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Abstract Color is a powerful visual cue in many computer
vision applications such as image segmentation and object
recognition. However, most of the existing color models de-
pend on the imaging conditions that negatively affect the
performance of the task at hand. Often, a reflection model
(e.g., Lambertian or dichromatic reflectance) is used to de-
rive color invariant models. However, this approach may be
too restricted to model real-world scenes in which different
reflectance mechanisms can hold simultaneously.
Therefore, in this paper, we aim to derive color invari-
ance by learning from color models to obtain diversified
color invariant ensembles. First, a photometrical orthogo-
nal and non-redundant color model set is computed com-
posed of both color variants and invariants. Then, the pro-
posed method combines these color models to arrive at a di-
versified color ensemble yielding a proper balance between
invariance (repeatability) and discriminative power (distinc-
tiveness). To achieve this, our fusion method uses a multi-
view approach to minimize the estimation error. In this way,
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the proposed method is robust to data uncertainty and pro-
duces properly diversified color invariant ensembles. Fur-
ther, the proposed method is extended to deal with temporal
data by predicting the evolution of observations over time.

Experiments are conducted on three different image
datasets to validate the proposed method. Both the theoreti-
cal and experimental results show that the method is robust
against severe variations in imaging conditions. The method
is not restricted to a certain reflection model or parame-
ter tuning, and outperforms state-of-the-art detection tech-
niques in the field of object, skin and road recognition. Con-
sidering sequential data, the proposed method (extended to
deal with future observations) outperforms the other meth-
ods.

Keywords Object detection - Color models - Learning -
Photometric invariance - Combining classifiers - Diversified
ensembles

1 Introduction

Color is a powerful visual cue in many computer vision ap-
plications such as image segmentation, object recognition
and scene classification. Most of the existing color models
depend on the imaging conditions under which the image
is recorded (such as illumination and camera viewpoint).
Varying imaging conditions may disturb the measured color
model values and hence the task at hand. Although reflection
models (e.g., Lambertian or dichromatic reflectance) are
used to derive color invariant models (Finlayson et al. 2006;
van de Sande et al. 2008), these reflection models may be
too restricted to model real-world scenes in which different
reflectance mechanisms can hold simultaneously.

To avoid the requirement of explicit reflection models,
a combining strategy is proposed here to obtain photomet-

@ Springer


mailto:jalvarez@cvc.uab.es
mailto:antonio@cvc.uab.es
mailto:th.gevers@uva.nl

46

Int J Comput Vis (2010) 90: 45-61

ric invariance. In general, combining multiple classifiers
(e.g., color descriptors) that consider the differences be-
tween their components is a powerful technique to improve
the performance of single classifiers (Brown et al. 2005;
Kittler et al. 1998; Kuncheva 2004). In this paper, the mea-
sure of disagreement between components is referred as
diversity. A promising subset of combining strategies are
those using diversity in the process of defining the ensem-
ble (Kuncheva 2004). For instance, Melville and Mooney
(2005) consider diversity as the disagreement of an ensem-
ble member with the ensemble’s prediction to learn ensem-
bles based on positive and negative data. Jacobs (1995) pro-
pose a minimum variance estimator where the estimated ag-
gregate has a variance at most as large as the variance of
any of the input features. Stokman and Gevers (2007) uses
the Markowitz diversification criterion (Markowitz 1959) in
the process of defining the ensemble. The method assumes
that each descriptor can be characterized by an unimodal
distribution and computes the best combination which pro-
vides maximal feature discrimination. However, in practice,
the distribution of the training data is often not unimodal
leading to estimation errors which are maximized by the
quadratic optimization technique used to compute the en-
semble (Scherer 2002).

For a given combination strategy, proper selection of its
components is important to improve the performance of
the strategy. The ideal situation would be a set of classi-
fiers with uncorrelated errors. Then, these classifiers could
be combined to minimize the effect of these failures. In
fact, the combination of a set of similar classifiers will not
outperform the individual members (Kuncheva 2004). The
improvement that can be obtained by selecting appropriate
classifiers can even be larger when the method uses a learn-
ing step to adapt to the specific classification problem (e.g.,
Boosting, Bagging and Random forests). To facilitate the
learning procedure, systems use training data corresponding
to the object to be recognized (i.e., positive examples) and
for instance background (i.e., negative examples). Systems
using only positive data within the training step are more
desirable since obtaining a comprehensive representation of
negatives or unknown universe is often unfeasible. In addi-
tion, if negative data is not chosen properly this may lead to
lower classification accuracy (Tax and Duin 2002).

Therefore, in this paper, we aim to derive color invari-
ance by learning from positive examples of color models
to obtain diversified color invariant ensembles. The train-
ing examples should include a broad range of varying imag-
ing conditions under which the object/image is recorded.
An orthogonal and non-redundant color model set is first
computed composed of both color variants and invariants.
Then, the proposed method combines these color models to
arrive at a diversified color ensemble yielding a proper bal-
ance between invariance (repeatability) and discriminative
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power (distinctiveness). To achieve this, the method uses a
multi-view approach to minimize the estimation error. In ad-
dition, the contribution of each observation is estimated us-
ing a Monte Carlo simulation. In this way, the method is
more robust to data uncertainty and produces properly di-
versified color invariant ensembles. Finally, the method is
extended to deal with sequential data. Time series modeling
is included in the method to predict the evolution of obser-
vations over time. To this end, a weighting scheme is used
to incorporate the dynamics of observations over time. The
ensemble is periodically updated considering the new data
available and its order in time. To illustrate the extension
of the method, an example experiment using synthetic data
is provided. Further, the extension to time series is applied
to real-world videos for the purpose to object detection in
videos with varying imaging conditions.

The paper is organized as follows. First, in Sect. 2,
the multi-view fusion scheme is introduced. In Sect. 3 the
method is extended to consider the evolution of data over
time. Color-based region detection is outlined in Sect. 4.
Then, in Sect. 5, experiments are presented and the results
are discussed. Finally, conclusions are drawn in Sect. 6.

