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PicToSeek: Combining Color and Shape Invariant
Features for Image Retrieval

Theo Gevers and Arnold W. M. Smeuldeidember, IEEE

Abstract—We aim at combining color and shape invariants the object(s) at hand. In this context, image retrieval is similar
for indexing and retrieving images. To this end, color models to object search.
are proposed independent of the object geometry, object pose,  Tpg pasic idea of image retrieval by image example is to ex-

and illumination. From these color models, color invariant edges tract ch teristic feat f t ti hich th
are derived from which shape invariant features are computed. ract characteristic features irom target Images which are then

Computational methods are described to combine the color and Matched with those of the query image. These features are typ-
shape invariants into a unified high-dimensional invariant feature ically derived from shape, texture, or color properties of query
set for discriminatory object retrieval. Experiments have been and target images. After matching, images are ordered with re-

conducted on a database consisting of 500 images taken fromgpact 1o the query image according to their similarity measure
multicolored man-made objects in real world scenes. From the d disol df . 11171, f |
theoretical and experimental results it is concluded that object 2nd displayed for viewing, see [1]-[7], for example.

retrieval based on composite color and shape invariant features ~ The matching complexity of image retrieval by image

provides excellent retrieval accuracy. Object retrieval based on example is similar to that of model-based object recognition
color invariants provides very high retrieval accuracy whereas schemes. In fact, image retrieval by image example shares
object retrieval based entirely on shape invariants yields poor any characteristics with model-based object recognition. The

discriminative power. Furthermore, the image retrieval scheme is in diff is that del-based obiect ition is d
highly robust to partial occlusion, object clutter and a change in main difrerence IS that model-based object recognition Is done

the object’s pose. Finally, the image retrieval scheme is integrated fully automatically, whereas user interaction is allowed for
into the PicToSeek system on-line at http://www.wins.uva.nl/re- image retrieval by image example. To reduce the computational
search/isis/PicToSeek/ for searching images on the World Wide complexity of traditional matching schemes, timelexing or
Web. hashingparadigm has been proposed (for example [8]-[13]).
“Index Terms—eolor invariant edges, color invariants, com- |ndexing based matching schemes have a similar underlying
b|n|_ng color_and shape information, dichromatic reflection, image  ctrycture. First, a lookup table is formed by quantization of
retrleva_ll, obJ_ect search, query by example, reflectance properties, the index parameter space. Then, index vectors are generated
shape invariants. X ' ' X '
computing shape, color, or texture properties from target
images in the image database. At run-time, these features are
. INTRODUCTION extracted from the query image, and indexes are computed and

OR THE management of archived image data, an ima sed to look up images in the lookup table. Because indexing
Fdatabase system is needed that supports the anal ased matching avoids exhaustive search, it is a potentially
storage, and retrieval of images. Over the last decade, m@ficient search technique. A proper indexing technique will
attention has been paid to the problem of combining spatf%ﬁ’ executed at high speed allowing for fast image retrieval by
processing operations with DBMS capabilities for the purpod®@age example. This is useful when the image database is large
of storage and retrieval of complex spatial data in geograptfig Mmay be anticipated for mult|med|a and qurmauon services.
information systems. In contrast, image database systems aréleally, the value of the index vectors, derived from images
still based on the idea of storing a keyword description of t@ken from the same object, should remain the same regardless
image content, created by a user on input, in addition toO4 the varying circumstances induced by the imaging process.
pointer to the raw image data. Image retrieval is then shifted f@" instance, when images are taken from the same object
standard DBMS capabilities. from different viewpoints, the shape of the recorded object

A different approach is required when we consider the rdll exhibit a geometric distortion. Also photometric changes
trieval of images by image example, where a query image ®@y occur when the viewpoint is changed, yielding different
sketch is given by the user on input. Then, image retrieval is tRBadowing, shading and highlighting cues for the same object.
problem of identifying a query image as a part of target imagéd other words, the value of index vectors shouldifgariant
in the image database. In this paper, we focus on the probléfth respect to the varying imaging conditions.
of retrieving images containing instances of particular objects. Most of the work on shape-based object recognition rely on

Then, the query is specified by an example image taken frdRfitching sets of local image features (e.g., edges, lines and
corners) to three-dimensional (3-D) object models invariant

, . , to geometric transformations (e.g., translation, rotation, scale,
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rigid man-made objects. Shape features are rarely adequatepfmposed in Section Ill. Shape invariants are discussed in
discriminatory object recognition of 3-D objects from arbitrangection IV. In Section V, we propose computational methods
viewpoints in complex scenes. to produce a composite color and shape invariant indexing

As opposed to shape information, other retrieval schemes aolheme. The matching scheme is given in Section VI. Finally,
entirely on the basis of color. Swain and Ballard [12] madeia Section VII, the performance of different invariant image
significant contribution in introducing color for object searchfeatures is evaluated on a dataset of 500 images.
Based on the opponent color model, they show that image re-
trieval based on histogram matching is to a large degree ro- Il. COLOR INVARIANTS
matching acheme fs extended by Fut and Finayson [14] ang > discussed. atenton is o be paid o the desired classes o
Nayar and Bolle [15] to make the method illumination indepeﬁr_wvanance_. Fo_r eac_h 'mage retrlev_al query, a proper definition
dent by indexing on color ratio’s computed from nei hborinof the deS|_red invariance is e_sse_ntlal. A concise list of the most

y g p g

image points. However, the color ratio’s are negatively affect portant invariance prope_mes 'S_ as _fOHOWS' ) _
by the geometry of the object. Further, Finlaysemal. [16], * Is the search for objects in different orientations and
Healey and Slater [17], and Slater and Healey [18] introduced il- ~ Scales? o _
lumination-invariant moments of color histogram distributions. * S the search for objects in a large variety of scenes?

In addition, general purpose image retrieval systems have * S the search for objects in other kind of light?
been developed based on multiple features (e.g., color, shape! !S the search for objects from different viewpoints?
and texture) describing the image content [3], [4], [6]. We im- * Is the search for an object irrespective occlusion?
plemented the Enigma system [19], retrieving images based!8rhis section, we propose new sets of color models independent
query by example. QBIC [20] allows for content-based retrievaf the viewpoint, surface orientation, illumination direction, il-
for large image and video databases. Photobook [5] reduces l#ination intensity, and highlights.
ages to a small set of perceptually significant coefficients for the
purpose of image retrieval. In [21], shape information has beén The Reflection Model

used for image retrieval. In contrast to full content-based image| et E(Z, \) be the spectral power distribution of the incident
retrieval, Chabot [22], [23] uses a combination of visual afight at the object surface at, and letL(Z, \) be a complex
pearance and text-based cues to retrieve images. Image retrigy@tion based on the geometric and spectral properties of the
using combined color and shape information has been propogggect surface af. The spectral sensitivity of thieth sensor is

by [24] However, the retrieval scheme is suited for ﬂat-imgi\/en byFk()\) Thenpk, the sensor response of thia channel,
ages of trademarks. Recently, a number of image browsers grgiven by

available for retrieving images from the World Wide Web, for

example [1], [25]-[28]. These retrieval systems use color and

shape information separately for the purpose of image retrieval. pr(T) = / E(Z, M) L(Z, \)Frp(\) dA 1)

Moreover, the features used during the retrieval process depend A

on the shape of the object, camera viewpoint, and on the illu-

mination. As a consequence, the performance of these systévhgreA denotes the wavelength. The integral is taken from the

may decrease when the query and target image taken from Y#gble spectrum (e.g., 380-700 nm).

