geometrical changes. Repeatability is measured by comparing the

Harris points detected in the noisy image to the points in the noise-

free images. The results in Fig. 4a correspond to the expectation

made by (13). The larger the difference between �11 and �33, the

poorer the repeatability. In Fig. 4b, the information content and

repeatability as a function of the amount of color boosting,

determined by the �-parameter, is given for the opponent color

space (see (14). The results show that information content increases

at the cost of stability.

5.4 Repeatability: Photometric Variation

Photometric robustness increases with color boosting, as discussed

in Section 4.1. In Fig. 5, the dependence of repeatability is tested on

two sequences with changing illumination conditions [23]. The

experiment was performed by applying boosting to the spherical

color space, f ~ss
x, since changes due to shadow-shading will be along

the photometric variant direction of the spherical system. For these

experiments, two intertwining phenomena can be observed: the

improved photometric invariance and the deterioration of signal-to-

noise ratio with increasing �. For the nuts-sequence, with very

prominent shadows and shading, the photometric invariance is

dominant, while, for the fruit-basket, the gained photometric

invariance only improves performance slightly for medium

� values. For total color saliency boosting, � ¼ 1, the loss of

repeatability, due to loss of signal-to-noise, is substantial.
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Fig. 3. (a) and (c) Corel images. (b) and (d) results of the Harris detector (red dots) and the Harris detector with color boosting (yellow dots). The red dots mainly coincide

with black and white events, while the yellow dots are focused on colorful points.

Fig. 4. (a) The percentage of Harris points which remain detected after adding

Gaussian uncorrelated noise. (b) The information content (blue line) and the

repeatability (red line) as a function of the amount of color saliency boosting.



5.5 Generality: Illustrations

Color saliency boosting can be applied on functions which can be

written as a function of the local derivatives. Here, we apply it to

three different feature detectors. First is the focus point detector

which was originally proposed by Reisfeld et al. [12] and recently

extended to color by Heidemann [11]. The detector focuses on the

center of locally symmetric structures. In the first row of Fig. 6, the

results of the focus point detector are shown. Fig. 6b shows the

saliency map as proposed in [11]. In Fig. 6c, the saliency map after

saliency boosting is depicted. Although focus point detection is

already an extension from luminance to color, black-and-white

transitions still dominate the result. Only after boosting the color

saliency are the less interesting black-and-white structures in the

image are ignored and most of the red Chinese signs found, see

Fig. 6d a similar difference in performance is obtained by applying

color boosting to the star detector proposed by Bigun [16]. This

detector focuses on corner and junction like structures. The

RGB-gradient-based method (Fig. 6f) focuses mainly on black-

and-white events, while the more salient signboards (Fig. 6g) are

found only after color saliency boosting.

As a final illustration, we illustrate that color saliency boosting

can be applied to gradient-based methods. In the third row of Fig. 6,

color boosting is applied to a gradient-based segmentation algo-

rithm proposed by Jermyn and Ishikawa [24]. The algorithm finds

globally optimal regions and boundaries. In Figs. 6b and 6c,

respectively, the RGB gradient and the color boosted gradient are

depicted. While the RGB-gradient-based segmentation is distracted

by the many black-and-white events in the background, the color

boosted segmentation finds the salient traffic signs.
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Fig. 5. (a) and (b) Two frames from two sequences with changing illumination conditions. (c) Repeatability as a function of the amount of color saliency boosting. The

dotted line is for sequence (a) and the continuous line is for sequence (b).

Fig. 6. Horizontally, respectively, the input image, RGB-gradient-based saliency map, the color boosted saliency map, and the results with red dots (lines) for the gradient-

based method and yellow dots (lines) for the salient points after color saliency boosting. Row one ((a), (b), (c), and (d)): Results after [11], row two ((e), (f), (g), and (h):

Results after [16], and row 3 ((i), (j), (k), and (l)): Results after [24].



6 CONCLUSIONS

In this paper, color distinctiveness is explicitly integrated in the

design of salient point detectors. The method, called color saliency

boosting, can be incorporated into existing detectors which are

mostly focused on shape distinctiveness. Saliency boosting is based

on the analysis of the statistics of color image derivatives. Isosalient

derivatives form ellipsoids in the color derivative distributions.,

which is exploited to adapt derivatives in such a way that equal

saliency implies equal impact on the saliency map. Experiments

show that color saliency boosting substantially increases the

information content of the detected points. A substantial informa-

tion content increase is obtained on up to 20-60 percent of the Corel

images.

ACKNOWLEDGMENTS

This research was performed while Joost van de Weijer was with the

ISIS group, University of Amsterdam. The authors thank

G. Heidemann for providing the code of the color symmetry

algorithm.