2 Multi-view Combination of Observations based on
Diversified Ensembles

In this paper, we aim to model a homogeneously colored im-
age region (object) recorded under varying imaging condi-
tions (views) by combining different color models (observa-
tions). At each view, the image region contains multiple pix-
els (samples of an observation). Then, we propose to model
the color of the region using a single value (expected color
E[&0]) with small deviations from this value (o) by:

O =E[Ep]l £o0. (1)

Table 1 Definitions and correspondence between symbols and color-
related terms

Definitions

Abstract terms Color terms

Object O Homogeneously-colored image
region.
View Image region recorded under a

different imaging condition (i.e.,
illumination, shading).

Object representation &; Expected value using the i-th color
model independent of the imaging
conditions.

Observation &; j Expected value using the i-th color
model for the j-th view.

Pixel values used to estimate the i-th
color model data distribution for the
Jj-th view.

Samples of observation &;j;
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Fig.. 1 .The color of an i.mage Color region to be Different views Color plane data
region is modeled combining modeled of the object distributions
the information of different ~
color models from different _ Ewi -
views En /l &
Homogeneously colored
patches are selected
from each view
[ Multi-view combination ]
The color of the object is modeled as: E EU}
O=F [60} + op

Oo

E —
Definitions are given in Table 1 and the modeling process is N N _ 2
illustrated in Fig. 1. =E Z wiE[&] - ) wiElE]

To build the model, it is assumed that L different sam- i=1 i=1
ples of N different observations for K views of the object N 2
are available (§;;,i € [1,2,...,N],j €[1,2,...,K],l € —E (Z i(E[g[]_E[éi]))
[1,2,...,L). =1
These instances correspond, for example, to the same ob- 2

ject imaged under varying imaging conditions (e.g., shad- _ _
ing, highlights and illumination) generating variations of =E Z wiw;(El&] - EI&D(ELE;] — EI§;1)
the observations apart from those due to device-dependent b=l
recording noise. Further, multiple samples of each observa-
tion are provided to reduce the influence of noise. Then, a = Z W; W;0jj
set of N orthogonal and non-redundant representations of i,j=1
the object is estimated (&1, ..., &y) and the object is mod- _ wEwT, 3)

eled by a weighted linear combination of the representative
(expected) values of each observation E[&;]:

N
Eléo]=) wiEl&], )

i=1

where w = [wy, ..., wy] is the contribution of each obser-
vation to the final combination. Further, the standard devia-
tion of the object is obtained by:

o = E[(E[£0] — E[E0])*]

where ¥ is the covariance matrix representing the existing
relations between observations when the viewing conditions
are changing.

To estimate the representative (expected) values of each
observation E[§;], a multi-view framework is proposed.
This framework characterizes the information available
from each observation using two different stages. First, the
central value of each observation for each view (§;;) is com-
puted using the data distribution of the samples available
(&ij1). In particular, we use the mode of the samples avail-
able for the j-th view of the i-th observation (é,- ). Using
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this central value, the algorithm minimizes the influence of
skewed distributions, thus, minimizes the estimation error.
Second, the expected value of an observation given the val-
ues of different views E[£;] is estimated assuming that each
available view has the same probability of appearing. In par-
ticular, the mean value of central values for each view is
considered as follows:

1 &
E[s,-]=§j§a-j. 4

What remains is the estimation of w;. A proper combina-
tion of observations leads to a model for which the expected
value of the object (E[£p]) is close to a reference value
(E[£0;]) and for which its variance is minimized. In this
way, the combination reduces the deviations from the ex-
pected value due to varying viewing conditions. This refer-
ence value is, for example, the value which is obtained when
ideal acquisition conditions are obtained. Hence, computing
w; can be posed as an optimization problem formulated as
follows,

N
minimize Z W;W ;0 5)
i,j=1

subject to E[£0] > El§o,],

N
Zwi:l’ (6)

i=1

where the full combination constraint has been added. That
is, the contributions of each observation must sum up to one.

Quadratic optimization techniques (Boyd and Vanden-
berghe 2004) can be applied to solve (5) and provide a set
of optimum solutions (efficient ensembles) called the effi-
cient frontier (Scherer 2002). That is, the efficient frontier
contains different values of E[£p] and associated weights
which minimize the corresponding oo . However, quadratic
optimization techniques tend to select components with at-
tractive characteristics so components with the less appeal-
ing features are not selected. These are the cases in which
the estimation error is likely to be maximal (Michaud and
Michaud 2008; Scherer 2002). Therefore, in order to deal
with the estimation error and improve the diversity of the
ensemble, in this paper, a resampling technique is proposed.
This resampling technique uses a Monte Carlo simulation to
obtain a set of efficient ensembles called resampled frontier
(Michaud 1998). Ensembles lying on this resampled fron-
tier are composed of weight vectors obtained as the aver-
age of the efficient frontiers given a certain expected value.
The performance of resampled efficient ensembles is bet-
ter than the performance of those ensembles obtained using
quadratic optimization techniques (Michaud and Michaud
2008; Usmen 2003).
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Finally, the most appropriate ensemble is selected from
the set of ensembles lying on the efficient frontier using the
Sharpe Ratio (SR) (Dowd 1998). This ratio is a single sta-
tistical performance measure of variance-adjusted expected
return defined as follows:

E[o]

SR = ) @)
00

The highest SR corresponds to the ensemble in the frontier
obtaining best performance. If a benchmark ensemble exists
&R, the performance of an ensemble in the frontier (P,) is
computed as follows:

1
"~ (Elé0] —éR)oo’

The highest performance corresponds to the most appropri-
ated ensemble.

The above computation of weights and the ensemble se-
lection method are summarized as follows:

®)

e

1. Estimate the efficient frontier using the training data and
quadratic programming techniques. This frontier is com-
posed of ensembles varying from minimum-variance to
the maximum expected value ensembles. Divide the dif-
ference between the minimum and maximum return in m
ranks.

2. Estimate the variance-covariance matrix, >, and ex-
pected values, E[&;], of the training data,

1 &,
El&i) =< > &, ©)
j=1
% = (0.)). (10)

where K is the number of views.