same object are recorded under different imaging conditions. Further, consider an opaque inhomogeneous dielectric object,
In this paper, we want to arrive adbmbiningcolor and shape then the geometric and surface reflection component of function

invariants for the purpose of image indexing and retrieval. Te(Z; A) can be decomposed in a body (matte) and surface (spec-

that end, a retrieval scheme is proposed making udecafi ular) reflection component as described by Shafer [29]:

color invariant information to producemiglobakhape invari-

ants to obtain a viewpoint invariant, high-dimensional object

descriptor to be used as an index for discriminatory image r x(7)

trieval. To achieve this, color invariant features are proposed ac-

cording to the following criteria: invariance to the viewpoint, + Gs(&, 7, 5, ¥) / E(Z, \)S(Z, M) F(A)dh (2)

geometry of the object, and illumination conditions. Then, from g

these color models, color invariant edges are derived from which

the shape features are computed. Shape features are indeB¥H19 thekth sensor response. Furthéi(z, A) and 5(z, A)
dent up to a change in viewpoint (i.e., projective transform&r€ the surface albedo and Fresnel reflectangeraspectively.

—

tion). Computational methods are proposed to combine coférS the surface patch normai,is the direction of the illumi-
and shape invariants into a unified high-dimensional invariaRtion source, and is the direction of the viewer. Geometric
feature space. The image retrieval scheme is designed accor&‘?r'igSGB and G5 denote the geometric dependencies on the
to the following criteria: high discriminative power, and robust?©dy and surface reflection component, respectively.
ness against fragmented, occluded and overlapping objects. _ . o

The paper is organized as follows. First, in Section II, wB: Reflectance with White lllumination
propose new color models invariant to a change in view point, Considering the neutral interface reflection (NIR) model [as-
object geometry and illumination. Color invariant edges asuming thatS(Z, A) has a constant value independent of the

—Gn(E 7, D) A B(F, NB(F, MEFx(\) dA
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wavelength] and white illumination, the${#, A) = S(¥), and To that end, we propose the following basic set@&ducible
E(Z, A) = E(Z). Then, we put forward that the measuredolor invariantsat a specific locatior’:
sensor values are given by [30]:

BAE) _ B

—

wi (%) =G (7, 7, §)E(5:’)/B(a‘:’, A Fy(X) dX B; (@) B

®)

+ Gs(T, 7, 5, ) E(Z)S(Z) / E.(\)dx (3) Whered is discarded as the color ratio is taken from the same
A surface location.

The expression is a color invariant for the dichromatic reflec-
giving thekth sensor response of an infinitesimal surface pattion model for matte objects under white illumination as follows
under the assumption of a white light source. from substituting (7) in (8):

If the integrated white condition holds (i.e., the area under the

sensor spectral functions is approximately the same)
Gu(it, DE | BOEN) dy
A

B
/m»w:/ﬂumx @) Fi %WﬂE/MMMMM
A A A
B\ F,(\) dA
We propose that the reflection from inhomogeneous dielectric _/A (VF(Y) )
materials under white illumination is given by: o N

[ BOEW
A

wi(¥) = Gp(@, 7, HET) A B, A Fi(A) dA only dependent on the surface albedo and the sensors and fac-
+ Gs(%, w, 5, V)E(Z)S(Z)F. (5) toring out dependencies on the viewpoint, surface orientation,
illumination direction, and illumination intensity.
Any (linear) combination of the basic set of irreducible color
invariants will result in a new color invariant. For the ease of
illustration, we now focus on the 3-BG B-space given by

If w(Z) is not dependent o#, we obtain

wy, = Gp(#, HE / B\ EW(N) d\ + Gs(7, §, 7)ESF. (6)

* R, = Gy(ii, HE / BO)Fr(\) dA (10)
A
In the next section, this reflection model is used to derive
color invariants.
C. Body Reflectance Invariance Gy = Gyl §)E/ BO)Fs()) dA (11)
Consider the body reflection term of (5) A
Bu(E) = Gal@. 7. DE@) [ BENBW A ()
; By =Go(@. 9 [ BOFaA (12
A

giving thekth sensor response of an infinitesimadttesurface whereC € {R,, Gy, By} giving the red, green, and blue sensor

patch under the assumption of a white light source. .response of an infinitesimahattesurface patch under the as-
We now consider the shape of the color clusters Wh'@hmption of a white light source

will be fc_;rmed in RGB space by pixels coming from th? Then, having red, green, and blue as primary colors yielding

same uniformly colored surface of matte material accordnme basic set of irreducible color invariants [cf. (8)]:

to the reflectance model. In fact, the color depends on B

S\ B(&, \)Fi(X) dX (i.e., surface albedo), and the length of

the cluster depends on the illuminatid&(Z) and roughness Gp(i, g)E/ B\ Fr(\) dX
and shape of the objec¥5(Z, 7, §). In other words, a uni- By _ A

formly c_oloreq surfgce which is curveq (i.e., varying surface Gy Gy(7, §’)E/ BO)Fs(\) dA
orientation) gives rise to a broad variance of sensor values. A

Any expression defining colors on the same elongated color /

cluster spanned by the body reflection vector in sensor space, _ AB(A)FR()‘) dA

originating from the origin (i.e., black point), is a color invariant (13)

for matte objects under white illumination. A B\ Fa(X) dX
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Gp(it §')E/ B\ Fs(\) dx illumination intensity. Kc(X) = [, B(\)Fe(X\)dA for C €
@ _ 7 A {R, G, B} is the compact formulation depending on the sen-
R, R sors and surface albedo only. Furthes ¢ +r = s + ¢ + u,
G E | B(AM)Fr(A)dA .
B(7, 9 /A (MEFR(A) andp, q,7, s, t,u € R. Finally,i, j > 1anda;, b; € R. =
For instance, for the first order color invariants (iye+ ¢ +
//\B()‘)FB()‘) A r = s+t +u = 1), we have the set
= (14)
B(M\)Fr(N) dA
A WEQY R -B R+G+8B R 3(B-G)
B> G’ 3R4+B "R+G+B 2R+G 7 7
Gy, HE / BO)F&(\) dA (17)
Go _ A
By Gp(i, §‘)E/ B(A)Fp(X\)dA and for the second order color invariants (ig+ g +r =
) A s+t+u=2):
/ B(\)Fg()\) dA
= : (15) RB 4BR R?+G? B?+3R? 18
[ BOEsax e om0 @
A

Then, other color invariants can be computed in a systemagied for the third order color invariants:
manner in terms of?,, G, andBy:

{ G3 RGB RG>+ B® BR>+G® } (19)
] R3 L5B3 R3 '’ B3 " R3 G3"”’