REFERENCES

[1] R. Fergus, P. Perona, and A. Zisserman, “Object Class Recognition by
Unsupervised Scale-Invariant Learning,” Proc. IEEE Conf. Computer Vision
and Pattern Recognition, vol. 2, pp. 264-271, June 2003.

[2] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int’l
J. Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.

[3] K. Mikolajczyk and C. Schmid, “Scale and Affine Invariant Interest Point
Detectors,” Int’l J. Computer Vision, vol. 60, no. 1, pp. 62-86, 2004.

[4] C. Schmid and R. Mohr, “Local Gray-Value Invariants for Image Retrieval,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 530-
534, May 1997.

[5] N. Sebe, Q. Tian, E. Loupias, M. Lew, and T. Huang, “Evaluation of Salient
Point Techniques,” Image and Vision Computing, vol. 21, no. 13-14, pp. 1087-
1095, 2003.

[6] L. van Gool, T. Tuytelaars, and A. Turina, “Local Features for Image
Retrieval,” State-of-the-Art in Content-Based Image and Video Retrieval, pp. 21-
41, Kluwer Academic, 2001.

[7] M. Lee and G. Medioni, “Grouping into Regions, Curves, and Junctions,”
Computer Vision Image Understanding, vol. 76, no. 1, pp. 54-69, 1999.

[8] L. Williams and K. Thornber, “A Comparision of Measures for Detecting
Natural Shapes in Cluttered Backgrounds,” Int’l J. Computer Vision, vol. 34,
no. 2/3, pp. 81-96, 1999.

[9] P. Montesinos, V. Gouet, and R. Deriche, “Differential Invariants for Color
Images,” Proc. 14th Int’l Conf. Pattern Recognition, pp. 838-840, 1998.

[10] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” Proc.
Fourth Alvey Vision Conf., vol. 15, pp. 147-151, 1988.

[11] G. Heidemann, “Focus-of-Attention from Local Color Symmetries,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 26, no. 7, pp. 817-847,
July 2004.

[12] D. Reisfeld, H. Wolfson, and Y. Yeshurun, “Context Free Attentional
Operators: The Generalized Symmetry,” Int’l J. Computer Vision, vol. 14,
pp. 119-130, 1995.

[13] L. Itti, C. Koch, and E. Niebur, “A Model of Saliency-Based Visual
Attention for Rapid Scene Analysis,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 20, no. 11, pp. 1254-1259, Nov. 1998.

[14] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of Interest Point
Detectors,” Int’l J. Computer Vision, vol. 37, no. 2, pp. 151-172, Feb. 2000.

[15] L. Itti, C. Koch, and E. Niebur, “Computation Modeling of Visual
Attention,” Nature Rev. Neuroscience, vol. 2, no. 11, pp. 194-203, Mar. 2001.

[16] J. Bigün, “Pattern Recognition in Images by Symmetry and Coordinate
Transformations,” Computer Vision and Image Understanding, vol. 68, no. 3,
pp. 290-307, 1997.

[17] J. van de Weijer, T. Gevers, and A. Smeulders, “Robust Photometric
Invariant Features from the Color Tensor,” IEEE Trans. Image Processing,
Jan. 2006.

[18] J.J. Koenderink and A.J. van Doom, “Representation of Local Geometry in
the Visual System,” Biological Cybernetics, vol. 55, no. 6, pp. 367-375, 1987.

[19] S. Shafer, “Using Color to Separate Reflection Components,” COLOR
Research and Application, vol. 10, no. 4, pp. 210-218, Winter 1985.

[20] J. van de Weijer, T. Gevers, and J. Geusebroek, “Edge and Corner Detection
by Photometric Quasi-Invariants,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 27, no. 4, pp. 625-630, Apr. 2005.

[21] O. Chapelle, P. Haffner, and V. Vapnik, “Support Vector Machines for
Histogram-Based Image Classification,” IEEE Trans. Neural Networks,
vol. 10, no. 5, pp. 1055-1064, 1999.

[22] D. Koubaroulis, J. Matas, and J. Kittler, “Evaluating Colour-Based Object
Recognition Algorithms Using the Soil-47 Database,” Proc. Asian Conf.
Computer Vision, 2002.

[23] K. Mikolajczyk and C. Schmid, “A Performance Evaluation of Local
Descriptors,” Proc. Int’l Conf. Computer Vision and Pattern Recognition, 2003.

[24] I. Jermyn and H. Ishikawa, “Globally Optimal Regions and Boundaries as
Minimum Ratio Weight Cycles,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 23, no. 10, pp. 1075-1088, Oct. 2001.

. For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

156 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 28, NO. 1, JANUARY 2006