3. Resample, using the training inputs in Step 2, taking D
draws for the input multi-variate distribution. The num-
ber of draws D reflects the degree of uncertainty in the
training data. Compute a new variance-covariance matrix
from the sampled series. Estimation error will result in
different variance-covariance matrices and mean vector
from those in Step 2.

4. Compute the efficient frontier for the inputs derived in
Step 3. Calculate the optimal ensemble weights for m
equally distributed points along the frontier.

5. Repeat Step 3 and Step 4 P times. Calculate the averaged
ensemble weights for each observation,

P

P
—resampled 1
w, " = 2y Wi, (1)

where w;,,, denotes the weight vector for the m-th ensem-
ble along the frontier for the i-th observation.
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6. Evaluate the frontier of averaged ensembles by the
variance-covariance matrix from the original training
data to obtain the resampled frontier.

7. Select the ensemble from the frontier which exhibits the
highest performance (see (7) or (8) as required).

3 Temporal Ensemble Adaptation

An important characteristic of any learning system is its
adaptation to newly obtained data. The previous section
provides an optimal weighted combination of observations
based on training samples representing different views of
the same object (Table 1). However, no information regard-
ing the order of these observations was considered to build
the model. In this section, the proposed model is extended
to take into account the evolution of observations over time
(e.g., from still images to videos). The key idea is to in-
clude temporal information in the estimation of the para-
meters E[£1], ..., E[éy] and 2. These parameters are com-
puted considering each view of a given observation provides
the same information to the final ensemble. However, due to
the dynamic nature of data sequences, current observations
should be taken into account more prominently than distant
ones. In this way, the modification of the algorithm consists
of using time series analysis to predict the expected values
of observations rather than considering simple averages over
views.

To express the dynamic structure of the data (observa-
tions and ensembles), a weighting process is used. Fur-
ther, the dynamic structure of the variance within observa-
tions is also considered. There are two models to deal with
these kind of variations: exponentially weighted moving av-
erage (EWMA) and generalized autoregressive condition-
ally heteroscedastic (GARCH). Both models assume that
serial correlation is present in the dynamics of the obser-
vations. As a result, both models assign higher weights to
recent values than the older ones. In particular, in this paper,
EWMA model is used mainly due to its simplicity (less pa-
rameters to estimate) and the ability to cope with changes
in standard deviation of the incoming data (Best 1998;
Tse 1991).

EWMA uses a decay factor that weighs the change of
each past observation. More recent observations receive
higher weights than older ones. Using EWMA, the input pa-
rameters of the optimization process are derived as follows:

K

1 L
Elg]=——— > Mg, (12)
Z/ 1)‘ ; !

K
% = (owm) = (1=2) Y M7 Ej — EL&:D)Enj — ElEn)),

j=1
(13)

where A is the decay factor. This factor determines both
the degree of weighting of recent observations and also the
speed with which the volatility measure will return to a
lower level after a large return. A lower decay gives a higher
weighting to recent values. K is the number of past observa-
tions unlike the previous section where K was the number
of different views available for each observation. Parame-
ter K can be set to infinity since the weighting procedure
will rapidly reduce to zero for distant observations. Since
0<A<1,)" — 0 when n — oo, the model will eventually
place a zero weight on observations far in the past.

3.1 Synthetic Data Example

To illustrate the effectiveness of the time-adaptation process,
the following experiment using synthetic data is conducted.
The aim of the experiment is to evaluate the theoretical im-
provement achieved when the evolution of observations is
considered to construct the ensemble. The data set consists
of five different sequences of observations (Fig. 2). Each
sample in the dataset corresponds to the central value of
observations at a certain instant of time (é,- j) where i €
[1,...,5]and j €[1,2,..., K]. The dataset contains a total
of 2200 samples, 440 for each observation (K = 440). The
first 40 samples from each observation are used as training
data to build an ensemble without considering the temporal
information.

Different updating techniques are evaluated. First is the
so-called sample and hold method where an ensemble is
built using training data which will not be updated when new
information is available. Further, different decay factors are
considered, ranging from [0, 0.1, ..., 1], where A = 1 cor-
responds to equally weighting all the historical samples. For
this, a look-back period $ has to be defined. For other values
of A, there is no need to fix this.

The evaluation consists of assessing the adaptation of the
ensemble to the dynamics of the data. Hence, the results
achieved by the ensemble process are compared against the
ideal result or benchmark for each process. Note that in the
case of simulated data, the true values of the future ensemble
are known, and thus, the optimal (as opposed to estimated)
mean-variance ensemble can be computed. This ensemble is
used as benchmark for each combination strategy.

The tracking error () (Rasmussen 2003) is used as a per-
formance measure. This measure denotes how closely an en-
semble follows the value to which it is benchmarked. Hence,
the tracking error of an ensemble E relative to some bench-
mark B over K time periods is:

K

(K - Z (14)

=1
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Fig. 2 Synthetic data used to
validate the capabilities of the 70
tracking algorithm

Central value

Synthetic data

S

where D, = (E[&p:] — E[&p;]) is the difference between
the ensemble value and the incoming value of the bench-
mark and D = % Z[K: 1 D, is the mean of these differences.
The lower 1 is, the closer the ensemble is to its benchmark.
Further, to test the statistical significance of the results, the
historical SR (Sy,) or Ex-post SR (Sharpe 1994) is used. This
ratio is derived from the SR which is a measure of expected
value per unit of variance in an ensemble. SR is used to char-
acterize how well the expected value of an ensemble com-
pensates for the existing variance. Further, S, measures the
performance of the ensembles against a benchmark over a
period of time,
D
Sp=—, (15)
oD

where op is the square root of . This measure is closely
related to the t-statistic. The t-statistic is equal to the SR
multiplied by the square root of K (Sharpe 1994). However,
this measure requires proper interpretation since the original
measure aims at maximizing the numerator while minimiz-
ing the denominator. Thus, to properly use this measure, the
difference between the expected value and the current value
is reversed to express the same behavior. Hence, the high-
est Sy, is the highest historical performance. A summary of
the results is listed in Table 2. As shown, a higher perfor-
mance (lower tracking error) is achieved when the compo-
sition of the ensemble is updated over time. The improve-
ment is higher when the exponentially weighted scheme is
adopted. However, as expected, the performance depends
on A: the relevance of current samples with respect to distant
ones. In any case, updating the ensemble improves the per-
formance of the algorithm except when all historical data is
equally considered. This is an expected performance as the
expected value is predicted considering information which
is rarely related to the incoming one.
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Table 2 Tracking error (¥) and historical Sharpe ratio (S;) compari-
son for different values of time adaptation configurations. The higher
Sy, the better performance and the lower ' the better performance

