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1.1 Introduction

The detection and classification of local structures (i.e. edges, corners, and T-Junctions) in color images is

important for many applications such as image segmentation, image matching, object recognition, visual

tracking in the fields of image processing and computer vision [1], [2], [3]. In general, those local image

structures are detected by differential operators which are commonly restricted to luminance information.

However, most of the images recorded today are in color. Therefore, in this chapter, the focus is on the use

of color information to detect and classify local image features.

The basic approach to compute color image derivatives is to calculate separately the derivatives of the

channels and add them to produce the final color gradient. However, the derivatives of a color edge can be in

opposing directions for the separate color channels. Therefore, a summation of the derivatives per channel

will discard the correlation between color channels [4]. As a solution to the opposing vector problem,

DiZenzo [4] proposes the color tensor, derived from the structure tensor, for the computation of the color

gradient. Adaptations of the tensor lead to a variety of local image features, such as circle detectors and

curvature estimation [5], [6], [7], [8]. In this chapter, we study on methods and techniques to combine

derivatives of the different color channels to compute locale image structures.

To better understand the formation of color images, the dichromatic reflection model has been intro-

duced by Shafer [9]. The model describes how photometric changes, such as shadows and specularities,

influence the RGB-values in an image. On the basis of this model, algorithms have been proposed which

are invariant to different photometric phenomena such as shadows, illumination and specularities [10], [11],

[12]. The extension to differential photometric invariance has been proposed by Geusebroek et al. [13]. Van

de Weijer et al. [14] propose photometric quasi-invariants which have better noise and stability character-

istics compared to existing photometric invariants. Combining photometric quasi-invariants with derivative

based feature detectors leads to features which can identify various physical causes, e.g. shadow corners

and object corners. In this chapter, the theory and practice is reviewed to obtain color invariance such as

shading/shadow and illumination invariance incorporated into the color feature detectors.

Two important criteria for color feature detectors are: 1. (repeatability) they should be invariant (stable)

under varying viewing conditions, such as illumination, shading, and highlights; 2. (distinctiveness) they

should have high discriminative power. It has been shown that there exists a trade-off between color invariant

models and their discriminative power [10]. For example, color constant derivatives have been proposed

[11] which are invariant to all possible light sources assuming a diagonal model for illumination changes.

However, such a strong assumption will significantly reduce the discriminative power. For a particular

computer vision task that assumes only a few different light sources, color models should be selected which

are invariant (only) to these few light sources resulting in an augmentation of the discriminative power of
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the algorithm. Therefore, in this chapter, we outline an approach to the selection and weighting of color

(invariant) models for discriminatory and robust image feature detection.

Further, although color is important to express saliency [15], the explicit incorporation of color distinc-

tiveness into the design of salient points detectors has been largely ignored. To this end, in this chapter, we

review on how color distinctiveness can be explicitly incorporated in the design of image feature detectors

[16], [17]. The method is based upon the analysis of the statistics of color derivatives. It will be shown that

isosalient derivatives generate ellipsoids in the color derivative histograms. This fact is exploited to adapt

derivatives in such a way that equal saliency implies equal impact on the saliency map.

Classifying image features (e.g. edges, corners and T-junctions) is useful for a large number of appli-

cations where corresponding feature types (e.g. material edges) from distinct images are selected for image

matching while discounting other accidental feature types (e.g. shadow and highlight edges). Therefore, in

this chapter, a classification framework is discussed to combine the local differential structure (i.e. geometri-

cal information such as edges, corners and T-junctions) and color invariance (i.e. photometrical information

such as shadows, shading, illumination and highlights) in a multi-dimensional feature space [18]. This fea-

ture space is used to yield proper rule-based and training-based classifiers to label salient image structures

on the basis of their physical nature [19].

In summary, in this chapter, we will review on methods and techniques solving the following impor-

tant issues in the field of color feature detection: (1) to obtain color invariance such as shading/shadow,

illumination invariance, (2) to combine derivatives of the different color channels to compute locale image

structures such as edges, corners, circles etc., (3) to select and weight color (invariant) models for discrim-

inatory and robust image feature detection, (4) to improve color saliency to arrive at color distinctiveness

(focus-of-attention), (5) to classify the physical nature of image structures such as shadow, highlight and

material edges/corners.

