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PicToSeek: Combining Color and Shape Invariant
Features for Image Retrieval

Theo Gevers and Arnold W. M. Smeulders, Member, IEEE

Abstract—We aim at combining color and shape invariants
for indexing and retrieving images. To this end, color models
are proposed independent of the object geometry, object pose,
and illumination. From these color models, color invariant edges
are derived from which shape invariant features are computed.
Computational methods are described to combine the color and
shape invariants into a unified high-dimensional invariant feature
set for discriminatory object retrieval. Experiments have been
conducted on a database consisting of 500 images taken from
multicolored man-made objects in real world scenes. From the
theoretical and experimental results it is concluded that object
retrieval based on composite color and shape invariant features
provides excellent retrieval accuracy. Object retrieval based on
color invariants provides very high retrieval accuracy whereas
object retrieval based entirely on shape invariants yields poor
discriminative power. Furthermore, the image retrieval scheme is
highly robust to partial occlusion, object clutter and a change in
the object’s pose. Finally, the image retrieval scheme is integrated
into the PicToSeek system on-line at http://www.wins.uva.nl/re-
search/isis/PicToSeek/ for searching images on the World Wide
Web.

Index Terms—color invariant edges, color invariants, com-
bining color and shape information, dichromatic reflection, image
retrieval, object search, query by example, reflectance properties,
shape invariants.

I. INTRODUCTION

FOR THE management of archived image data, an image
database system is needed that supports the analysis,

storage, and retrieval of images. Over the last decade, much
attention has been paid to the problem of combining spatial
processing operations with DBMS capabilities for the purpose
of storage and retrieval of complex spatial data in geographic
information systems. In contrast, image database systems are
still based on the idea of storing a keyword description of the
image content, created by a user on input, in addition to a
pointer to the raw image data. Image retrieval is then shifted to
standard DBMS capabilities.

A different approach is required when we consider the re-
trieval of images by image example, where a query image or
sketch is given by the user on input. Then, image retrieval is the
problem of identifying a query image as a part of target images
in the image database. In this paper, we focus on the problem
of retrieving images containing instances of particular objects.
Then, the query is specified by an example image taken from
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the object(s) at hand. In this context, image retrieval is similar
to object search.

The basic idea of image retrieval by image example is to ex-
tract characteristic features from target images which are then
matched with those of the query image. These features are typ-
ically derived from shape, texture, or color properties of query
and target images. After matching, images are ordered with re-
spect to the query image according to their similarity measure
and displayed for viewing, see [1]–[7], for example.

The matching complexity of image retrieval by image
example is similar to that of model-based object recognition
schemes. In fact, image retrieval by image example shares
many characteristics with model-based object recognition. The
main difference is that model-based object recognition is done
fully automatically, whereas user interaction is allowed for
image retrieval by image example. To reduce the computational
complexity of traditional matching schemes, theindexingor
hashingparadigm has been proposed (for example [8]–[13]).
Indexing based matching schemes have a similar underlying
structure. First, a lookup table is formed by quantization of
the index parameter space. Then, index vectors are generated,
computing shape, color, or texture properties from target
images in the image database. At run-time, these features are
extracted from the query image, and indexes are computed and
used to look up images in the lookup table. Because indexing
based matching avoids exhaustive search, it is a potentially
efficient search technique. A proper indexing technique will
be executed at high speed allowing for fast image retrieval by
image example. This is useful when the image database is large
as may be anticipated for multimedia and information services.

Ideally, the value of the index vectors, derived from images
taken from the same object, should remain the same regardless
of the varying circumstances induced by the imaging process.
For instance, when images are taken from the same object
from different viewpoints, the shape of the recorded object
will exhibit a geometric distortion. Also photometric changes
may occur when the viewpoint is changed, yielding different
shadowing, shading and highlighting cues for the same object.
In other words, the value of index vectors should beinvariant
with respect to the varying imaging conditions.

Most of the work on shape-based object recognition rely on
matching sets of local image features (e.g., edges, lines and
corners) to three-dimensional (3-D) object models invariant
to geometric transformations (e.g., translation, rotation, scale,
and affine transformation) and significant progress has been
achieved (for example [8], [9], [11], [13]). As an expression
of the difficulty of the general problem, most of the geom-
etry-based matching schemes can handle only simple, flat, and
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rigid man-made objects. Shape features are rarely adequate for
discriminatory object recognition of 3-D objects from arbitrary
viewpoints in complex scenes.

As opposed to shape information, other retrieval schemes are
entirely on the basis of color. Swain and Ballard [12] made a
significant contribution in introducing color for object search.
Based on the opponent color model, they show that image re-
trieval based on histogram matching is to a large degree ro-
bust to changes in object pose and shape. The histogram based
matching scheme is extended by Funt and Finlayson [14] and
Nayar and Bolle [15] to make the method illumination indepen-
dent by indexing on color ratio’s computed from neighboring
image points. However, the color ratio’s are negatively affected
by the geometry of the object. Further, Finlaysonet al. [16],
Healey and Slater [17], and Slater and Healey [18] introduced il-
lumination-invariant moments of color histogram distributions.

In addition, general purpose image retrieval systems have
been developed based on multiple features (e.g., color, shape,
and texture) describing the image content [3], [4], [6]. We im-
plemented the Enigma system [19], retrieving images based on
query by example. QBIC [20] allows for content-based retrieval
for large image and video databases. Photobook [5] reduces im-
ages to a small set of perceptually significant coefficients for the
purpose of image retrieval. In [21], shape information has been
used for image retrieval. In contrast to full content-based image
retrieval, Chabot [22], [23] uses a combination of visual ap-
pearance and text-based cues to retrieve images. Image retrieval
using combined color and shape information has been proposed
by [24]. However, the retrieval scheme is suited for flat-im-
ages of trademarks. Recently, a number of image browsers are
available for retrieving images from the World Wide Web, for
example [1], [25]–[28]. These retrieval systems use color and
shape information separately for the purpose of image retrieval.
Moreover, the features used during the retrieval process depend
on the shape of the object, camera viewpoint, and on the illu-
mination. As a consequence, the performance of these systems
may decrease when the query and target image taken from the
same object are recorded under different imaging conditions.

In this paper, we want to arrive atcombiningcolor and shape
invariants for the purpose of image indexing and retrieval. To
that end, a retrieval scheme is proposed making use oflocal
color invariant information to producesemiglobalshape invari-
ants to obtain a viewpoint invariant, high-dimensional object
descriptor to be used as an index for discriminatory image re-
trieval. To achieve this, color invariant features are proposed ac-
cording to the following criteria: invariance to the viewpoint,
geometry of the object, and illumination conditions. Then, from
these color models, color invariant edges are derived from which
the shape features are computed. Shape features are indepen-
dent up to a change in viewpoint (i.e., projective transforma-
tion). Computational methods are proposed to combine color
and shape invariants into a unified high-dimensional invariant
feature space. The image retrieval scheme is designed according
to the following criteria: high discriminative power, and robust-
ness against fragmented, occluded and overlapping objects.