S @Ry (Gy)H( By o *
C(Ry, Gy, By) = = (16)
> bi(R)AGy)H(By)Y

J

etc., where each expression is a color invariant for the dichro-
matic reflectance under white illumination.
We can easily see that normalized color given by [31]

wherep+q+7r =s+t+u,andp, ¢, r, s, t, u € R. Further,

i, 7 > landa;, b; € R. r(R, G, B) = L7 (20)
Lemma 1: Assuming dichromatic reflection and white illu- R+G+B
mination, C is independent of the viewpoint, surface orienta- a
tion, illumination direction, and illumination intensity. 9(R, G, B) = RiGTB (21)
Proof: By substituting (10)—(12) in (16) we have (16a),
shown at the bottom of the page, factoring out dependencies on b(R, G, B) = B (22)
the viewpoint, surface orientation, illumination direction, and R R+G+B
> ai(R)V(G)H(By);
C(Rln va Bb) == : ]
> bi(Ry)3(Gy)H(By)
i
> ailGr(il, HEKr(N) (G, 5 EKa(\)H(Gn(i, HEKp(\);
Y ai(Ga(i, HEKRON)(Gr(i, HEKG(N) (G, 5EK (V)
i
Y ai( @7, HEYP T (Kr(W)F (Ke (M) (Kp(A\)i
D 0@, HE) K Rr(N)}(Ka(A\) (KN
J
> ai(KrO) (Ke(W)H(Ks(W);
(16a)

S b RO (KOS K (V)
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is an instantiation of the first order color invariant of (16) an®. Body and Surface Reflectance Invariance
hence being independent of the viewpoint, surface onentatlonConSIder the surface reflection term of (5)
illumination direction, and illumination intensity as shown in

(23), shown at the bottom of the page, where again

_ /B(/\)FC()\)d)\ forC e (R G, B} (24)
A

w(@) = Gs(#, i, 3, 1) E(D)S(Z)F (31)
giving thekth sensor response for an infinitesirshinysurface
patch under white illumination.

For a given point on a shiny surface, the contribution of the

is the compact formulation depending on the sensors and surfpoely reflection componerit and surface reflection component

albedo only. Equal arguments hold fpandb.

~ are added cf. (5). As a consequence Ji& B-color space,

Although any instantiation of’ can be taken for the purposethe observed colors of a uniformly colored (shiny) surface will
of viewpoint independent image retrieval, in this paper, normaje formed on the dichromatic plane spanned by the body and
ized colorrgbis considered as an instantiation@because nor- surface reflection components.
malized color is intuitive and well-known in the color literature. Under the condition of the NIR model and white light, this
In addition torgb, the following first-order color invariant has dichromatic plane originates from the main diagonal axis.
been selected as an instantiation(offor viewpoint-invariant Therefore, any expression defining colors on this dichromatic

object search:

plane is a color invariant for the dichromatic reflection model.
To that end, we propose the following basic setrafducible

cs(R, G, B) = ﬁ%g (25) color invariantsat locationz:
(R, G, By =D (26) Z,Z((?) —Zgg N Zk _c:,l (32)
T R+ B
wherew;, # w;, andZ is omitted as the color ratio is taken from
G_-B the same surface location.
cs(R, G, B) = o1 B (27)

being invariants for matte, dull objects [cf. (10)-(12) and

K = [ BOEO) A (33)

(25)-27)1 This expression is a color invariant for the dichromatic reflec-
- tion model under white illumination as follows from substituting
cs(Ry, Gy, By) = Gp(i, SEKR(X) — GB(T SEKc(N) (5) in (32) as in (32a), shown at the bottom of the next page,
Gp(7t, @EKR()‘) +Gp(iT, H)EKG(M) only dependent on the sensors and the surface albedo, where is
_ Kr(A) - Ka(N) (28) the compact formulation for thith the channel.
- Kr(\)+ Ka(\) Any (linear) combination of the basic set of irreducible color
b EKn() 7, HEK g(\ invariants will result in a new color invariant. For the ease of
cs(Ry, Gy, By) = Gig; gEKf;EA; BE; gEKig)\; illustration, we again focus on the 3-BGB-space given by
Kr(A) — KB(}) _
m (29) R, =Gp(1, @E/)\B(A)FR()\) dA
co(Ry. Gy, By) = Gp(7t, HEKq(N) — Gg(A, 5EK (N + Gs(i, 8, V)ESF (34)
b T PV T Gp(R, HEKG(N) + Gp(@, 5)EKp(N)
Ko - Kp() 0 Gy =G, I | BOVFG() A
- Kg(\) + Kp(\) + Gs(7i, 5, V)ESF (35)
only dependent on the sensors and the surface albedo. B =Gp(it §')E/ BO)F5(\) dx
The effect of surface reflection (highlights) is discussed in the ¢ ’ A
following section. + Gs(#, §, ¥)ESF (36)
Gg(it, $)EKg
B
"B, Go. By) = G e S ER (N 1 G, 5 EKG() + G, DEKB0Y)
Kr(A\) + Ka(A) + Kg(A)
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giving the red, green, and blue sensor response of an infinites- Proof: By substituting (37)—(39) in (40) we have as shown
imal surface patch under the assumption of a white light sourée.(40a), shown at the bottom of the page, independent of the
Then, having red, green and blue as primary colors yielding thiewpoint, surface orientation, illumination direction, illumina-

following basic set of irreducible color invariants: tion intensity, and highlights. Further,+ ¢ +r = s + ¢ + u,
(Ry — Gy) andp, ¢, r, s, t,u € R. 4,5 2 1anda;, b; € R. Furthermore,
(Bu—Ra) G7 ¢, = Ga(it, HE [, BOF(N) d\ + Gs(#, 5, 7)ESF,

and C, = Gp(i, 5)E [, BAO)Fe(\)d), and Ko()) =

[\ BOVFc(N) dxfor C € {R, G, B}. [
(Rw — Gu) (38) For instance, for the first-order color invariants (ije+ ¢ +
(G — By) r = s+t+u = 1), we have the set

{(R—G) (B-G) (R—-G)+(B-G)
(Gw — Buw) (39) (R—B) (R— B)’ (R - B) ’
(Bw — Ru) (R-G)+3(B- @)
(R-B)+2(R-G)" }

color invariants can be computed in a systematic manner:
L(Ry, Gu, Buw)
Y ai(Ru = Gu)f (B — Rw)H(Gu — Bu)}

(41)

and for the second order color invariants (ig+ ¢ +» =
(40) s+t4+u=2)

S bR — Gy (Bu — Bu)(Go — B}
J

wherep + g +r = s+t 4+, andp, ¢, r, s, t, v € R. Further, { (R-G)(E—-B) (B-G)(-B)

i,j > 1anda;, b; € R. (R—B)> ° (R=B)?

Lemma 2: Assuming dichromatic reflection and white illu- (R =G’ +(B - G)* (R- G +3(B-G)* }
mination,L is independent of the viewpoint, surface orientation, (R— B)? "(R—BY?+2(R—- G’
illumination direction, illumination intensity, and highlights. (42)

wi—w; (Gp(, HEK:(N) + Gs(7, 5, T)ESF) — (Gp(, HEK;(\) + Gs(7i, 5, §)ESF)
wn—wi  (Gr(#, HEKLN) + Gs(7, 5, D) ESF) — (G, HEK(N) + Gs(7, 5, 9)ESE)
_(Gg(, SEK(N) — (Grlii, HEK;(N) _ Ga(it, HEEK(N) — K;(N))
(GB(it, 5 EKL(N) — (G(7, 5)EK(N)  G(7T, 5)E(Ki(A) — Ki(N))
Ki(A) — K;(\)
K\ — Ki() (322)
Z az(Rw - Gw)];(Bw - Rw)Z(Gw - Bwy
L(Ry, Gu, By) = S by (R — G (B — Ro)i(Go— B
> ailRy — G)!(By — Ry)H(Gy — By)y
- D bi(Ry — Gu)3(By — Ry)H(Gy — By
> ai(Ga(#, HEPHT(Kr(N) — Ko\ (Kr(\) — Kp(\){(Ka()) — Kp(\);
- Z bi(Gp(i, 5)E)* T4 (Kr(\) — Ka(N)H(Kr(A) — Kp(A)H(Ea(\) — Kp(\)y
> ai(Kr(\) = Ka(M\)P(Kr(\) — Ks(A\)!(Ka(\) — K(\)!
(40a)

B Z bi(Kr(A) — Ka(N);(Kr(A) — Kp(A)j(Ka(A) — Ks(A)f
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and for the third order color invariants

(R-G)? (B-G)® (R-G®+(B-aG)>
{(R—B)3’(R—B)3’ (- B)? ’
(R—G)(R— B)(G— B)+3(B—G)?