This chapter is organized as follows. First, in 1.2, a brief review is given on the various color models

and their invariant properties based on the dichromatic reflection model. Further, color derivatives are

introduced. In section 1.3, color feature detection is proposed based on the color tensor. Color feature

detection on its application to color feature learning, color boosting, and color feature classification is given

in sections 1.4, 1.5, and 1.6.

1.2 Color Invariance

In this section, the dichromatic reflection model is explained Shafer [9]. The dichromatic reflection model

explains the image formation process and therefore models the photometric changes, such as shadows and

specularities. On the basis of this model, methods are discussed containing invariance. In section, 1.2.1
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the dichromatic reflection model is introduced. Then, in sections 1.2.2 and 1.2.3, color invariants and color

(invariant) derivatives will be explained.

1.2.1 Dichromatic Reflection Model

The Dichromatic Reflection Model [9] divides the light that falls upon a surface into two distinct com-

ponents: specular reflection and body reflection. Specular reflection is when a ray of light hits a smooth

surface at some angle. The reflection of that ray will reflect at the same angle as the incident ray of light.

This kind of reflection causes highlights. Diffuse reflection is when a ray of light hits the surface which will

be reflected back in every direction.

Suppose we have an infinitesimally small surface patch of some object, and three sensors are used for

red, green and blue (with spectral sensitivities fR(λ), fG(λ) and fB(λ)) to obtain an image of the surface

patch, then the sensor values are [9]:

C = mb(n, s)

∫

λ

fC(λ)e(λ)cb(λ)dλ + ms(n, s,v)

∫

λ

fC(λ)e(λ)cs(λ)dλ, (1.1)

for C ∈ {R, G, B}, and where e(λ) is the incident light. Further, cb(λ) and cs(λ) are the surface albedo and

Fresnel reflectance, respectively. The geometric terms mb and ms are the geometric dependencies on the

body and surface reflection component. λ is the wavelength, n is the surface patch normal, s is the direction

of the illumination source, and v is the direction of the viewer. The first term in the equation is the diffuse

reflection term and the second term is the specular reflection term.

Let’s assume white illumination, i.e. all wavelengths within the visible spectrum have similar energy:

e(λ) = e. Further assume that the neutral interface reflection model holds, so that cs(λ) has a constant value

independent of the wavelength (cs(λ) = cs). First, we construct a variable that depends only on the sensors

and the surface albedo:

kC =

∫

λ

fc(λ)cb(λ)dλ. (1.2)

Finally, we assume that the following holds:

∫

λ

fR(λ)dλ =

∫

λ

fG(λ)dλ =

∫

λ

fB(λ)dλ = f (1.3)

With these assumptions, we have the following equation for the sensor values from an object under white

light [11]:

Cw = emb(n, s)kC + ems(n, s,v)csf, (1.4)

with Cw ∈ {Rw, Gw, Bw}.
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1.2.2 Color Invariants

To derive that normalized color, given by,

r =
R

R + G + B
, (1.5)

g =
G

R + G + B
, (1.6)

b =
B

R + G + B
, (1.7)

is insensitive to surface orientation, illumination direction and illumination intensity, the diffuse reflection

term

Cb = emb(n, s)kC (1.8)

is used.

By substituting eq. 1.8 in the equations of r, g and b we obtain:

r(Rb, Gb, Bb) =
kR

kR + kG + kB

, (1.9)

g(Rb, Gb, Bb) =
kG

kR + kG + kB

, (1.10)

b(Rb, Gb, Bb) =
kB

kR + kG + kB

, (1.11)

and hence rgb is only dependent on the sensor characteristics and surface albedo. Note that rgb is dependent

on highlights (i.e. dependent on specular reflection term of eq. 1.4).

The same argument holds for the c1c2c3 color space:

c1(Rb, Gb, Bb) = arctan(
kR

max{kG, kB})
), (1.12)

c2(Rb, Gb, Bb) = arctan(
kG

max{kR, kB})
), (1.13)

c1(Rb, Gb, Bb) = arctan(
kB

max{kG, kR})
). (1.14)

Invariant properties for saturation

S(R, G, B) = 1 − min{R, G, B)

R + G + B
, (1.15)

are obtained by substituting the diffuse reflection term into the equation of saturation:

S(Rb, Gb, Bb) = 1 − min{kR, kG, kB}
(kR + kG + kB)

. (1.16)

S is only dependent on the sensors and the surface albedo.