The paper is organized as follows. First, in Section II, we
propose new color models invariant to a change in view point,
object geometry and illumination. Color invariant edges are

proposed in Section III. Shape invariants are discussed in
Section IV. In Section V, we propose computational methods
to produce a composite color and shape invariant indexing
scheme. The matching scheme is given in Section VI. Finally,
in Section VII, the performance of different invariant image
features is evaluated on a dataset of 500 images.

II. COLOR INVARIANTS

As discussed, attention is to be paid to the desired classes of
invariance. For each image retrieval query, a proper definition
of the desired invariance is essential. A concise list of the most
important invariance properties is as follows.

• Is the search for objects in different orientations and
scales?

• Is the search for objects in a large variety of scenes?
• Is the search for objects in other kind of light?
• Is the search for objects from different viewpoints?
• Is the search for an object irrespective occlusion?

In this section, we propose new sets of color models independent
of the viewpoint, surface orientation, illumination direction, il-
lumination intensity, and highlights.

A. The Reflection Model

Let be the spectral power distribution of the incident
light at the object surface at, and let be a complex
function based on the geometric and spectral properties of the
object surface at . The spectral sensitivity of theth sensor is
given by . Then , the sensor response of theth channel,
is given by

(1)

where denotes the wavelength. The integral is taken from the
visible spectrum (e.g., 380–700 nm).

Further, consider an opaque inhomogeneous dielectric object,
then the geometric and surface reflection component of function

can be decomposed in a body (matte) and surface (spec-
ular) reflection component as described by Shafer [29]:

(2)

giving the th sensor response. Further, and
are the surface albedo and Fresnel reflectance at, respectively.

is the surface patch normal,is the direction of the illumi-
nation source, and is the direction of the viewer. Geometric
terms and denote the geometric dependencies on the
body and surface reflection component, respectively.

B. Reflectance with White Illumination

Considering the neutral interface reflection (NIR) model [as-
suming that has a constant value independent of the
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wavelength] and white illumination, then , and
. Then, we put forward that the measured

sensor values are given by [30]:

(3)

giving the th sensor response of an infinitesimal surface patch
under the assumption of a white light source.

If the integrated white condition holds (i.e., the area under the
sensor spectral functions is approximately the same)

(4)

We propose that the reflection from inhomogeneous dielectric
materials under white illumination is given by:

(5)

If is not dependent on, we obtain

(6)

In the next section, this reflection model is used to derive
color invariants.

C. Body Reflectance Invariance

Consider the body reflection term of (5)

(7)

giving the th sensor response of an infinitesimalmattesurface
patch under the assumption of a white light source.

We now consider the shape of the color clusters which
will be formed in space by pixels coming from the
same uniformly colored surface of matte material according
to the reflectance model. In fact, the color depends on

(i.e., surface albedo), and the length of
the cluster depends on the illumination and roughness
and shape of the object . In other words, a uni-
formly colored surface which is curved (i.e., varying surface
orientation) gives rise to a broad variance of sensor values.
Any expression defining colors on the same elongated color
cluster spanned by the body reflection vector in sensor space,
originating from the origin (i.e., black point), is a color invariant
for matte objects under white illumination.

To that end, we propose the following basic set ofirreducible
color invariantsat a specific location :

(8)

where is discarded as the color ratio is taken from the same
surface location.

The expression is a color invariant for the dichromatic reflec-
tion model for matte objects under white illumination as follows
from substituting (7) in (8):

(9)

only dependent on the surface albedo and the sensors and fac-
toring out dependencies on the viewpoint, surface orientation,
illumination direction, and illumination intensity.

Any (linear) combination of the basic set of irreducible color
invariants will result in a new color invariant. For the ease of
illustration, we now focus on the 3-D -space given by

(10)

(11)

(12)

where giving the red, green, and blue sensor
response of an infinitesimalmattesurface patch under the as-
sumption of a white light source.

Then, having red, green, and blue as primary colors yielding
the basic set of irreducible color invariants [cf. (8)]:

(13)
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(14)

(15)

Then, other color invariants can be computed in a systematic
manner in terms of , , and :

(16)

where , and . Further,
, and , .

Lemma 1: Assuming dichromatic reflection and white illu-
mination, is independent of the viewpoint, surface orienta-
tion, illumination direction, and illumination intensity.

Proof: By substituting (10)–(12) in (16) we have (16a),
shown at the bottom of the page, factoring out dependencies on
the viewpoint, surface orientation, illumination direction, and

illumination intensity. for
is the compact formulation depending on the sen-

sors and surface albedo only. Further, ,
and , , , , , . Finally, , and , .

For instance, for the first order color invariants (i.e.,
), we have the set

(17)

and for the second order color invariants (i.e.,
):

(18)

and for the third order color invariants:

(19)

etc., where each expression is a color invariant for the dichro-
matic reflectance under white illumination.

We can easily see that normalized color given by [31]

(20)

(21)

(22)

(16a)
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is an instantiation of the first order color invariant of (16) and
hence being independent of the viewpoint, surface orientation,
illumination direction, and illumination intensity as shown in
(23), shown at the bottom of the page, where again

for (24)

is the compact formulation depending on the sensors and surface
albedo only. Equal arguments hold forand .

Although any instantiation of can be taken for the purpose
of viewpoint independent image retrieval, in this paper, normal-
ized color is considered as an instantiation ofbecause nor-
malized color is intuitive and well-known in the color literature.
In addition to , the following first-order color invariant has
been selected as an instantiation offor viewpoint-invariant
object search:

(25)

(26)

(27)

being invariants for matte, dull objects [cf. (10)–(12) and
(25)–(27)]:

(28)

(29)

(30)

only dependent on the sensors and the surface albedo.
The effect of surface reflection (highlights) is discussed in the

following section.

D. Body and Surface Reflectance Invariance

Consider the surface reflection term of (5)

(31)

giving the th sensor response for an infinitesimalshinysurface
patch under white illumination.

For a given point on a shiny surface, the contribution of the
body reflection component and surface reflection component

are added cf. (5). As a consequence, in -color space,
the observed colors of a uniformly colored (shiny) surface will
be formed on the dichromatic plane spanned by the body and
surface reflection components.