(R— B +2(R-G)3 } (43)
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I1l. COLOR INVARIANT GRADIENTS

In the previous section, we discussed color models that are
invariant under varying imaging conditions. In this section, we
propose color invariant edges derived from the newly proposed
color models. The color invariant edges will be used to compute
the shape-based invariant features.

etc., where each expression is a color invariant for the dichrg- adients in Multivalued Images

matic reflectance under white illumination.
We can easily see that hue given by [31]:

- V(G- B)
H(R, G, B) = arctan <(R — G (- B)) (44)

ranging from [0, Z) is an instantiation of the first order color
invariant of (40), as a function ofrctan(), with a; = /3,
a2:0,b1 Il,bgzl.

Although any instantiation of can be taken for the purpose.
of viewpoint independent image retrieval, in this paper, the fo

lowing first-order color invariant has been selected as an inst
tiation of L for viewpoint-invariant image retrieval:

In contrast to gradient methods that combine individual com-
ponents of a multivalued image in ad hocmanner without any
theoretical basis (e.g., taking the sum or RMS of the component
gradient magnitudes as the magnitude of the resultant gradient),
we follow the principled way to compute gradients in vector im-
ages as described by Silvano di Zenzo [33] and further used in
[34], which is summarized as follows.

Let ©(xy, z2): 2 — R™ be am-band image with com-
ponentsd; (1, x2): R — Rfori =1, 2, ---, m. For color
images we haven = 3. Hence, at a given image location the
image value is a vector iflR™. The difference at two nearby
ints P = (29, 29) andQ = (z1, x3) is given byA® =
(P) — ©(Q). Considering an infinitesmall displacement, the
difference becomes the differenti@® = 2521(86/8@) dx;

|7 -G and it d is gi b
IL(R, G, B) = . (45 its squared norm is given by
e A T e ) ey N S g0 o0
|k — B de? = —— du; dy
(R, G, B)= 46 ‘ i
o( ) ) ) |R—G|+|B—R|+|G—B|7 ( ) im1 kel axz axk
Is(R, G, B) = &~ B (47) S g de d
o & D) = R G+ IB— R+ |G - B] —;;gm wi day
which is the set of normalized (absolute) color differences (ncd), g 17 d
where0 < I; < 1andl, + 15 + g = 1. _ [ wl} {911 912} [ -T1:| 49)
dxo 921 g22 dxo

E. Noise Analysis of Color Invariants

whereg;;, = (90/dx;) - (0©/dx;,) and the extrema of the
guadratic form are obtained in the direction of the eigenvectors

In this section, the aim is to study the robustness of the diif the matrix[¢;,] and the values at these locations correspond
ferent color invariants with respect to sensing and measuremgjh the eigenvalues given by

errors. For example, it is known that normalized color become

more sensitive to noise whétH- G+ B is near zero [32]. To get

more insight in the noise stability of the newly proposed color.
invariants, we analyze and compare the noise sensitivity of tH

color invariantsrgb, cycscs, hue andyl;ls.

911+ g22 £/ (911 — 922)% + 49,
N 2

h corresponding eigenvectors given Byos 64, sinf,),
W ere(9+ = (1/2) arctan (2912/911—922) andé_ = 9++7T/2

Ay (50)

It is known that noise sensitivity of a function can be deriveE',ence' the direction of the minimal and maximal changes at a

from the stability of its variables. The idea is that the uncertain

in a function is stretched with the value of the derivative at th
point. Then the sensitivity of a functiof(«, v, -- -, ) with vari-

ablesz, ¥, - - -, having valuesg, 1o, - - - is given by
6 )
Af(x07y07"'7): —f$:$0A$+—fy:y0Ay+

(48)
We have computedh f for the different color invariants. It can
be concluded that normalized color becomes unstable when

t respectively, and the corresponding magnitude is given by
e eigenvaluea_ and )., respectively. Note that_ may be
different than zero and that the strength of an multivalued edge
should be expressed by how. compares to\_, for example
by subtraction\; — A_ as proposed by [34], which will be
used to define gradients in multivalued colovariantimages
in the next section.

%ven image location is expressed by the eigenvedtorand
t

in-

tensity is small as reported by Kender [32]. Same argumefits Gradients in Multivalued Color Invariant Images

hold for c4c;cg, Wherergb is slightly more robust thanycscg.
For hue and4l;l¢ it is concluded that they become unstabl
when intensity and saturation (i.e., ndar= G = B) is small,
wherelylsls is slightly more robust than hue. Note thHak;/
has a singular pointat = G = B.

In this section, we propose color invariant gradients based on
®he multiband approach as described in the previous section.
The color gradient foRGB is as follows:

VCrap = [ AJCP — \ECGH (51)
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for Note thatl4l;ls varies with a change in material only,c;cg
with a change in material and highlights, aRd"B vary with a
gRGB 4 gBGB 4\ /(gRCGB — gBGBY2 4 4(glil&B)2  change in material, highlights, and geometry of an object. Based

Ay = 2 on these observation, we may conclude fi€tz; 5 measures
(52)  the presence of 1) shadow or geometry edges, 2) highlight edges,
where and 3) material edges. Furth&f(;,,.;, measures the presence
5 5 5 of 1) highlight edges, 3) material edges. Avid;,;.;, measures
gieE = ‘8_}2 8_G 8_B 7 the presence of only 3) material edges.
dz Ox dz Note thatl,/5ls varies with a change in material onbycsce
ros _ |OR|® |oG|* |9B? with a change in material and highlights, aR@B vary with a
9227 = y y 9y | changein material_, highlights, and geometry of an object. Based
nep OROR 0G 0G OB OB on these observation, we may conclude ®iétz. 5 measures
g2 =5, a—y + B a—y + Or a—y the presence of 1) shadow or geometry edges, 2) highlight edges,

and 3) material edges. Furth&C;,,.;,, measures the presence

Further, we propose that the color invariant gradient (bas8fL) highlight edges, 3) material edges. AWd;, ;,;, measures
on e4es¢6) for matte objects is given by the presence of only 3) material edges.