Further, hue

H(R, G, B) = arctan(

√
3(G − B)

((R − G) + (R − B))
), (1.17)
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is also invariant to surface orientation, illumination direction and intensity:

H(Rb, Gb, Bb) = arctan(

√
3emb(n, s)(kG − kB)

emb(n, s)((kR − kg) + (kR − kB))
) = arctan(

√
3(kG − kB)

(kR − kG) + (kR − kB)
).

(1.18)

In addition, hue is invariant to highlights

H(Rw, Gw, Bw) = arctan(

√
3(Gw − Bw)

(Rw − Gw) + (Rw − Bw)
) =

= arctan(

√
3emb(n, s)(kG − kB)

emb(n, s)((kR − kG) + (kR − kB))
) = arctan(

√
3(kG − kB)

(kR − kG) + (kR − kB)
). (1.19)

System Viewpoint Geometry Ill. Color Ill. Int. Highlights

RGB - - - - -

rgb + + - + -

Hue + + - + +

S + + - + -

I - - - - -

c1c2c3 + + - + -

Table 1.1: Invariance for different color spaces for varying image properties. A ’+’ means that the color

space is not sensitive to the property, a ’-’ means that it is.

A taxonomy of color invariant models is shown in table 1.1.

1.2.3 Color Derivatives

Here we describe three color coordinate transformations from which derivatives are taken [20]. The trans-

formation are derived from photometric invariance theory as discussed in the previous section.

For an image f = (R, G, B)T the spherical color transformation is given by:










θ

ϕ

r











=











arctan(G
R

)

arcsin
( √

R2+G2√
R2+G2+B2

)

r =
√

R2 + G2 + B2











. (1.20)

The spatial derivatives are transformed to the spherical coordinate system by:

S (fx) = f s
x =











r sin ϕ θx

rϕx

rx











=











GxR−RxG√
R2+G2

RxRB+GxGB−Bx(R2+G2)√
R2+G2

√
R2+G2+B2

RxR+GxG+BxB√
R2+G2+B2











. (1.21)

The scale factors follow from the Jacobian of the transformation. They ensure that the norm of the deriva-

tive remains constant under the transformation, hence |fx| = |f s
x|. In the spherical coordinate system the



Th. Gevers, J. van de Weijer, H. Stokman, Color Feature Detection 7

derivative vector is a summation of a shadow-shading variant part, Sx = (0, 0, rx)T and a shadow-shading

quasi-invariant part, given by Sc
x = (r sin ϕθx, rϕx, 0)T [20].

The opponent color space is given by:











o1

o2

o3











=











R−G√
2

R+G−2B√
6

R+G+B√
3











. (1.22)

For this, the following transformation of the derivatives is obtained:

O (fx) = fo
x =











o1x

o2x

o3x











=











1√
2
(Rx − Gx)

1√
6
(Rx + Gx − 2Bx)

1√
3
(Rx + Gx + Bx)











. (1.23)

The opponent color space decorrelates the derivative with respect to specular changes. The derivative

is divided into a specular variant part, Ox = (0, 0, o3x)T , and a specular quasi-invariant part Oc
x =

(o1x, o2x, 0)T .

The hue-saturation-intensity is given by











h

s

i











=











arctan
(

o1
o2

)

√
o12 + o22

o3











. (1.24)

The transformation of the spatial derivatives into the hsi-space decorrelates the derivative with respect to

specular, shadow and shading variations,

H (fx) = fh
x =











s hx

sx

ix











=













(R(Bx−Gx)+G(Rx−Bx)+B(Gx−Rx))√
2(R2+G2+B2−RG−RB−GB)

R(2Rx−Gx−Bx)+G(2Gx−Rx−Bx)+B(2Bx−Rx−Gx)√
6(R2+G2+B2−RG−RB−GB)

(Rx+Gx+Bx)√
3













. (1.25)

The shadow-shading-specular variant is given by Hx = (0, 0, ix)T and the shadow-shading-specular quasi-

invariant by Hc
x = (shx, sx, 0)T .