Under the condition of the NIR model and white light, this
dichromatic plane originates from the main diagonal axis.
Therefore, any expression defining colors on this dichromatic
plane is a color invariant for the dichromatic reflection model.
To that end, we propose the following basic set ofirreducible
color invariantsat location :

(32)

where , and is omitted as the color ratio is taken from
the same surface location.

(33)

This expression is a color invariant for the dichromatic reflec-
tion model under white illumination as follows from substituting
(5) in (32) as in (32a), shown at the bottom of the next page,
only dependent on the sensors and the surface albedo, where is
the compact formulation for theth the channel.

Any (linear) combination of the basic set of irreducible color
invariants will result in a new color invariant. For the ease of
illustration, we again focus on the 3-D -space given by

(34)

(35)

(36)

(23)
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giving the red, green, and blue sensor response of an infinites-
imal surface patch under the assumption of a white light source.
Then, having red, green and blue as primary colors yielding the
following basic set of irreducible color invariants:

(37)

(38)

(39)

color invariants can be computed in a systematic manner:

(40)

where , and , , , , , . Further,
, and , .

Lemma 2: Assuming dichromatic reflection and white illu-
mination, is independent of the viewpoint, surface orientation,
illumination direction, illumination intensity, and highlights.

Proof: By substituting (37)–(39) in (40) we have as shown
in (40a), shown at the bottom of the page, independent of the
viewpoint, surface orientation, illumination direction, illumina-
tion intensity, and highlights. Further, ,
and , , , , , . , and , . Furthermore,

,
and , and

for .
For instance, for the first-order color invariants (i.e.,

), we have the set

(41)

and for the second order color invariants (i.e.,
)

(42)

(32a)

(40a)
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and for the third order color invariants

(43)

etc., where each expression is a color invariant for the dichro-
matic reflectance under white illumination.

We can easily see that hue given by [31]:

(44)

ranging from [0, 2 ) is an instantiation of the first order color
invariant of (40), as a function of , with ,

, , .
Although any instantiation of can be taken for the purpose

of viewpoint independent image retrieval, in this paper, the fol-
lowing first-order color invariant has been selected as an instan-
tiation of for viewpoint-invariant image retrieval:

(45)

(46)

(47)

which is the set of normalized (absolute) color differences (ncd),
where and .

E. Noise Analysis of Color Invariants

In this section, the aim is to study the robustness of the dif-
ferent color invariants with respect to sensing and measurement
errors. For example, it is known that normalized color become
more sensitive to noise when is near zero [32]. To get
more insight in the noise stability of the newly proposed color
invariants, we analyze and compare the noise sensitivity of the
color invariants , , hue and .

It is known that noise sensitivity of a function can be derived
from the stability of its variables. The idea is that the uncertainty
in a function is stretched with the value of the derivative at that
point. Then the sensitivity of a function with vari-
ables , having values is given by

(48)
We have computed for the different color invariants. It can
be concluded that normalized color becomes unstable when in-
tensity is small as reported by Kender [32]. Same arguments
hold for , where is slightly more robust than .
For hue and it is concluded that they become unstable
when intensity and saturation (i.e., near ) is small,
where is slightly more robust than hue. Note that
has a singular point at .

III. COLOR INVARIANT GRADIENTS

In the previous section, we discussed color models that are
invariant under varying imaging conditions. In this section, we
propose color invariant edges derived from the newly proposed
color models. The color invariant edges will be used to compute
the shape-based invariant features.

A. Gradients in Multivalued Images

In contrast to gradient methods that combine individual com-
ponents of a multivalued image in anad hocmanner without any
theoretical basis (e.g., taking the sum or RMS of the component
gradient magnitudes as the magnitude of the resultant gradient),
we follow the principled way to compute gradients in vector im-
ages as described by Silvano di Zenzo [33] and further used in
[34], which is summarized as follows.

Let : be a -band image with com-
ponents : for . For color
images we have . Hence, at a given image location the
image value is a vector in . The difference at two nearby
points and is given by

. Considering an infinitesmall displacement, the
difference becomes the differential
and its squared norm is given by

(49)

where and the extrema of the
quadratic form are obtained in the direction of the eigenvectors
of the matrix and the values at these locations correspond
with the eigenvalues given by

(50)

with corresponding eigenvectors given by , ,
where and .
Hence, the direction of the minimal and maximal changes at a
given image location is expressed by the eigenvectorsand

, respectively, and the corresponding magnitude is given by
the eigenvalues and , respectively. Note that may be
different than zero and that the strength of an multivalued edge
should be expressed by how compares to , for example
by subtraction as proposed by [34], which will be
used to define gradients in multivalued colorinvariant images
in the next section.

B. Gradients in Multivalued Color Invariant Images

In this section, we propose color invariant gradients based on
the multiband approach as described in the previous section.

The color gradient for is as follows:

(51)
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for

(52)
where

Further, we propose that the color invariant gradient (based
on ) for matte objects is given by

(53)

for

(54)

where

Similarly, we propose that the color invariant gradient (based
on ) for shiny objects is given by

(55)

for

(56)

where

Note that varies with a change in material only,
with a change in material and highlights, and vary with a
change in material, highlights, and geometry of an object. Based
on these observation, we may conclude that measures
the presence of 1) shadow or geometry edges, 2) highlight edges,
and 3) material edges. Further, measures the presence
of 1) highlight edges, 3) material edges. And measures
the presence of only 3) material edges.

Note that varies with a change in material only,
with a change in material and highlights, and vary with a
change in material, highlights, and geometry of an object. Based
on these observation, we may conclude that measures
the presence of 1) shadow or geometry edges, 2) highlight edges,
and 3) material edges. Further, measures the presence
of 1) highlight edges, 3) material edges. And measures
the presence of only 3) material edges.

IV. SHAPE INVARIANTS

In this section, shape invariants are discussed measuring geo-
metric properties of a set of coordinates of an image object in-
dependent of a coordinate transformation. We discuss similarity
and projective invariants.

A. Similarity Invariant

For image locations , , and , is
defined as a function which is unchanged as the points undergo
any two-dimensional (2–D) translation, rotation and scaling
transformation, yielding the well-known similarity invariant:

(57)

where is the angle at image coordinate between line
and .

B. Projective Invariant

For the projective case, geometric properties of the shape of
an object should be invariant under a change in the point of
view. From the classical projective geometry we know that the
so called cross-ratio is independent of the projection viewpoint.

From [35], we derive the projective invariant defined as

(58)

where , , are the angles at image coordinate be-
tween and ,
and , and ,
respectively.

Noise sensitivity and probabilistic analysis of using the cross
ratio for model-based object recognition is discussed in [36].