EWMA ¥ Sh
Sample and hold 6.2068 2.8435
A=1,8§=30 10.7631 11.2124
A=1,85=50 0.8631 10.0124
A=1,S=00 3.3215 4.6842
A=09 0.4892 13.5402
A=0.8 0.2205 20.5731
A=0.7 0.2497 19.4215
A=0.6 0.2546 19.2591
A=0.5 0.1551 24.7231
A=04 0.2067 21.3939
A=03 0.3748 15.8704
A=0.2 0.4171 15.0195
A=0.1 0.2476 19.4857

4 Application to Color-based Region Detection

In this section, the method presented in the previous section
is applied to color-based region detection, that is, the de-
tection of object patches in images recorded under varying
imaging conditions using a set of color models composed of
both color variant and invariant models. The goal is to de-
rive color invariance by learning from color models to obtain
diversified color invariant ensembles.

To this end, every possible transformed color model is
considered as an observation of the same object (color-
region) and each view corresponds to a different imaging
conditions such as lighting, viewing and illumination vari-
ations. Further, each pixel within the region corresponds
to different sampling values of the observation. Hence, the
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proper interpretation of the algorithm is as follows: O is the
data distribution of the final combination of color (invari-
ant) planes/models and E[£p] and o its central value and
variance respectively. E[&;] is the expected value of the i-th
color (invariant) plane estimated using the multi-view pro-
cedure. That is, considering first the data distribution from
pixels of each view and then the average value of the views.
Finally, w; denotes the contribution of the i-th color model
to the final ensemble.

During training (i.e., estimating E[£p], 0o and w;), the
following steps are performed:

— Select a set of training images containing the object to
be detected imaged under different acquisition conditions
(e.g., varying illumination).

— Select a region of interest for each training image (i-th)
and for each color model (j-th) estimate éi j using the data
distribution of pixels in the training region.

— Estimate the correlation matrix X of these values. This
matrix contains information regarding the relative varia-
tions of each color model when the acquisition conditions
vary.

— Estimate the weights w using the Monte Carlo method
considering the central value of each color model for each
view and the covariance matrix as input data.

— Compute E[£p] and o using (2) and (3) respectively.

— Finally, compute the SNR( ratio of the model as follows:

E[é0]

SNRo = ) (16)
00

Then, during classification, the following steps are per-
formed:

— Convert the image into the color models (the same as
during training) and apply the weights w obtained in the
training phase to combine them. This leads to a grey-level
image.

— Estimate the signal to noise ratio, SNR, by dividing, at
each pixel, the local mean value by the local standard de-
viation. The SNR is estimated using a rectangular region
(M x N pixels) at each pixel.

— Compute the error between the SNRp and the local SNR
for each pixel. The lower the error, the more similar the
colors are.

— Threshold the error image e to obtain the final binary
mask C:

1 ife(x,y)<T,
Cx,y)= . (17
0 otherwise.

The appropriate value of 7T is obtained using automatic
thresholding techniques such as the isodata method (Ri-
dler and Calvard 1978).

Finally, if temporal adaptation is required, the following
steps are performed:

— Use the proposed classification procedure to classify pix-
els in the first image.

— Use the current result to estimate the central value of each
color model for that frame. Add these central values to the
historical data.

— Estimate input parameters to the optimization process (X
and E[&1], ..., E[én]) using the EWMA process outlined
in Sect. 3.

— Select the optimal ensemble from the frontier considering
the same SR and reference as in the initial training stage.

— Use the new ensemble to process the incoming image.

To provide robustness against confounding imaging con-
ditions (e.g., illumination, shading, highlights, and inter-
reflections), different color models exhibiting different pho-
tometric invariance properties have been proposed derived
from RGB color model in Table 3 (van de Sande et al. 2008).
For instance, for the dichromatic reflection model, normal-
ized color rgb is to a large extent invariant to a change in
camera viewpoint, object pose, and the direction and inten-
sity of the incident light. See Table 4 for an overview of
color models and their invariance properties. In addition to
the models described by van de Sande et al. (2008), the il-
lumination invariant (J) proposed in Finlayson et al. (2006)
is included. This color invariant requires a calibration para-
meter, the invariant direction which is an intrinsic parame-
ter of the camera. Currently, this invariant direction can be
found either by following the calibration procedure outlined
in (Finlayson et al. 2006) or, by using a procedure which
determines the invariant direction from a single image (Fin-
layson et al. 2004) or from a set of images (Alvarez et al.
2008). The former consists in acquiring images of a Mac-
beth color checker under different day time illuminations
and then obtaining the invariant direction by analyzing the
log-chromaticity plot generated from these images. The lat-
ter considers the entropy of a single image to compute the
invariant direction. Then, the method consists in generating
invariant-images using all the possible invariant directions
within a range. The optimum direction is the one minimiz-
ing the entropy of its corresponding illumination-invariant
image (Finlayson et al. 2004).