[ cicaca  ~cacaca IV. SHAPE INVARIANTS
VCC4C3CG = )\+ ot = )\_ ° (53)

In this section, shape invariants are discussed measuring geo-
metric properties of a set of coordinates of an image object in-

for dependent of a coordinate transformation. We discuss similarity
and projective invariants.
Ar =
Grieset 4 g5a® % £\ /(gri®% — g537 )2 + 4(g75%)2 A, Similarity Invariant
2 For image locationéry, v1), (z2, ¥2), and(zs, y3), gr( ) is
(54)  defined as a function which is unchanged as the points undergo
any two-dimensional (2-D) translation, rotation and scaling
where transformation, yielding the well-known similarity invariant:
0 dcs|* | dcs |’
cacses _ | 904 % 9% ge((z1, y1), (T2, ¥2), (3, ¥3)) =0 (57)
11 )
ar ar ar
cseses _ | 9Ca 2 n dcs | n Jecs 2 wheref is the angle at image coordinate;, ;) between line
2 dy dy Ay |’ (w1, y1)(z2, y2) and(z1, y1)(w3, ya3).
- 864 864 865 865 aCG aCG
Cq4C5C5 __ = v H . .
J12 oz Oy oz Oy ox Oy B. Projective Invariant

For the projective case, geometric properties of the shape of
Similarly, we propose that the color invariant gradient (baseth object should be invariant under a change in the point of

onlyl;lg) for shiny objects is given by view. From the classical projective geometry we know that the
so called cross-ratio is independent of the projection viewpoint.
VCiia = //\lﬁlalﬁ _ p\lalsls (55) From [35], we derive the projective invariagit( ) defined as
for gr((z1, 1), (T2, ¥2), (¥3, ¥3), (T4, Ya), (75, ¥s))

. Sin(91 + 92) Sin(92 + 93)
o Sin(92) Sin(91 + 92 + 93)

(58)

gialste 4 ghatsts £\ J(glalete — glglste)2 4 a(glyte2
2 wheref,, 6., 85 are the angles at image coordinéte, v, ) be-
(56)  tween(w1, y1)(z2, y2) and(z1, 41)(w3, y3), (w1, y1)(x3, ¥3)
and (z1, y1)(za, Y1), (@1, 11 )(24, ya) and (z1, y1)(z5, ¥s),
where respectively.
Noise sensitivity and probabilistic analysis of using the cross

+ =

2 2

lylsls _ ‘314 ? n ‘315 dlg ratio for model-based object recognition is discussed in [36].
11 — |5, a1
Oz Ox Ox
iste | Ol 2 N als | alg 2 V. INVARIANT IMAGE INDEXING
2 oy dy |’ Let the reference image database consist of 45gt,*, of

taiste  Ola Oly Ol Ol Olg Olg colorimages. Invariant feature spaces are created for each image
2 T 9r oy | Ox Oy | Ox Iy’ I;. to represent the distribution of quantized invariant values in a
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high-dimensional invariant space. In this section, invariant feanly computed foff; # 7, # #3 € E'*, whereE!* is the set
ture spaces are formed on the basis of photometric color invasf-edge maxima computed frofa andgg( ) is given by (57).

ants, geometric invariants and combination of both. Thus, between each triplet of color edge maxima, the angle
denoted by is computed and used as an index. Hence, each par-
A. Color Invariant Histogram Formation ticular bin sum can be seen as the number of color edge triplets

generating the same angle.

In a similar way, a 1-D histogram is defined on the cross ratio
axis expressing the distribution of cross ratios between color
edge quintets

By usingeycscg at a pixel as a directindex, a 3-D histogram i
constructed in a standard way on thec;, andcg axes as shown
in (59), at the bottom of the page, wher@ndicates the number
of timescy, ¢;, andcg equals the value of inde, j, k). NV is
the total number of image locationsdenotes the logical AND. He(i) = nlgp(Z1, T2, T3, T4, Ts) = 1) (63)

The total accumulation for a particular histogram bin represnly computed fot?, # 7 # @3 # ©4 £ @5 € E* andgp()
sents a measure of the area of a uniformly colored surface pgicRefined by (58).
being imaged. Because each nonzero bin indicates the presence
of a distinctively colored patch, the histogram is indicative fot, Composite Color and Shape Invariant Histogram
the color variety of the object in view independent of object 9¢rmation
ometry, shadows, and camera viewpoint.

The 3-D histogram of,l;/s is defined as in (60), shown at
the bottom of the page, whergindicates the number of times
l4, I3, andlg equals the value of inde¥, j, k).

The histogram representing the distributiord @l edges is
given by

o

In this section, photometric color and geometric invariants are
combined to construct a high-dimensional invariant histogram.

A four-dimensional (4—-D) histogram is created counting the
number of color invariant edge triples with valugsj, andk
generating anglé (similarity invariant):

Hr(i, 4, k, 1) = n(VCii,(T1) = A

HC(L) = n(vcldsle (f) = [’) (61) Vcl41516 (fg) = j/\
only computed for locations € E’+, whereE!* is the set of Veitoto(¥a) = BN Lo
l4l5ls edge maxima computed from imafie Edge maxima are 9p(1, ¥, 73) = 1) (64)
obtained by applying nonmaximum suppression on the gradiemly computed forg, # #» # &3 € E™*, whereE™ is the
to obtain local maxima in the gradient values [37]. set of (color invariant) edge maxima computed frdgand

The total accumulation for a particular bin represents a me%¢;,;. ;. (¥) the value of the color edge &F).
sure of the length of a certain color edge. For example, ac-Each histogram bin measures the number of color edge
cumulation in a particular bin may represent the length ofteplets generating a certain angle. For example, a particular
yellow-green edge in the image. In this way, the measure loh accumulation may represent the number of red-blue, or-
color area expressed I#¢ 4 andH 5 is replaced with a mea- ange-blue, and yellow-green edges in an image generating the

sure of edge length. angled = 1/4wx. In this way, both color and shape invariants
are used during histogram formation. As a consequence,
B. Shape Invariant Histogram Formation each object in view should generate a highly object-specific

In this section, shape invariant histograms are construct&iptogram. .y . o
We uselylsls-based color invariant edges as feature points. " @Similar way, a six-dimensional (6-D) invariant histogram
These edges are viewpoint-independent, discounting shadi?@',‘ be constructed considering the cross-ratio between color
edg

illumination intensity and direction, shadows and highlights. es as follows:

dard way on the angle axis expressing the distribution of angles VCla1(F2) = § A VCi1. (Fs) = kA
between color invariant edge triplets mathematically specified B L
by 9 P y'sp VCMSIG (.’L’4) =I[A VCMSIG (.’L';)) = mA

Hp(i) = n(ge(Z1, 2, T3) = 1) (62) (65)

Hali, j, k)én((czk(R, G, B) = i) A (c3(R, Cj?\,TB) =j)A(c(R, G, B) =k)) forvie I (59)

My, =N G B ZONGE G B Z) M GBI Z0) - oy e (60)
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S

Fig. 1. Left: Various images which are included in the image database of 500 images. The images are representative for the images in the database. Right
Corresponding images from the query set.

VI. INVARIANT IMAGE RETRIEVAL A. Datasets

Color and shape invariants are computed from query imagelhe dataset consists &f; = 500 color images taken from
Q and used to create the query histograff. Then, H< is multicolored man-made objects composed of a large variety of
matched against the same type of histogram precomputed gferials including plastic, textile, paper, wood, rubber, painted
stored for each reference image in the database. For comparidial, and ceramic. The SONY XC-003P CCD color camera (3
reasons in the literature, matching is expressed by normaliZdis) and the Matrox Magic Color frame grabber were used to

histogram intersection as defined by recqrd the obje(_:ts. The quects were recorded in isolation _(o_n_e
N, per image) against a white cardboard background. The digiti-

<. o L2 zation was done in 8 b per color. Two light sources of average

Z i {Hj (5), 75'( ’“)} day-light color were used to illuminate the objects in the scene.