V. INVARIANT IMAGE INDEXING

Let the reference image database consist of a set of
color images. Invariant feature spaces are created for each image

to represent the distribution of quantized invariant values in a
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high-dimensional invariant space. In this section, invariant fea-
ture spaces are formed on the basis of photometric color invari-
ants, geometric invariants and combination of both.

A. Color Invariant Histogram Formation

By using at a pixel as a direct index, a 3-D histogram is
constructed in a standard way on the, , and axes as shown
in (59), at the bottom of the page, whereindicates the number
of times , , and equals the value of index . is
the total number of image locations.denotes the logical AND.

The total accumulation for a particular histogram bin repre-
sents a measure of the area of a uniformly colored surface patch
being imaged. Because each nonzero bin indicates the presence
of a distinctively colored patch, the histogram is indicative for
the color variety of the object in view independent of object ge-
ometry, shadows, and camera viewpoint.

The 3-D histogram of is defined as in (60), shown at
the bottom of the page, whereindicates the number of times

, , and equals the value of index .
The histogram representing the distribution of edges is

given by

(61)

only computed for locations , where is the set of
edge maxima computed from image. Edge maxima are

obtained by applying nonmaximum suppression on the gradient
to obtain local maxima in the gradient values [37].

The total accumulation for a particular bin represents a mea-
sure of the length of a certain color edge. For example, ac-
cumulation in a particular bin may represent the length of a
yellow-green edge in the image. In this way, the measure of
color area expressed by and is replaced with a mea-
sure of edge length.

B. Shape Invariant Histogram Formation

In this section, shape invariant histograms are constructed.
We use -based color invariant edges as feature points.
These edges are viewpoint-independent, discounting shading,
illumination intensity and direction, shadows and highlights.

A one-dimensional (1–D) histogram is constructed in a stan-
dard way on the angle axis expressing the distribution of angles
between color invariant edge triplets mathematically specified
by

(62)

only computed for , where is the set
of edge maxima computed from and is given by (57).

Thus, between each triplet of color edge maxima, the angle
denoted by is computed and used as an index. Hence, each par-
ticular bin sum can be seen as the number of color edge triplets
generating the same angle.

In a similar way, a 1-D histogram is defined on the cross ratio
axis expressing the distribution of cross ratios between color
edge quintets

(63)

only computed for and
is defined by (58).

C. Composite Color and Shape Invariant Histogram
Formation

In this section, photometric color and geometric invariants are
combined to construct a high-dimensional invariant histogram.

A four-dimensional (4–D) histogram is created counting the
number of color invariant edge triples with values, , and
generating angle(similarity invariant):

(64)

only computed for , where is the
set of (color invariant) edge maxima computed fromand

the value of the color edge at .
Each histogram bin measures the number of color edge

triplets generating a certain angle. For example, a particular
bin accumulation may represent the number of red-blue, or-
ange-blue, and yellow-green edges in an image generating the
angle . In this way, both color and shape invariants
are used during histogram formation. As a consequence,
each object in view should generate a highly object-specific
histogram.

In a similar way, a six-dimensional (6–D) invariant histogram
can be constructed considering the cross-ratio between color
edges as follows:

(65)

for (59)

for (60)
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Fig. 1. Left: Various images which are included in the image database of 500 images. The images are representative for the images in the database. Right:
Corresponding images from the query set.

VI. I NVARIANT IMAGE RETRIEVAL

Color and shape invariants are computed from query image
and used to create the query histogram . Then, is

matched against the same type of histogram precomputed and
stored for each reference image in the database. For comparison
reasons in the literature, matching is expressed by normalized
histogram intersection as defined by

(66)

where and , for , are his-
tograms of type derived from test image and reference
image , respectively. is the number of nonzero invariant
values derived from yielding , , nonzero
bins in .

Note that normalized histogram intersection is robust to sub-
stantial object occlusion and cluttering [12]. In contrast, simi-
larity functions based on eigenvalues or moments may run short
in case of object occlusion and cluttering, as they are defined as
an integral property on the invariant feature distributions.

VII. EXPERIMENTS

To evaluate color and shape invariant indexing and retrieval,
the following issues will be addressed in this section: 1) the
discriminative power of color invariant object indexes, shape
invariant object indexes, and of combined color and shape in-
variant indexes; and 2) robustness of the image retrieval scheme
to occlusion, clutter and a change in viewpoint.

The data sets on which the experiments will be conducted
are described in Section VII-A. The same dataset has been used
to compare different color models for object recognition [30],
[38]. Error measures and performance criteria are given in Sec-
tion VII-B and VII-C, respectively.

A. Datasets

The dataset consists of color images taken from
multicolored man-made objects composed of a large variety of
materials including plastic, textile, paper, wood, rubber, painted
metal, and ceramic. The SONY XC-003P CCD color camera (3
chips) and the Matrox Magic Color frame grabber were used to
record the objects. The objects were recorded in isolation (one
per image) against a white cardboard background. The digiti-
zation was done in 8 b per color. Two light sources of average
day-light color were used to illuminate the objects in the scene.
There was no attempt to individually control the focus of the
camera or the illumination. Objects were recorded at a pace of a
few shots a minute. They show a considerable amount of noise,
shadows, shading, specularities, and self occlusion resulting in
a good representation of views from everyday life.

A second, independent set (the test set) of recordings was
made of randomly chosen objects already in the database. These
objects, in number, were recorded again (one per
image) with a new, arbitrary position and orientation with re-
spect to the camera [some recorded upside down, some rotated,
some at different distances (different scale)].

In Fig. 1, various images from the image database of 500
images are shown on the left, whereas various images coming
from the query set are shown on the right.

In the experiments, all pixels in a color image are discarded
having intensity and saturation smaller then 5% of the total
range otherwise calculation of , , hue, and be-
come unstable, see Section II-E. Consequently, the white card-
board background as well as the grey, white, dark or nearly col-
orless parts of objects as recorded in the color image will not be
considered in the matching process.

B. Error Measures

For a measure of recognition quality, let rank de-
note the position of the correct match for query image,

, in the ordered list of match values. The
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Fig. 2. One of the ten images generating four images by blanking outo 2 f50; 65; 80; 90g percent of the total object area.

Fig. 3. One of the ten images generating four images by varying the angle between the camera fors = f45; 60; 75; 80g degrees with respect to the object’s
surface normal (see the color plate for the color figures).

Fig. 4. Six of the 30 images taken from cluttered scenes.

rank ranges from from a perfect match to
for the worst possible match.