Considering all the color models in Table 4, a set is ob-
tained of both color variants and invariants to achieve both
distinctiveness and repeatability respectively. The next step
is to obtain a non-redundant subset. Covariance matrix X
provides information about correlation between color mod-
els. This analysis can be done using principal component
analysis (PCA) (Jolliffe 2002). Then, correlation between
color models is represented by the loadings of each color
model, see Fig. 3. The input data to PCA is the matrix con-
taining the expected values for each view of each color mod-
els (§,~.,~). The closer two points are in the loading space,
the more correlated they are (and their corresponding color
models). The number of principal components depends on
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Table 3 Derivation of opponent

color space, normalized rgb, Opponent Color Space Normalized rgh
HSV and CIELab color spaces : : R
from RGB values 0, 5 5 0 R "= RTGTE
L L =2 __ G
2N=l% % %Il° 8= ®rG¥B
03 e . B b= _B
V3 V3 V3 — R+G+B
HSV CIE Lab
1 1 1
v 3 3 3 R X 0.490 0.310 0.200 R
— | =L =L 2 =
vil = % % 7 G Y 0.177 0.812 0.011 G
% [ S B z B
2 % 77 0.000 0.010 0.990
L= 116(,10)1/3 —16
H = arctan % S= V]2 + sz
_ X \1/3 Y \1/3
a=500[ () = ()]
— Y13 _ (Z\1/3
b_zoo[(y()> %) }
X0, Yo and Z are the coordinates of a reference white point.
Table 4 Invariance of color
models (derived in Table 3) for Taxonomy of color LI LI LI LC LC
different types of lighting spaces change shift change change change
variations i.e., light intensity & shift & shift
(LI) or light color (LC) change
and/or shift (van de Sande et al. RGB _ B B _ B
2008). Invariance is indicated
with ‘4’ and lack of invariance 01,02 - + - - -
with ‘=’ O3, intensity, L - - - - -
Saturation (S) - + + - -
Hue (H) + + + - -
r,g,a,b + _ _ _ _
J + + + + +

the data and the amount of variation. The selection of color
models which represent each cluster (e.g., S or b in Fig. 3)
is computed by the Hartigan’s test for unimodality (Harti-
gan and Hartigan 1985). In this way, an orthogonal (vari-
ant/invariant) and non-redundant (decorrelated) color model
subset is obtained which will be used as input of the pro-
posed method as explained and tested in the next section.

5 Experiments

In this section, the proposed algorithm is applied to three
different databases: (1) the Amsterdam Library of Object
Images (ALOI) (Geusebroek et al. 2005), (2) Caltech Face
database (Weber 1999) and (3) a road sequence taken by
an on-board camera. The goal of the first experiment on
the ALOI dataset is to detect object regions under varying
imaging conditions. The second experiment consists of de-
tecting skin to detect faces in the Caltech image dataset.
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The aim of the last experiment is to detect roads under un-
controlled imaging conditions. These experiments are con-
ducted using thirteen color models (J, R, G, B, r, g, O,
0>, L, a, b, S, V). The third opponent color O3 is ex-
cluded since it provides intensity information which is al-
ready provided by V. Further, the hue component H from
the HSV color space is excluded due to its instability close
to the achromatic axis (Kender 2005). The calibration re-
quired to compute J is done using the approach proposed
in (Alvarez et al. 2008). Finally, the reference white point for
deriving CIELab color space is set to the D65 white point
(X0 = 0.9505, Yo = 1.0000, Zp = 1.0888) (Wyszecki and
Stiles 1982).

5.1 Error Measures

Quantitative evaluations are provided using pixel-based
measures, see Table 5, from which the following error mea-
sures are computed: quality, detection accuracy, detection
rate and effectiveness, see Table 6. Each of these measures
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Color planes / loadings plot

2

A

Loadings on PC 3

Fig. 3 PCA is used to reduce redundancy within the training data.
The analysis is done using the loadings plot of each color model. This
example corresponds to the training set from the face database

Table 5 The contingency table. Algorithms are evaluated based on the
number of pixels correctly and incorrectly classified

Contingency table Ground truth

Non-target Target
Detection Non-target TN FN
Result Target FP TP

Table 6 Pixel-wise measures used to evaluate the performance of the
different algorithms. These measures are defined using the entries of the
contingency table (Table 5)

Pixel-wise measure Definition

Quality (2) &= TPrrPTEN
Detection Accuracy (DA) DA = %
Detection Rate (DR) DR = %
Effectiveness (F) F= 12)21%1;

provides a different insight in the performance of a method.
Quality takes into account the completeness of the extracted
data as well as its correctness. Detection accuracy, also
known as precision, is the probability that the result is valid.
Detection rate, or recall, is the probability that the ground-
truth data is detected. Effectiveness is a single measure that
trades-off the detection accuracy versus detection rate. Fur-
ther, the performance of our method is compared, on each
dataset, to existing algorithms. Pair-wise comparisons be-
tween algorithms are computed by the Wilcoxon statistical
significance test (Wilcoxon 1945).

5.2 Object Region Detection in Controlled Environments:
Still Images

Objects are taken from the Amsterdam Library of Object
Images (ALOI) (Geusebroek et al. 2005). The objects are
captured under different viewing angles, illumination an-
gles, and illumination color. The lights were chosen to be
representative of the spread of common illuminants. The
goal of this experiment is to detect object regions. The ex-
periment is conducted on each image (36 per object) of
seven different objects (1, 25, 55, 62, 85, 142, 877). These
objects are selected for the ease of illustration (Fig. 4a) ac-
cording to two different criteria: objects having different
clearly defined color regions and diversity on the object re-
gion colors. The corresponding ground-truth is generated by
manually segmenting all these images (Fig. 4b).

Fifteen regions from 15 images of each object are ran-
domly selected to train the algorithm representing less than
5% of the total amount of pixels of each region. Although
these regions comprise the same object under different light-
ing conditions, each region contains pixels from an homoge-
neously colored patch. The data distribution of each patch is
approximately unimodal. The set of photometric orthogo-
nal and non-redundant color models is computed using the
(PCA) procedure described in Sect. 4. As a result, weights
are obtained and listed in Table 7. Some color models ex-
hibiting high weights (i.e., J, V and L) do not contain chro-
matic information. Hence, the color of the object’s region is
reflected in other color models with high weight such as R,
B, g or O,. Example detection results for each object are
shown in Fig. 4c.