D (H]»Q, Hf) == N (66) There was no attempt to individually control the focus of the

4 camera or the illumination. Objects were recorded at a pace of a
whereH$ andH}, for j € {A, B, C, D, E, F}, are his- few shots a minute. They show a considerable amount of noise,
tograms of typej derived from test image2 and reference shadows, shading, specularities, and self occlusion resulting in
image/;, respectivelyN,, is the number of nonzero invarianta good representation of views from everyday life.
values derived fron® yielding Ny,, 1 < Ny, < N, nonzero A second, independent set (the test set) of recordings was
bins in HJQ made of randomly chosen objects already in the database. These

Note that normalized histogram intersection is robust to subbjects, Vo, = 70 in number, were recorded again (one per
stantial object occlusion and cluttering [12]. In contrast, simjimage) with a new, arbitrary position and orientation with re-
larity functions based on eigenvalues or moments may run shgpect to the camera [some recorded upside down, some rotated,
in case of object occlusion and cluttering, as they are definedsasine at different distances (different scale)].
an integral property on the invariant feature distributions. In Fig. 1, various images from the image database of 500
images are shown on the left, whereas various images coming
from the query set are shown on the right.

In the experiments, all pixels in a color image are discarded

To evaluate color and shape invariant indexing and retrievigving intensity and saturation smaller then 5% of the total
the following issues will be addressed in this section: 1) ttfange otherwise calculation efb, cicscs, hue, and4lsls be-
discriminative power of color invariant object indexes, shap®me unstable, see Section II-E. Consequently, the white card-
invariant object indexes, and of combined color and shape Ipeard background as well as the grey, white, dark or nearly col-
variant indexes; and 2) robustness of the image retrieval schednkess parts of objects as recorded in the color image will not be
to occlusion, clutter and a change in viewpoint. considered in the matching process.

The data sets on which the experiments will be conducted
are described in Section VII-A. The same dataset has been uBe
to compare different color models for object recognition [30], For a measure of recognition quality, let ramk’: de-
[38]. Error measures and performance criteria are given in Sewte the position of the correct match for query imagge
tion VII-B and VII-C, respectively. i = 1,---, No, in the ordered list of¥V; match values. The

VII. EXPERIMENTS

0Error Measures
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i

Fig. 2. One of the ten images generating four images by blanking eu{50, 65, 80, 90} percent of the total object area.

1

Fig. 3. One of the ten images generating four images by varying the angle between the cameta{f¢s, 60, 75, 80} degrees with respect to the object’s
surface normal (see the color plate for the color figures).

s ——

Fig. 4. Six of the 30 images taken from cluttered scenes.

rank % ranges from+ = 1 from a perfect match te = N; N (average run time complexity) to be used during histogram

for the worst possible match. matching to compute the number of common hits betwi&&n
Then, for one experiment, the average ranking percentileasd 7'+,
defined by

D. Image Retrieval by Photometric Color Invariant Image

]\‘rz .
1 Ny — 7@ i
T = <F Z ];—71> 100%. (67) Indexing
2 =1 1 In this section, we report on the performance of the indexing
The cumulative percentile of test images producing a ramind retrieval scheme for th¥, = 70 test images on the data-

smaller or equal tg is defined as base ofN; = 500 reference images on the basis of photometric
1 color invariants. To that end, attention is focussed on retrieval
X(j) = <— Z n(r9 == k)) 100% (68) by histogram matching based on the following color-based his-

N2 = togramsH’j, "5 andH.i as defined in Section V.

wheren reads as the number of test images having fank First, we will determine the appropriate bin size. We deter-

Further, letN 9 be the number of nonzero bins in the tesmine the appropriate bin size for our application empirically

histogramH %:. Then the average number of nonzero b\is= by varying the number of bins on the color invariant axes over
(1/N2) 32, N@: determines the average run time complexity € {2, 4, 8, 16, 32, 64, 128, 256} and choose the smallegt

of the histogram matching process for which the performance criteria, given in Section VII-C, are
O(N, V) (69) met. To that end, the average ranking percentile,0fcs de-

) . . ) noted by7y, ., lul5l¢ denoted by, and color edges denoted
wherelV, is the number of reference images in the image datgy . s tested in relation tg (see Fig. 5). The influence of the
base. number of bins on the average ranking percentile based on the
different color invariants is the sanmey , gives the same results
as7, which are slightly better them, . Beyondg > 16, re-

Good performance is achieved when the recognition ratetigeval accuracy is constant, so it is concluded that 16 bins
high and the average run time complexity is low. To that end, tlaee sufficient for proper photometric color invariant object re-
following criterion should be maximizedhe average anking trieval.
percentiler (the discriminative power) resulting from matching Second, the average number of nonzero bins determining
the test set on the reference database; and the following critee computational complexity forscscs denoted by N,
rion should be minimizedhe averagenumber of nonzero bins 1,151 given by N. and color edges by, with respect toy is

C. Performance Criteria
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Fig. 5. Average ranking percentile ofc;cs denoted byrs ,, 111516 given
by 7+., and color invariant edge maxima denotediy,., plotted against
quantizationg.
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Fig. 6. Average number of nonzero bins fajcscs given by N,, lalsls
denoted byV. and color edges given by ., plotted against quantization
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Fig. 7. Accumulated ranking’ plotted against ranking with ¢ = 16 for
cscscq denoted byty, , , Lal51s denoted byt , color edges given by's .,

RGB given by X

" ne: 5 » @Nd normalized colorgdb denoted byl’mg&-
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Fig. 8. Accumulated ranking plotted against rankihgvith ¢ = 16 for

combined color-shape invariams, ,, andX, .

considered, see Fig. 6. From the results we can see that the rate
of increase ofV. is twice as much as the one faf, and V...

To compromise between discriminative power and average
run time complexityg = 16 is used in the following.

Fig. 7 shows the accumulated rankiagfor ¢ = 16, aver-
aged over all the test images differentiated for the various pho-
tometric color invariants. Excellent performance is shown for
both X3, , and Xy ,, where, respectively, 92% and 87% of the
position of the correct match in the ordered list of match values
is within the first two and, respectively, 97% and 92% within the
first five rankings. Misclassification occurs when the testimage
consists of very few (two or three) distinct color patches mostly
arising from small objects. Hence, from the results it is shown
thatcycscg andlylslg perform more or less the same. Color in-
variant edges give slightly worse retrieval accuracy.

For comparison reasons, the accumulated rankifgs also
been computed faRG B and normalized colorgb (see Fig. 7).
From the results we can observe that the discriminative power
of r¢gb andcycscg are similar. As expected, the discrimination
power of RGB has the worst performance due to its sensitivity
to varying imaging conditions, see also [30].

For ¢ = 16, according to (69), the average run time com-
plexity is O(N1N,), O(N1N.) andO(N,N.) for N, = 18,

N. = 38 andN, = 27, respectively, see Fig. Gscscg give
slightly better run time complexity thela/s/s.

E. Image Retrieval by Geometric Invariant Image Indexes

In this section, the discriminative power of similarity and pro-
jective invariant indices are examined.

To evaluate the discriminative power of the geometric in-
variant index, the following histograms, defined in Section V,
are considered* , and’H g. HistogramH ;, gives the distribu-
tion of angles and{ g the distribution of cross ratios between
color edges.