Then, for one experiment, the average ranking percentile is
defined by

% (67)

The cumulative percentile of test images producing a rank
smaller or equal to is defined as

% (68)

where reads as the number of test images having rank.
Further, let be the number of nonzero bins in the test

histogram . Then the average number of nonzero bins
determines the average run time complexity

of the histogram matching process

(69)

where is the number of reference images in the image data-
base.

C. Performance Criteria

Good performance is achieved when the recognition rate is
high and the average run time complexity is low. To that end, the
following criterion should be maximized:the average ranking
percentile (the discriminative power) resulting from matching
the test set on the reference database; and the following crite-
rion should be minimized:the averagenumber of nonzero bins

(average run time complexity) to be used during histogram
matching to compute the number of common hits between
and .

D. Image Retrieval by Photometric Color Invariant Image
Indexing

In this section, we report on the performance of the indexing
and retrieval scheme for the test images on the data-
base of reference images on the basis of photometric
color invariants. To that end, attention is focussed on retrieval
by histogram matching based on the following color-based his-
tograms: , and as defined in Section V.

First, we will determine the appropriate bin size. We deter-
mine the appropriate bin size for our application empirically
by varying the number of bins on the color invariant axes over

and choose the smallest
for which the performance criteria, given in Section VII-C, are
met. To that end, the average ranking percentile of de-
noted by , denoted by and color edges denoted
by , is tested in relation to(see Fig. 5). The influence of the
number of bins on the average ranking percentile based on the
different color invariants is the same: gives the same results
as which are slightly better then . Beyond , re-
trieval accuracy is constant, so it is concluded that bins
are sufficient for proper photometric color invariant object re-
trieval.

Second, the average number of nonzero bins determining
the computational complexity for denoted by ,

given by and color edges by with respect to is
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Fig. 5. Average ranking percentile ofc c c denoted byr , l l l given
by r and color invariant edge maxima denoted byr , plotted against
quantizationq.

Fig. 6. Average number of nonzero bins forc c c given byN , l l l
denoted byN and color edges given byN , plotted against quantizationq.

Fig. 7. Accumulated rankingX plotted against rankingj with q = 16 for
c c c denoted byX , l l l denoted byX , color edges given byX ,
RGB given byX , and normalized colorrgb denoted byX .

Fig. 8. Accumulated ranking plotted against rankingj with q = 16 for
combined color-shape invariantsX andX .

considered, see Fig. 6. From the results we can see that the rate
of increase of is twice as much as the one for and .

To compromise between discriminative power and average
run time complexity, is used in the following.

Fig. 7 shows the accumulated rankingfor , aver-
aged over all the test images differentiated for the various pho-
tometric color invariants. Excellent performance is shown for
both and , where, respectively, 92% and 87% of the
position of the correct match in the ordered list of match values
is within the first two and, respectively, 97% and 92% within the
first five rankings. Misclassification occurs when the test image
consists of very few (two or three) distinct color patches mostly
arising from small objects. Hence, from the results it is shown
that and perform more or less the same. Color in-
variant edges give slightly worse retrieval accuracy.

For comparison reasons, the accumulated rankinghas also
been computed for and normalized color (see Fig. 7).
From the results we can observe that the discriminative power
of and are similar. As expected, the discrimination
power of has the worst performance due to its sensitivity
to varying imaging conditions, see also [30].

For , according to (69), the average run time com-
plexity is , and for ,

and , respectively, see Fig. 6. give
slightly better run time complexity then .

E. Image Retrieval by Geometric Invariant Image Indexes

In this section, the discriminative power of similarity and pro-
jective invariant indices are examined.

To evaluate the discriminative power of the geometric in-
variant index, the following histograms, defined in Section V,
are considered: and . Histogram gives the distribu-
tion of angles and the distribution of cross ratios between
color edges.

Average ranking percentile for and , denoted
by and , respectively, is shown for different

in Fig. 9. The average
number of nonzero bins (similarity) and (cross ratio)
is shown is Fig. 10.
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Fig. 9. Average ranking percentile for similarityH and cross-ratioH
plotted against quantizationq.

Fig. 10. Average number of nonzero bins for the similarity and cross ratio
invariants plotted against quantizationq.

Projective invariant values are noise sensitive [39] and less
constrained (i.e., more coordinate combinations produce the
same invariant value) and hence the discriminative performance
expressed by is significantly worse than that of . Note
that the discriminative power of photometric color invariant
image indices from the previous section is significantly better
than shape based matching. Where average ranking percentile
for and is approximately 94% for within
the first ten rankings, see Fig. 7, the average ranking percentile
of the similarity invariant is 84% and 72% for cross ratios.

To compromise between the two performance criteria,
is taken for and in the following.

F. Image Retrieval by Composite Color and Shape Invariant
Image Indexes

In this section, the discriminative power of the combination
of shape and color invariant histogram matching is examined by
considering and as defined in Section V during the his-
togram matching process. Note that there is no need for tuning
parameter , because can be seen as the aggregation of

Fig. 11. Ranking percentile plotted against the percentage object area blanked
out o denoted byr , r , r , r , andr .

and , and can be seen as the aggregation of and
all with . The accumulated ranking is shown in Fig. 8.

Excellent discriminative accuracy is shown for as 96%
of the images are within the first two rankings, and 98% within
the first nine rankings. gives very good retrieval accuracy
as 92% of the images are within the first five rankings.

G. Stability to Occlusion and a Change in Viewpoint

To test the effect of occlusion on the retrieval process, ten ob-
jects, already in the database of 500 recordings, were randomly
selected and in total 40 images were generated by blanking out

percent of the total object are (see Fig. 2).
Note that white as recorded in the color image will not be con-
sidered in the matching process.

The ranking percentile , , , , and ,. av-
eraged over the ten histogram matching values, is shown in
Fig. 11.

From the results, we see that the shape and decrease of the
curves for , , , , and do not differ signifi-
cantly: namely a gradual decrease in retrieval accuracy beyond
50% blanking.

To test the effect of a change in viewpoint, the ten flat ob-
jects were put perpendicularly in front of the camera and in total
40 recordings were generated by varying the angle between the
camera for degrees with respect to the
object’s surface normal (see Fig. 3). Average ranking percentile
is shown in Fig. 12.

Looking at the results, the rate of decrease is almost negligible
for viewing angles up to 75. Even when the object-side is nearly
vanishing from sight, retrieval is still acceptable.

H. Discriminative Power in the Presence of Object Clutter

Another important claim is that the proposed method for ob-
ject retrieval is fairly insensitive to object clutter. To test the ef-
fect of object cluttering, 30 images have been recorded from
cluttered scenes. Each cluttered scene contained different mul-
ticolored objects (see Fig. 4).