For comparison, two different weighting algorithms have
been implemented: the minimum variance (Jacobs 1995)
and the single-view fusion scheme (Stokman and Gevers
2007). The same pixels are used to train all algorithms and
all the images of each object have been used for testing.
A number of representative results are shown in Fig. 4d
and Fig. 4e. A summary of quantitative results is reported
in Table 8 for a single object providing insight into the
method and in Table 9 for overall average performance eval-
uation. Analyzing a single object, the proposed multi-view
approach outperforms the other approaches in terms of over-
all performance (quality, detection accuracy and F mea-
sure). Nevertheless, it does not outperform the single-view
approach in terms of detection rate. Hence, the single-view
method detects more target pixels at the expense of miss-
detected background pixels. Analyzing the average perfor-
mance for all the objects, the proposed multi-view approach
clearly outperforms the other approaches in terms of overall
average performance. Thus, it can be concluded that consid-
ering only the variance of the training data (i.e., the mini-
mum variance method) is not sufficient to provide a proper
model. In fact, single-view methods not only aim at mini-
mizing the variance but they also yield a certain mean value
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Fig. 4 Example results for
different objects from the ALOI
database. (a) Original images.
(b) Ground-truth generated
manually. (¢) Results by the
proposed method. (d) Results
obtained using the minimum
variance fusion method (Jacobs
1995). (e) Results obtained
using the single-view fusion
method (Stokman and Gevers
2007)

(b)

Table 7 Set of weights obtained for the experiments. ‘—* corresponds to an unselected color model by the PCA procedure

Teddy-bear Green-ball Toy Beck Blue-ball Turtle Cabbage Skin Road

J 0.595 - 0.304 0.396 0.020 0.017 0.003 —0.017 0.929
R 0.048 0.049 0.020 0.353 - 0.042 0.145 - -

G - 0.037 - - - 0.213 - - -

B 0.328 - - - - - 0.004 - -

r - 0.196 0.275 - - 0.301 0.005 - 0.157
g 0.276 0.181 0.401 0.439 0.004 0.290 - 0.022 0.342
0, - - - - - - - - 0.266
0, - 0.212 - 0.217 0.474 0.101 0.405 0.013 —0.024
L - 0.041 - - - - 0.017 0.176 -

a - 0.131 - - - 0.035 - 0.652 —0.356
b - 0.149 - - 0.489 - - 0.154 —0.082
S —0.032 - - - 0.013 - 0.421 - —0.452
Vv —0.215 - - —0.406 - - - - 0.220

Table 8 Performance of different detection algorithms for the first object from the ALOI database. Bold values indicate maximum performance

8 Detection accuracy Detection rate F
Minimum variance (Jacobs 1995) 0.156 £0.09 0.269+0.12 0.305+0.21 0.259+0.15
Single-view Fusion (Stokman and Gevers 2007) 0478 £0.11 0.627+0.13 0.789 £ 0.06 0.694 +£0.14
Multi-view?® 0.294+£0.15 0.419+0.28 0.784 £0.24 0.627+£0.25
Multi-view (our method) 0.639 +0.13 0.909 £+ 0.03 0.687 £0.15 0.778 £ 0.11

aWithout color model selection
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Table 9 Average performance of different detection algorithms for seven objects from the ALOI database (objects 1, 25, 55, 62, 85, 142, 877).

Bold values indicate maximum performance

g Detection accuracy Detection rate F
Minimum variance (Jacobs 1995) 0.126 +0.14 0.317+0.31 0.2124+0.22 0.199 +0.19
Single-view Fusion (Stokman and Gevers 2007) 0.286 £ 0.26 0.365 £0.32 0.656 +£0.33 0.389 £0.28
Multi-view?* 0.3104+0.23 0.3834+0.28 0.599+0.21 0.414 +0.26
Multi-view (our method) 0.514 £0.21 0.750 £0.29 0.703 £0.21 0.655+0.18

aWithout color model selection

of the ensemble. Hence, the extra information provided by
the multi-view approach is important to achieve a proper
ensemble. Finally, since training pixels are obtained under
different imaging conditions, the behavior of the different
color models cannot be captured properly. In contrast, the
proposed method is able to model this phenomenon due to
the relative variations around the central value in each view
and hence outperforming the other methods.

5.3 Skin Detection: Still Images

The second experiment consists of detecting skin pixels of
faces from The Frontal Face Image Database of Caltech.
This image dataset contains 450 face images taken from 27
different persons under different lighting, expressions and
backgrounds. The appearance of the face in these images
is clearly influenced due to different illumination, shading,
skin tone and so on (Fig. 5). Ground-truth is generated by
segmenting manually all the images in the database. The
training set is obtained by manually selecting 100 different
patches from 100 different (randomly chosen) images. The
unimodality test is used to discard unappropriate patches.
Finally, 58 patches are used for training representing 1% of
the total of facial pixels in the database. Note that, in this
experiment, the covariance matrix (X) encapsulates varia-
tions not only in the illumination conditions but also in the
appearance of the object (i.e., skin tone variations) since dif-
ferent instances of the same object-class are considered at
the same time. The color model set is computed using the
procedure described in Sect. 4. The set of weights obtained
are listed in Table 7. These weights reveal a dominance in
a and b reflecting pale reddish (i.e., skin). Example results
are shown in Fig. 6. For each original image (Fig. 6a) the
weighted combination (Fig. 6b) and the skin data distrib-
ution (Fig. 6¢) are provided. Further, all the skin pixels in
the database are collected and the distribution of values of
different color models is shown in Fig. 7. For comparison,
only one color model from each group in Table 4 is con-
sidered. As shown, the proposed method leads to an uni-
modal distribution of pixels despite light color and skin tone
variations. That is, lighting variations are compensated when
color models are properly combined. Note that pixel values

for other color models are not normally distributed leading
to erroneous mean and standard deviation values.