Average ranking percentile fof{, and Hg, denoted
by 7%, and 73,, respectively, is shown for different
g € {2,4, 8,16, 32, 64, 128, 256} in Fig. 9. The average
number of nonzero bind p (similarity) andV g (cross ratio)
is shown is Fig. 10.
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Fig.11. Ranking percentile plotted against the percentage object area blanked
outo denoted by, , o g, Tre s Ty @NATo .

andH p, andH can be seen as the aggregatioftief andH g

all with ¢ = 16. The accumulated ranking is shown in Fig. 8.
Excellent discriminative accuracy is shown fir as 96%

of the images are within the first two rankings, and 98% within

the first nine rankingsH¢ gives very good retrieval accuracy

as 92% of the images are within the first five rankings.

G. Stability to Occlusion and a Change in Viewpoint

To test the effect of occlusion on the retrieval process, ten ob-
jects, already in the database of 500 recordings, were randomly
selected and in total 40 images were generated by blanking out
o € {50, 65, 80, 90} percent of the total object are (see Fig. 2).
Note that white as recorded in the color image will not be con-
sidered in the matching process.

The ranking percentiley , , 72 5, THe s TH . aNATH,. AV-
eraged over the ten histogram matching values, is shown in

Fig. 10. Average number of nonzero bins for the similarity and cross ratfeig. 11.

invariants plotted against quantizatign

From the results, we see that the shape and decrease of the
curves forH ., Hg, He, Hr, andHg do not differ signifi-

Projective invariant values are noise sensitive [39] and lesantly: namely a gradual decrease in retrieval accuracy beyond
constrained (i.e., more coordinate combinations produce th@% blanking.
same invariant value) and hence the discriminative performancdo test the effect of a change in viewpoint, the ten flat ob-

expressed by, . is significantly worse than that af, . Note

jects were put perpendicularly in front of the camera and in total

that the discriminative power of photometric color invariard0 recordings were generated by varying the angle between the
image indices from the previous section is significantly betteamera fors = {45, 60, 75, 80} degrees with respect to the
than shape based matching. Where average ranking percemtilect’'s surface normal (see Fig. 3). Average ranking percentile

for cycsc6 andliylslg is approximately 94% fog = 16 within

is shown in Fig. 12.

the first ten rankings, see Fig. 7, the average ranking percentild.ooking at the results, the rate of decrease is almost negligible

of the similarity invariant is 84% and 72% for cross ratios.
To compromise between the two performance criteria, 16
is taken forH p and’H g in the following.

for viewing angles up to 75Even when the object-side is nearly
vanishing from sight, retrieval is still acceptable.

H. Discriminative Power in the Presence of Object Clutter

F. Image Retrieval by Composite Color and Shape Invariant - Apgther important claim is that the proposed method for ob-

Image Indexes

ject retrieval is fairly insensitive to object clutter. To test the ef-

In this section, the discriminative power of the combinatiofect of object cluttering, 30 images have been recorded from

of shape and color invariant histogram matching is examined blyttered scenes. Each cluttered scene contained different mul-
consideringr andH as defined in Section V during the his-ticolored objects (see Fig. 4).

togram matching process. Note that there is no need for tuningrhen, ten objects were randomly selected which participated
parameter, becausé{r can be seen as the aggregatiofiff in exactly one of the cluttered scenes. These objects were
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=3

to a very large degree robust to partial occlusion, object clutter

average ranking percentile 7 against rottlon E and a change in viewing position.

1008 I S In the next section, the image retrieval scheme is integrated
into the PicToSeek system for searching images on the World
80 Wide Web.
60 - IX. PICTOSEEK: A CONTENT-BASED IMAGE SEARCH SYSTEM
w0l | We have implemented a content-based image search system,
S called PicToSeek, for exploring visual information on the World
Fay B Wide Web. In the first stage, PicToSeek collects images on
20 Tue >— | the World Wide Web by means of autonomous Web-crawlers.
THo £ Then, the collected images are automatically cataloged into
0 o 4'5 6'0 7'5 % various image styles and types: JFIF-GIF, grey-color, size, date

of creation, and color depth. Further, the system automatically
classifies (by supervised learning) images into the following
Fig. 12. Ranking percentile plotted against the angle of rotatidenoted by classes: photograph-synthetic, (photographs) indoor-out-
Trqs Trgy Trec, @NdTr . door, (photographs) portraits, and (synthetics) buttons. After
cataloging images, the proposed invariant image features are
Accumulated ranking percentile for j < 10 extracted from the images to produce a high-dimensional image
100 / B %8 index independent of the accidental imaging conditions. When
images are automatically collected, cataloged and indexed,
5 PicToSeek allows for fast on-line image search by combining:
1) visual browsing through the precomputed image catalogue,
2) query by pictorial example, and 3) query by image features.

§ —

60 -

r) The content-based image retrieval process is conducted in an
0 ] interactive, iterative manner guided by the user by relevance
veu s feedback.
0 Xyo () =7 In Section IX-A, an overview of the system is given. In Sec-
;chﬁ i tion IX-B, the implementation of PicToSeek is discussed. Fi-
Ty s 4+ s 1+ s 9 1 nally, the query capability of the system is outlined in Sec-

i— tion IX-C. PicToSeek is on-line at http://www.wins.uva.nl/re-

searchl/isis/zomax/. A more detailed report on PicToSeek ap-
Fig. 13. Discriminative power plotted against the rankjnpr 7+ , , 725, peared in [1]
FHC,FHF,andFHG. '

A. System Overview
recorded in isolation against a white background yielding the

test set. The test set has been matched against the database%a‘!e major components of the PicToSeek system are described
)

30 images. Fig. 13 shows the accumulated average rankii etlali beltntyv. FormulationAn i is sketched
percentile for different invariant indexes. nteractive Query FormulationAn image is sketched,

. ){ggorded or selected from a repository. This is the query defi-
nition with the aim to find a similar image in the database. Note
that “similar image” may imply a partially identical image (as
in the case of finding stamps), or a partially identical object in
the image (as in the case of a stolen goods database), or a similar

When the performance of different invariant indices is constyled image (as in the case of a fashion design support system).
pared, histogram matching based on both shape and color inPicToSeek offers snakes for interactive image segmentation,
variants produces the highest discriminative power: 96% of tdescribed in [40], for the purpose of content-based image re-
images are within the first two rankings, and 98% within thixieval by query-by-example. We proposed the use of ciolor

first nine rankings. Image retrieval based entirely on shape wariant gradient information to guide the deformation process

variants yields poor discriminative power. As opposed to shafmeobtain snake boundaries which correspond to material bound-

invariant matching, color invariant based histogram matchiragies in images discounting the disturbing influences of surface
results in very high discriminative performance. While the awrientation, illumination, shadows, and highlights. The key idea
erage ranking percentile fatc;cs andiyl;lg is 94% , the av- isto allow the user to specify in an interactive way salient subim-
erage ranking percentile of the similarity invariant is 84% anages of objects on which the image object search will be based.

72% for cross ratios. In this way, confounding and misleading image information is

Furthermore, the experimental results reveal that identifyirtiscarded. In conclusion, PicToSeek offers interactive query for-
multicolored objects on the basis of only photometric color immulation either by query (sub)image(s) or by offering a pattern
variants, and the combination of shape and color invariants ofsfeature values and weights.

are fairly insensitive to object clutter.