Then, ten objects were randomly selected which participated
in exactly one of the cluttered scenes. These objects were
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Fig. 12. Ranking percentile plotted against the angle of rotations denoted by
r , r , r , andr .

Fig. 13. Discriminative power plotted against the rankingj for r , r ,
r , r , andr .

recorded in isolation against a white background yielding the
test set. The test set has been matched against the database of
30 images. Fig. 13 shows the accumulated average ranking
percentile for different invariant indexes.

From the results it can be observed that the invariant indexes
are fairly insensitive to object clutter.

VIII. D ISCUSSION

When the performance of different invariant indices is com-
pared, histogram matching based on both shape and color in-
variants produces the highest discriminative power: 96% of the
images are within the first two rankings, and 98% within the
first nine rankings. Image retrieval based entirely on shape in-
variants yields poor discriminative power. As opposed to shape
invariant matching, color invariant based histogram matching
results in very high discriminative performance. While the av-
erage ranking percentile for and is 94% , the av-
erage ranking percentile of the similarity invariant is 84% and
72% for cross ratios.

Furthermore, the experimental results reveal that identifying
multicolored objects on the basis of only photometric color in-
variants, and the combination of shape and color invariants, is

to a very large degree robust to partial occlusion, object clutter
and a change in viewing position.

In the next section, the image retrieval scheme is integrated
into the PicToSeek system for searching images on the World
Wide Web.

IX. PICTOSEEK: A CONTENT-BASED IMAGE SEARCH SYSTEM

We have implemented a content-based image search system,
called PicToSeek, for exploring visual information on the World
Wide Web. In the first stage, PicToSeek collects images on
the World Wide Web by means of autonomous Web-crawlers.
Then, the collected images are automatically cataloged into
various image styles and types: JFIF-GIF, grey-color, size, date
of creation, and color depth. Further, the system automatically
classifies (by supervised learning) images into the following
classes: photograph-synthetic, (photographs) indoor-out-
door, (photographs) portraits, and (synthetics) buttons. After
cataloging images, the proposed invariant image features are
extracted from the images to produce a high-dimensional image
index independent of the accidental imaging conditions. When
images are automatically collected, cataloged and indexed,
PicToSeek allows for fast on-line image search by combining:
1) visual browsing through the precomputed image catalogue,
2) query by pictorial example, and 3) query by image features.
The content-based image retrieval process is conducted in an
interactive, iterative manner guided by the user by relevance
feedback.

In Section IX-A, an overview of the system is given. In Sec-
tion IX-B, the implementation of PicToSeek is discussed. Fi-
nally, the query capability of the system is outlined in Sec-
tion IX-C. PicToSeek is on-line at http://www.wins.uva.nl/re-
search/isis/zomax/. A more detailed report on PicToSeek ap-
peared in [1].

A. System Overview

The major components of the PicToSeek system are described
in detail below.

1) Interactive Query Formulation:An image is sketched,
recorded or selected from a repository. This is the query defi-
nition with the aim to find a similar image in the database. Note
that “similar image” may imply a partially identical image (as
in the case of finding stamps), or a partially identical object in
the image (as in the case of a stolen goods database), or a similar
styled image (as in the case of a fashion design support system).

PicToSeek offers snakes for interactive image segmentation,
described in [40], for the purpose of content-based image re-
trieval by query-by-example. We proposed the use of colorin-
variant gradient information to guide the deformation process
to obtain snake boundaries which correspond to material bound-
aries in images discounting the disturbing influences of surface
orientation, illumination, shadows, and highlights. The key idea
is to allow the user to specify in an interactive way salient subim-
ages of objects on which the image object search will be based.
In this way, confounding and misleading image information is
discarded. In conclusion, PicToSeek offers interactive query for-
mulation either by query (sub)image(s) or by offering a pattern
of feature values and weights.
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2) Image Features:PicToSeek allows the user to choose the
desired classes of invariance. For each image retrieval query a
proper definition of the desired invariance is in order. Does the
applicant wish search for the object in rotation and scale invari-
ance? Illumination invariance? Viewpoint invariance? Occlu-
sion invariance? In the current state of the art of query engines,
invariance receives little attention. But for large databases, the
availability at the time of query definition is essential. The shape
and color invariants proposed in this paper are the core of the
PicToSeek system.

3) Feature Representation and Weighting:The image fea-
ture sets are represented by-dimensional feature space. In this
way, the domain dependent part of the whole image retrieval
system is reduced to a minimum.

To be precise, let an image be represented by itsimage
feature vectorsof the form , ; , ; ; ,
and a typical query by , ; , ; ; , ,
where (or ) represent the weight of image featurein
image (or query ), and image features are used for image
object search. The weights are assumed to be between zero and
one.

Weights can be assigned corresponding to the feature fre-
quency ff as defined by

ff (70)

giving the well-known histogram form where ff(feature fre-
quency) is the frequency of occurrences of the image feature
values in the image or query. However, for accurate image ob-
ject search, it is desirable to assign weights in accordance to the
importance of the image features. To that end, the image feature
weights used for both images and queries are computed as the
product of the features frequency multiplied by the inverse col-
lection frequency factor, defined by [41]

ff
ff

(71)

where is the number of images in the database and n denotes
the number of images to which a feature value is assigned. In this
way, features are emphasized having high feature frequencies
but low overall collection frequencies.

4) Searching: In the field of pattern recognition, several
methods have been proposed that improve classification
automatically through experience such as artificial neural net-
works, decision tree learning, Bayesian learning, and-nearest
neighbor classifiers. Except for the-nearest neighbor classi-
fier, the other methods construct a general, explicit description
of the target function when training examples are provided. In
contrast, -nearest neighbor classification consist of finding
the relationship to the previously stored images each time a
new query image is given. When a new query is given by the
user, a set of similar related images is retrieved from the image
database and used to classify the new query image. The advan-
tage of -nearest neighbor classification is that the technique
construct a local approximation to the target function that
applies in the neighborhood of the new image query images,
and never construct an approximation designed to perform well
over the entire instance space. To that end, PicToSeek uses the

-nearest neighbor classifier for image search.

5) Relevance Feedback:Relevance feedback is an auto-
matic process designed to produce improved query formulations
following an initial retrieval operation. Relevance feedback is
needed for image retrieval where the users find it difficult to
formulate pictorial queries which are well designed for accurate
retrieval purposes. For example, without any specific query
image example, the user might find it difficult to formulate a
query (e.g., to retrieve an image of a car) by an image sketch
or by offering a pattern of feature values and weights. This
suggests that the first search operation should be conducted
with a tentative, initial query formulation, and should be
processed as a trial search. These initially retrieved images
should then be examined for relevance, and a (new) improved
query formulation should be constructed with the purpose to
retrieve more relevant images in subsequent search operations.
The system use the feature weighting given by the user to find
the images in the image database which are most similar with
respect to the feature weighting.