The performance of the method is compared to six dif-
ferent existing skin detection algorithms. Three of them use
fixed boundaries in RGB (Fleck et al. 1996), CbCr (Chai and
Ngan 1999) and HS (Sobottka and Pitas 1998) color spaces.
The fourth is a statistical approach using a mixture of Gaus-
sians in RGB space. Note that these methods are particularly
designed and fine-tuned to detect skin. The other two meth-
ods correspond to the (more generic) fusion schemes pro-
posed by (Jacobs 1995) and (Stokman and Gevers 2007).
The same training set is used to train the different detec-
tion schemes. A summary of the results is listed in Table 10.
Further, the results of the Wilcoxon test are shown in Ta-
ble 11. The following conclusions can be derived from these
results. First, the proposed algorithm outperforms the others
in terms of overall performance (quality and effectiveness)
except for the RGB based method. Nevertheless, the RGB
based, HS and RGB statistical method provides better de-
tection rate. This means that these methods provide higher
invariance to skin-class variability at the expense of having
low discriminative power. Our method outperforms all the
others, including RGB based method, in terms of detection
accuracy. That is, the ratio, between skin pixels which are
correctly classified and the number of skin pixels retrieved
provided by our method, is higher. This is due to the result-
ing distribution of skin pixel values (Fig. 7). However, the
overall performance of our method is lower than the RGB
method because of the high variability in both skin appear-
ance and lighting variations. This yields a data distribution
in each view which is not unimodal except for very small
patches of skin. Further, unobserved lighting conditions and
user appearance (during training) shift the skin distribution
(Fig. 6¢) reducing the performance. Furthermore, although
the RGB-based method fails in the presence of low inten-
sity (due to illumination and shadows) there are only a few
instances of this type i.e., only 3% of images in the image
dataset showing severe intensity and shadow changes.

5.4 Road Detection in Video Sequences

Previous experiments considered still images. That is, no
temporal information is available. Hence, the optimal en-
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Fig. 5 Example images from
The Frontal Face Image
Database of Caltech (Weber
1999)

Fig. 6 Generic skin detection
results (second skin
experiment). (a) Original image;
(b) weighted combination of
color models; (¢) distribution of
skin pixel values in the image;
(d) skin detection results
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Fig. 7 Distribution of all skin
pixel values in the data set for
different color models. Mean
and standard deviation for each
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Table 10 Performance of different detection algorithms on Caltech face database. Bold values indicate maximum performance
g Detection accuracy Detection rate F
RGB based method (Fleck et al. 1996; Kovac et al. 2003) 0.640 £0.19 0.694 +0.20 0.884 £0.17 0.761 £0.17
CbCr based method (Chai and Ngan 1999) 0.259+0.18 0.309 +£0.21 0.548 £0.31 0.379 £0.23
HS based method (Sobottka and Pitas 1998) 0.443 +£0.21 0.514 +£0.21 0.807 £0.28 0.585+0.21
RGB Statistical (Jones and Rehg 2002) 0.510+0.23 0.635+0.23 0.723 £0.28 0.643 £0.22
Min. Variance (Jacobs 1995) 0.189 +£0.03 0.195+0.03 0.190 £0.02 0.318 £0.05
Single-view Fusion (Stokman and Gevers 2007) 0.314£0.24 0.365 £0.26 0.636 £0.34 0.430 £0.27
Multi-view® 0.410+0.23 0.703 £0.18 0.497 £0.20 0.550 £0.15
Multi-view (our method) 0.5894+0.18 0.756 £ 0.22 0.718 £0.11 0.7134+0.17

aWithout color model selection

Table 11 Wilcoxon test for the skin detection experiment. A positive value indicates that our method outperforms the others. Negative values
indicate that our method does not perform significantly better. Bold values indicate when the proposed method outperforms the others

RGB based CbCr based HS based RGB Statistical Minimum Variance Single-view Multi-view?
Multi-view g -1 1 1 1 1 1
DA 1 1 1 1 1 1
DR -1 1 -1 1 1 1
F -1 1 1 1 1 1

2Without color model selection

semble is estimated considering all the pixels from the train-
ing set to be equally relevant. However, when sequential
data is considered, recent observations are more likely to
occur than past ones. Thus, the optimal ensemble should
be constructed emphasizing on current lighting variations
rather than distant ones. Therefore, in this experiment, a se-
quence of more than 800 images is considered to analyze
the dynamic nature of observations. This video sequence is
recorded using an on-board camera. The aim of the experi-

ment is to detect the (not occluded) road in front of a mov-
ing vehicle using a color camera. The images used include
different backgrounds, the occurrence of occluding and clut-
tered objects (vehicles) and different road appearances under
varying illumination changes.

The training set consists of 15 different road patches
which are manually selected from 15 different (randomly)
selected images. The selection process avoids successive im-
age indexes. These patches contain different illumination
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(i.e., shadows and highlights) and they represent less than
0.053% of the total amount of road pixels within the se-
quence. The selection of the most suitable color models is
executed by the PCA procedure described in Sect. 4. The
obtained weights for the ensemble are listed in Table 7 and
shows a dominant weight for the invariant color model cor-
responding to an achromatic surface independent of illumi-
nation changes (e.g., sun casts and shadows) i.e., roads.

Furthermore, in this experiment, the sequential nature of
the data is also considered. Thus, once the optimal ensemble
for the road is computed, it is adapted considering only im-
ages close in time. That is, the procedure described in Sect. 3
is used to estimate the input parameters (E[£1], ..., E[En]
and X) to the optimization process. To estimate them, a
temporal buffer is used considering the central value of the
detected road in each frame for each selected color model
(Fig. 8). Hence, the assumption is that the correlation be-
tween color models holds over time. To avoid possible out-
liers (false positives in the current result), robust statistics
are used. The decay factor A (see (12)) is empirically fixed
to 0.5 as suggested by the results from the synthetic exper-
iment in Sect. 3.1 (Table 2). Then, the optimal ensemble is
recomputed at each frame considering these new values of
E[&], ..., E[én] and X.

To evaluate the improvement in performance when tem-
poral information is taken into account, the error between
the expected value of the road and the current value (D as
in (14)) for two different updating techniques is considered
(Fig. 9). The updating techniques are sample and hold, and
EWMA or adaptive. The former uses a fixed optimal en-
semble estimated using training samples over all the image
sequence. The latter uses a decay factor (A = 0.5) to up-
date the optimal ensemble accordingly to new data available.
As shown in Fig. 9, the error is significantly lower when
the ensemble is updated over time. That is, if the ensem-
ble is adapted considering new data available, then the road
data distribution is modified accordingly to the new lighting
conditions leading to more accurate results. However, us-
ing a fixed ensemble (sample and hold), the variations due
to unobserved (not in the training set) lighting conditions or
road appearances lead to shifted road data distributions. Fur-
ther, the analysis of the tracking error (y) and historical SR
(Sp) for both methods (Table 12) suggests that the adaptive
method has a better performance in terms of following the
road central value over all the images in the database.