VIIl. DISCUSSION
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2) Image Features:PicToSeek allows the user to choose the 5) Relevance FeedbackRelevance feedback is an auto-
desired classes of invariance. For each image retrieval quemnatic process designed to produce improved query formulations
proper definition of the desired invariance is in order. Does tliellowing an initial retrieval operation. Relevance feedback is
applicant wish search for the object in rotation and scale invarieeded for image retrieval where the users find it difficult to
ance? lllumination invariance? Viewpoint invariance? Occldermulate pictorial queries which are well designed for accurate
sion invariance? In the current state of the art of query enginestrieval purposes. For example, without any specific query
invariance receives little attention. But for large databases, tineage example, the user might find it difficult to formulate a
availability at the time of query definition is essential. The shapgpuery (e.g., to retrieve an image of a car) by an image sketch
and color invariants proposed in this paper are the core of theby offering a pattern of feature values and weights. This
PicToSeek system. suggests that the first search operation should be conducted

3) Feature Representation and Weightinghe image fea- with a tentative, initial query formulation, and should be
ture sets are represented/bylimensional feature space. In thigprocessed as a trial search. These initially retrieved images
way, the domain dependent part of the whole image retrievatlould then be examined for relevance, and a (new) improved

system is reduced to a minimum. query formulation should be constructed with the purpose to
To be precise, let an image be represented by itisnage retrieve more relevant images in subsequent search operations.

feature vectorsf the formI = (fo, wro; f1, wn; -+ frowrr)  The system use the feature weighting given by the user to find

and a typical queryp by Q@ = (fo, woo; f1, wor; -~ ft, woe), the images in the image database which are most similar with

wherew i, (Orwes) represent the weight of image featyfgein - respect to the feature weighting.
image! (or query(@), andt image features are used for image
object search. The weights are assumed to be between zeroglnﬁj .

. Implementation

one.
Weights can be assigned corresponding to the feature freTne picToSeek system is based on a client-server paradigm.
quency ff as defined by The client part is a Java Applet and correspond to the graphical
w,;, = ff; (70) user interface. The client part takes care of interactive query

giving the well-known histogram form where; ftfeature fre- forrgglat:(on, th,‘?, display of tge rhesults, a_P: the relevancef
qguency) is the frequency of occurrences of the image feattf?,(? ack specification given by the user. The SEerver part o
valuesi in the image or query. However, for accurate image Ollj’_lcToSeek takes care of the image feature extraction, feature
ject search, it is desirable to assign weights in accordance to m@ghft_mg_from rtac]:gvance feec_jbaokr,wnearest ”?'th?f featurg )
importance of the image features. To that end, the image featﬁ@ss' ication, and image sorting. The server is implemented in

weights used for both images and queries are computed as_ca,lé[he interface between client (Java) and server (C) is written

product of the features frequency multiplied by the inverse cdi Java. The Web-crawler, image analysis and feature extraction

lection frequency factor, defined by [41] methods have been implemented in C. , ,
0.5ff The client and server components are described here more in

w = <0.5 7) 10g<—> (71) detail.
max{ff};_, n 1) Client Site: Using a standard web-browser, the Pic-

whereN is the number of images in the database and n denotesseek Applet is sent to the client. After the Applet has started,
the number ofimages to which a feature value is assigned. Intflig user can load any image available at the WWW by giving
way, features are emphasized having high feature frequenaigs URL address. After the user has loaded an image, the user
but low overall collection frequencies. is allowed to specify (sub)images by the interactive snake

4) Searching:In the field of pattern recognition, severalsegmentation method. After interactive query formulation,
methods have been proposed that improve classificatihie user specifies the preferred invariance, and the similarity
automatically through experience such as artificial neural neheasure. Then, the image query formulation is send to the
works, decision tree learning, Bayesian learning, Aimarest server. In conclusion, the client-part is a Java Applet and can
neighbor classifiers. Except for thenearest neighbor classi-be started by a standard web browser. The Java Applet allows
fier, the other methods construct a general, explicit descriptighe user to
of the target function when training examples are provided. In 1) select/load an (external) image;
contrast,k-nearest neighbor classification consist of finding 2) select appropriate subimages of objects (instead of the
the relationship to the previously stored images each time a entire image) on which the image object search will be
new query image is given. When a new query is given by the  conducted;
user, a set of similar related images is retrieved from the image3) select color features (invariants) and similarity measure;
database and used to classify the new query image. The advard) send the query formulation to the server.

tage ofk-nearest neighbor classification is that the technique 2) Server Site:The server receives the query image for-
construct a local approximation to the target function thagylation send by the client. After receiving the query image,
applies in the neighborhood of the new image query imagege server convert the image to the desired format, enabling
and never construct an approximation designed to perform wgile image processing routines, implemented in C, to extract
over the entire instance space. To that end, PicToSeek usestileerequired invariant image features. Query image features
k-nearest neighbor classifier for image search. are weighted. In this way, features are emphasized having
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Fig. 14. Content-based image retrieval by query-by-example based on the region denoting the lion (without the background) as specified by the user.

high feature frequencies but low overall collection frequer€. Query Scenario

cies. K-nearest neighbors are found in this weighted vector

representation. Thie-nearest neighbors are sorted with respect All queries follow the same scenario, listed here.

to their similarity and send back to the client for display. In Step 1) Image domain selectiorisual browsing through

conclusion, the server receives the image query formulation the precomputed image catalogue;

from the client. Then, the following operations are performed: Step 2) Image selectionselect an image from the catalogue
or capture the query image from an object by giving a
URL address.

Step 3) Query imagethe query image is defined as an user-
specified interesting part of the selected image.

1) image feature extraction;

2) image feature weighting;

3) k-nearest neighbors are found and sorted,;

4) results are send back to the client for display.
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Step 4) Invariance selectionthe required invariance is se-

lected from the list of available invariant indices.

Step 5) Search: the same invariant indices are computed 7]

from the query and matched with those stored in the
database.

Step 6) Display: an ordered list of most similar images is

shown.

Step 7) Image Selectionif the right image is found, the

image can be displayed at full resolution.

Step 8) Rerun:if the rightimage is not found the query image

is adjusted (go to Step 1) or the most similar image is[11]
used to refine query definition (go to Step 3).

To illustrate the query capability of the system, typical ap-
plications are considered of retrieving images containing an in
stance of a given object. To that end, the query is specified by 3)
an example image taken from the object at hand. Typical quer:a/
specifications are shown in Fig. 14. The images come fro
Corel © Stock Photo Libraries. [15]

Consider Fig. 14, where the user has specified the region
showing a lion. The region is used as the query. Images in thid®
image database are compared to the lion query based on theiy
color invariant information. After image matching, images are
shown in order of resemblance to the user. Note that within thﬁB]
first 16 images, 12 images contain a lion.

(6]

(8]
9]

(10]

X. CONCLUSION 9]
In this paper, new sets of color models have been proposéao]
invariant to the viewpoint, geometry of the object and illumi- [21]
nation conditions. Color invariant edges have been proposed
from which shape invariant features are computed. Computé-
tional methods are given to combine color and shape invarian{gs]
into a unified high-dimensional invariant feature set for discrim-
inatory object search. [24

From the theoretical and experimental results, it is concludegs]
that object search based on composite color and shape invariant
features provides excellent recognition accuracy. Object searcfﬂi]
based on color invariants provides very high retrieval accuracy
whereas object search based entirely on shape invariants yields
poor discriminative power. Furthermore, the image retrieva
scheme is highly robust to partial occlusion, object clutter angps;]
a change in viewing position.

Finally, the image retrieval scheme is integrated into thd®®!
PicToSeek system on-line at http://www.wins.uva.nl/re-[30]
search/isis/PicToSeek/ for searching images on the World Wid[%u
Web.
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