B. Implementation

The PicToSeek system is based on a client-server paradigm.
The client part is a Java Applet and correspond to the graphical
user interface. The client part takes care of interactive query
formulation, the display of the results, and the relevance
feedback specification given by the user. The server part of
PicToSeek takes care of the image feature extraction, feature
weighting from relevance feedback,-nearest neighbor feature
classification, and image sorting. The server is implemented in
C. The interface between client (Java) and server (C) is written
in Java. The Web-crawler, image analysis and feature extraction
methods have been implemented in C.

The client and server components are described here more in
detail.

1) Client Site: Using a standard web-browser, the Pic-
ToSeek Applet is sent to the client. After the Applet has started,
the user can load any image available at the WWW by giving
the URL address. After the user has loaded an image, the user
is allowed to specify (sub)images by the interactive snake
segmentation method. After interactive query formulation,
the user specifies the preferred invariance, and the similarity
measure. Then, the image query formulation is send to the
server. In conclusion, the client-part is a Java Applet and can
be started by a standard web browser. The Java Applet allows
the user to

1) select/load an (external) image;
2) select appropriate subimages of objects (instead of the

entire image) on which the image object search will be
conducted;

3) select color features (invariants) and similarity measure;
4) send the query formulation to the server.

2) Server Site:The server receives the query image for-
mulation send by the client. After receiving the query image,
the server convert the image to the desired format, enabling
the image processing routines, implemented in C, to extract
the required invariant image features. Query image features
are weighted. In this way, features are emphasized having
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Fig. 14. Content-based image retrieval by query-by-example based on the region denoting the lion (without the background) as specified by the user.

high feature frequencies but low overall collection frequen-
cies. -nearest neighbors are found in this weighted vector
representation. The-nearest neighbors are sorted with respect
to their similarity and send back to the client for display. In
conclusion, the server receives the image query formulation
from the client. Then, the following operations are performed:

1) image feature extraction;
2) image feature weighting;
3) -nearest neighbors are found and sorted;
4) results are send back to the client for display.

C. Query Scenario

All queries follow the same scenario, listed here.

Step 1) Image domain selection:Visual browsing through
the precomputed image catalogue;

Step 2) Image selection:select an image from the catalogue
or capture the query image from an object by giving a
URL address.

Step 3) Query image:the query image is defined as an user-
specified interesting part of the selected image.
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Step 4) Invariance selection:the required invariance is se-
lected from the list of available invariant indices.

Step 5) Search: the same invariant indices are computed
from the query and matched with those stored in the
database.

Step 6) Display: an ordered list of most similar images is
shown.

Step 7) Image Selection:if the right image is found, the
image can be displayed at full resolution.

Step 8) Rerun:if the right image is not found the query image
is adjusted (go to Step 1) or the most similar image is
used to refine query definition (go to Step 3).

To illustrate the query capability of the system, typical ap-
plications are considered of retrieving images containing an in-
stance of a given object. To that end, the query is specified by
an example image taken from the object at hand. Typical query
specifications are shown in Fig. 14. The images come from
Corel © Stock Photo Libraries.

Consider Fig. 14, where the user has specified the region
showing a lion. The region is used as the query. Images in the
image database are compared to the lion query based on their
color invariant information. After image matching, images are
shown in order of resemblance to the user. Note that within the
first 16 images, 12 images contain a lion.

X. CONCLUSION

In this paper, new sets of color models have been proposed
invariant to the viewpoint, geometry of the object and illumi-
nation conditions. Color invariant edges have been proposed
from which shape invariant features are computed. Computa-
tional methods are given to combine color and shape invariants
into a unified high-dimensional invariant feature set for discrim-
inatory object search.

From the theoretical and experimental results, it is concluded
that object search based on composite color and shape invariant
features provides excellent recognition accuracy. Object search
based on color invariants provides very high retrieval accuracy
whereas object search based entirely on shape invariants yields
poor discriminative power. Furthermore, the image retrieval
scheme is highly robust to partial occlusion, object clutter and
a change in viewing position.

Finally, the image retrieval scheme is integrated into the
PicToSeek system on-line at http://www.wins.uva.nl/re-
search/isis/PicToSeek/ for searching images on the World Wide
Web.

REFERENCES

[1] T. Gevers and A. W. M. Smeulders, “PicToSeek: A content-based image
search engine for the World Wide Web,” inProc. Visual Information
Systems, San Diego, CA, 1997, pp. 93–100.

[2] W. Grosky and R. Mehrotra, “Special issue on image database manage-
ment,”Computer, vol. 22, no. 12, Sept. 1989.

[3] IFIP, Visual Database Systems I and II, Amsterdam, The Netherlands:
Elsevier, 1989 and 1992.

[4] R. Jain, “NSF workshop on visual information management systems,”
SIGmod Record, vol. 22, pp. 57–75, 1993.

[5] A. Pentland, R. W. Picard, and S. Sclaroff, “Photobook: Tools for con-
tent-based manipulation of image databases,” inProc. Storage and Re-
trieval for Image and Video Databases II. Bellingham, WA: SPIE,
1994, vol. 2, pp. 34–47.

[6] W. Niblack and R. Jain, Eds.,Proc. Storage and Retrieval for Image and
Video Databases I, II, and III. Bellingham, WA: SPIE, 1993, 1994 and
1995, vol. 1,908; 2,185; and 2,420.

[7] Proc.Visual Information Systems: The 1st Int. Conf.Visual Information
Systems, Melbourne, Vic., Australia, 1996.

[8] A. Califano and R. Mohan, “Multidimensional indexing for recognizing
visual shapes,”IEEE Trans. Pattern Anal. Machine Intell., vol. 16, pp.
373–392, Apr. 1994.

[9] Y. Lamdan and H. J. Wolfson, “Geometric hashing: A general and effi-
cient model-based recognition scheme,” inProc. 2nd ICCV, 1988, pp.
238–249.

[10] I. Rigoutsos and R. Hummel, “On a scalable parallel implementation
of geometric hashing on the connection machine,” Courant Inst. Math.
Science, New York Univ., New York, Tech. Rep. 554, 1991.

[11] F. Stein and G. Medioni, “Structural indexing: Efficient 2-D object
recognition,” IEEE Trans.Pattern Anal. Machine Intell., vol. 14, pp.
1198–1204, Dec. 1992.

[12] M. J. Swain and D. H. Ballard, “Color indexing,”Int. J. Comput. Vis.,
vol. 7, pp. 11–32, Nov. 1991.