For comparison, the video sequence is processed using
three state-of-the-art methods. The first algorithm is the
HSI road detection (RD) algorithm proposed in (Sotelo et
al. 2004) and used in (Rotaru and Graf 2008). The HSI
color space is used to process generic outdoor scenes un-
der varying illumination (Ikonomakis et al. 2000; Sigal et
al. 2004). The second algorithm is the illuminant-invariant
algorithm presented in (Alvarez et al. 2008). The third al-
gorithm is based on 2D histograms in rg space (Tan et al.
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Table 12 Tracking error () and historical SR (Sj,) for the road exper-
iment. The lower i the better performance whereas the higher Sj, the
better performance

v Sh
Sample and hold 0.002212 0.001
EWMA (2 =0.5) 0.000257 8.331

2006). Further, the two fusion methods proposed in (Jacobs
1995) and (Stokman and Gevers 2007) are considered. Fi-
nally, three different instances of the proposed method are
considered: sample and hold without color model selection,
sample and hold method using color model selection, and
over time adaptive method using color model selection. Note
that the HSI and illuminant-invariant algorithms are based
on a frame-by-frame procedure. Further, these algorithms
require various parameter settings. For fair comparison, a
brute force approach is applied. In this way, a set of im-
ages is processed and evaluated using all possible values
within the range of each parameter. The optimal set of pa-
rameter values is the one which maximizes the average per-
formance. All algorithms (which need training) are trained
using the same road pixels. Finally, all these state-of-the-art
algorithms consider that the lowest part of the image corre-
sponds to the road and that it is about 4 meters away from
the vehicle. Under this consideration, only detected results
which are connected with a set of seeds placed at the bottom
part of the image are retrieved as road pixels. The same set
of seeds is used for all the methods in the experiments.

The performance of all algorithms is outlined in Ta-
ble 13. Various detection results of our method using tem-
poral adaptation are shown in Fig. 10. Further, the results
of the Wilcoxon test are shown in Table 14. From the re-
sults, it can be concluded that when the proposed method
is adapted over time it performs significantly better than the
others except for the detection accuracy for HSI method and
the non-adapted method. Results provided by our method
are slightly over-detected compared to those provided by
these two methods. However, regarding the overall perfor-
mance (quality and effectiveness), the proposed method per-
forms best. This means that the proposed algorithm achieves
a higher trade-off between invariance (detection rate) and
discriminative power (detection accuracy).

The results reveal that the method produces false nega-
tives (undetected road pixels) when highlights or lane mark-
ings are present. Further, the algorithm takes a few images
to recover when an abundance of false positives are present.
Hence, when the input data to estimate the ensemble is bi-
ased then the performance drops off. This could be improved
by adding more constraints (such as unimodality test) to the
new data available. Furthermore, the performance may be
improved by clustering detected road pixels to distinguish
different lighting conditions in the same frame.
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Fig. 8 Central values of T
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each frame. These values are o8l
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central value

Fig. 9 Comparison between
errors in the expected road value
at each frame (D in Eq. (14)).
For clarity reasons 1 every 100
frames are selected from the
original video sequence). The
error is higher when unobserved
lighting conditions appear

—4— Sample and hold

frame number

EWMA (4 =0.5)

Table 13 Performance of different detection algorithms on road database. Bold values indicate the maximum performance

50
frame number

g Detection Accuracy Detection Rate F
HSI based RD (Sotelo et al. 2004) 0.673 £0.12 0.927 £0.12 0.729 £0.15 0.798 £0.09
Invariant RD (Alvarez et al. 2008) 0.798 £0.13 0.901 £0.15 0.866 £0.10 0.870 £0.10
rg model based (Tan et al. 2006) 0.272 £0.19 0.770 £0.23 0.410£0.34 0.391 £0.29
Min. Variance (Jacobs 1995) 0.137£0.22 0.237 £0.30 0.193 £0.31 0.187 £0.28
Single-view Fusion (Stokman and Gevers 2007) 0.680 +0.14 0.936 +0.02 0.716 £ 0.15 0.801 £0.10
Multi-view (our method)* 0.801 £0.36 0.714 +£0.10 0.826 +0.05 0.746 +£0.07
Multi-view (our method)® 0.810+0.09 0.976 £ 0.04 0.828 +0.09 0.893 +£0.05
Multi-view (our method)® 0.915 £ 0.06 0.963 +0.05 0.949 £ 0.05 0.954 +0.03

a4Without color model selection

bWithout temporal adaptation
“With temporal adaptation
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Fig. 10 Results of the proposed
algorithm to detect roads

Table 14 Wilcoxon test for the road detection experiment. Positive values indicate that the proposed method performs significantly better. Negative
values indicate that our method does not outperform the others. Bold values indicate when our method outperforms the others

HSIRD Invariant RD rg model based Minimum Variance Single-view Multi-view® Multi-view?
Multi-view g 1 1 1 1 1 1 1
temporal DA —1 1 1 1 1 1 -1
adaptation DR 1 1 1 1 1 1 1
F 1 1 1 1 1 1

a4Without color model selection

bWithout temporal adaptation

6 Conclusions

In this paper, photometric invariance has been derived by
learning from color models to obtain diversified color invari-
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ant ensembles using only positive examples. A method for
combining color models is proposed to provide a multi-view
approach to minimize the estimation error. In this way, the
method is robust to data uncertainty and produces properly
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diversified color invariant ensembles. Further, the proposed
method is extended to deal with temporal data by predicting
the evolution of observations over time.

Experiments are conducted to validate the method. From
these experiments it is concluded that our method is robust
against variations in imaging conditions and is not restricted
to a certain reflection model. Further, the method performs
similar or outperforms state-of-the-art detection techniques
in the field of object, skin and road recognition. Considering
sequential data, the proposed method that is extended to deal
with future observations outperforms the other methods.
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