[13] H. J. Wolfson, “Object recognition by transformation invariant in-
dexing,” inProc. Invariance Workshop, ECCV, 1992.

[14] B. V. Funt and G. D. Finlayson, “Color constant color indexing,”IEEE
Trans.Pattern Anal. Machine Intell., vol. 17, pp. 522–529, May 1995.

[15] S. K. Nayar and R. M. Bolle, “Reflectance based object recognition,”
Int. J. Comput. Vis., vol. 17, pp. 219–240, Mar. 1996.

[16] G. D. Finlayson, S. S. Chatterjee, and B. V. Funt, “Color angular in-
dexing,” inECCV’96, 1996, pp. 16–27.

[17] G. Healey and D. Slater, “Global color constancy: Recognition of objects
by use of illumination invariant properties of color distributions,”J. Opt.
Soc. Amer., vol. 11, pp. 3003–3010, Nov. 1995.

[18] D. Slater and G. Healey, “The illumination-invariant recognition of 3D
objects using local color invariants,”IEEE Trans. Pattern Anal. Machine
Intell., vol. 18, pp. 206–210, Feb. 1996.

[19] T. Gevers and A. W. M. Smeulders, “Enigma: An image retrieval
system,” inProc.11th ICPR, 1992, pp. 697–700.

[20] M. Flickner et al., “Query by image and video content: The QBIC
system,”Computer, vol. 28, pp. 23–33, Sept. 1995.

[21] R. Mehrotra and J. E. Gary, “Similar-shape retrieval in shape data man-
agement,”Computer, vol. 28, pp. 7–14, Sept. 1995.

[22] V. E. Ogle and M. Stonebraker, “Chabot: Retrieval from a relational data-
base of images,”Computer, vol. 28, pp. 40–49, Sept. 1995.

[23] R. H. Srihari, “Automatic indexing of content-based retrieval of cap-
tioned images,”Computer, vol. 28, pp. 49–56, 1995.

[24] A. K. Jain and A. Vailaya, “Image retrieval using color and shape,”Pat-
tern Recognit., vol. 29, pp. 1233–1244, 1996.

[25] S. Sclaroff, L. Taycher, and M. La Cascia, “ImageRover: A content-
based image browser for the World Wide Web,” inProc. IEEE Workshop
on Content-based Access and Video Libraries, CVPR, 1997.

[26] C. Frankel, M. Swain, and A. Webseer, “An image search engine for the
World Wide Web,” Univ. Chicago, Chicago, IL, Tech. Rep. TR-96-14,
1996.

[27] J. R. Smith and S.-F. Chang, “VisualSEEK: A fully automated content-
based image query system,” inProc. ACM Multimedia, 1996.

[28] A. Gupta, “Visual information retrieval technology: A Virage perspec-
tive,” Virage Inc., TR 3A, 1996.

[29] S. A. Shafer, “Using color to separate reflection components,”Color
Res. Appl., vol. 10, pp. 210–218, 1985.

[30] T. Gevers and A. W. M. Smeulders, “Color based object recognition,”
Pattern Recognit., vol. 32, pp. 453–465, Mar. 1999.

[31] H. Levkowitz and G. T. Herman, “GLHS: A generalized lightness,
hue, and saturation color model,”Comput. Vis. Graph. Image Process.:
Graph. Models Image Process., vol. 55, pp. 271–285, 1993.

[32] “Saturation, hue, and normalized colors: Calculation, digitization ef-
fects, and use, Tech Rep.,” Dept. Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, 1976.

[33] S. di Zenzo, “Gradient of a multi-images,”Comput. Vis. Graph. Image
Process., vol. 33, pp. 116–125, 1986.

[34] G. Sapiro and D. L. Ringach, “Anisotropic diffusion of multi-valued
images with applications to color filtering,”IEEE Trans. Pattern Anal.
Machine Intell., vol. 5, pp. 1582–1586, Nov. 1996.

[35] O. Veiblen and J. W. Young,Projective Geometry. Boston, MA: Ginn.,
1910.

[36] S. J. Maybank, “Probabilistic analysis of the application of the cross
ratio to model based vision,”Int. J. Comput. Vis., vol. 16, pp. 5–33,
Sept. 1995.

[37] J. Canny, “A computational approach to edge detection,”IEEE Trans.
Pattern Anal. Machine Intell., vol. PAMI-8, pp. 679–698, Nov. 1986.



GEVERS AND SMEULDERS: PICTOSEEK 119

[38] T. Gevers, “Color image invariant segmentation and retrieval,” Ph.D.
dissertation, Univ. Amsterdam, The Netherlands, May 1996.

[39] C. A. Rothwell, A. Zisserman, D. A. Forsyth, and J. L. Mundy, “Planar
object recognition using projective shape representation,”Int. J.
Comput. Vis., vol. 16, pp. 57–99, 1995.

[40] T. Gevers and A. W. M. Smeulders, “Interactive query formulation for
object search,” inProc. Visual Information Systems, Amsterdam, The
Netherlands, 1999.

[41] G. Salton and C. Buckley, “Term-weighting approaches in automatic text
retrieval,” Information Process. Manage., 1988.

Theo Geversis an Assistant Professor of Computer Science at the University
of Amsterdam, The Netherlands. His main research interests are in the funda-
mentals of image database system design, image retrieval by content, theoretical
foundation of geometric and photometric invariants and color image processing.
He has led several national and international projects and acts as a reviewer. He
has published more than 40 papers on color image processing, physics-based
vision, content-based image retrieval and image database design.

Dr. Gevers is co-organizer of the First International Workshop on Image
Databases and Multimedia Search and the Third International Conference on
Visual Information Systems.

Arnold W. M. Smeulders (S’80–M’82) is a Professor of computer science in
multimedia information analysis at the University of Amsterdam, The Nether-
lands, where he also heads the Intelligent Sensory Information Systems Group.
He has been in computer vision since 1975. He has published more than 200 pa-
pers and 200 conference contributions, mostly on vision and recognition, with
a new emphasis on multimedia analysis. His current research interests are in
industrial vision from specification, color vision, image search by pictorial ex-
ample and image databases, intelligent interactive analysis, and system design
aspects of multimedia systems. He is particularly interested in the correspon-
dence between language and picture.

He is co-chair of IAPR’s TC12 on Multimedia, Associate Editor for IEEE
TRANSACTIONS ON PAMI , and the journalCytometry, and a member of the
Visual Information Systems steering committee. He is also director of the Re-
search Institute of Computer Science and Department Head of the University of
Amsterdam, and Director of the Intelligent Systems Lab at Amsterdam.