Since the length of a vector is not changed by orthonormal coordinate transformations, the norm of the

derivative remains the same in all three representations |fx| = |f c
x| = |fo

x | =
∣

∣fh
x

∣

∣. For both the opponent

color space and the hue-saturation-intensity color space, the photometrically variant direction is given by

the L1 norm of the intensity. For the spherical coordinate system the variant is equal to the L2 norm of the

intensity.
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1.3 Combining Derivatives

In the previous section, color (invariant) derivatives have been discussed. The question is how to combine

these derivatives into a single outcome. A default method to combine edges is to use equal weights for the

different color features. This naive approach is used by many feature detectors. For example, to achieve

color edge detection, intensity-based edge detection techniques are extended by taking the sum or Euclidean

distance from the individual gradient maps [21], [22]. However, the summation of the derivatives computed

for the different color channels may result in the cancellation of local image structures [4]. A more principled

way is to sum the orientation information (defined on [0, π〉) of the channels instead of adding the direction

information (defined on [0, 2π〉). Tensor mathematics provide a convenient representation in which vectors

in opposite directions will reinforce one another. Tensors describe the local orientation rather than the

direction i.e. the tensor of a vector and its 180◦ rotated counterpart vector are equal. Therefore, tensors are

convenient to describe color derivative vectors and will be used as a basis for color feature detection.

1.3.1 The Color Tensor

Given a luminance image f , the structure tensor is given by [6]

G =





f2
x

fxfy

fxfy f2
y



 , (1.26)

where the subscripts indicate spatial derivatives and the bar (̄.) indicates convolution with a Gaussian filter.

The structure tensor describes the local differential structure of images, and is suited to find features such as

edges and corners [4], [5], [7]. For a multichannel image f =
(

f1, f2, ..., fn
)T

, the structure tensor is given

by

G =





fx ·fx fx ·fy
fy ·fx fy ·fy



 . (1.27)

In the case that f = (R, G, B), Eq. 1.27 is the color tensor. For derivatives which are accompanied with

a weighting function, wx and wy, which appoint a weight to every measurement in fx and fy, the structure

tensor is defined by

G =







w2
xfx·fx
w2

x

wxwyfx·fy
wxwy

wywxfy ·fx
wywx

w2
yfy ·fy
w2

y






. (1.28)

1.3.2 Color Tensor-Based Features

In this section, a number of detectors are discussed which can be derived from the weighted color tensor.

In the previous section, we described how to compute (quasi) invariant derivatives. In fact, dependent on

the task at hand, either quasi-invariants are selected for detection or full invariants. For feature detection
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tasks quasi-invariant have been shown to perform best, while for feature description and extraction tasks

full-invariants are required [20]. The features in this chapter will be derived for a general derivative gx.

To obtain the desired photometric invariance for the color feature detector, the inner product of gx (see

Eq. 1.27) is replaced by one of the following:

gx · gx =























fx · fx if no invariance is required

Sc
x · Sc

x or Hc
x · Hc

x for invariant feature detection

Sc
x
·Sc

x

|f |2
or Hc

x
·Hc

x

|s|2
for invariant feature extraction

(1.29)

where s is the saturation.

In section 1.3.2, we describe features derived from the eigenvalues of the tensor. Further, more features

are derived from an adapted version of the structure tensor such as the Canny edge detection, in section

1.3.2, and the detection of circular objects in section 1.3.2.

Eigenvalue-Based Features

Two eigenvalues are derived from the eigenvalue analysis defined by

λ1 = 1
2

(

gx ·gx + gy ·gy +
√

(gx ·gx − gy ·gy)
2 + (2gx ·gy)

2

)

λ2 = 1
2

(

gx ·gx + gy ·gy −
√

(gx ·gx − gy ·gy)
2 + (2gx ·gy)

2

)

.

(1.30)

The direction of λ1 points in the direction of the most prominent local orientation

θ = 1
2 arctan

(

2gx ·gy

gx ·gx − gy ·gy

)

. (1.31)

The λ’s can be combined to give the following local descriptors:

• λ1 + λ2 describes the total local derivative energy.

• λ1 is the derivative energy in the most prominent direction.

• λ1 − λ2 describes the line-energy (see [23]). The derivative energy in the prominent orientation is

corrected for the energy contributed by the noise λ2.

• λ2 describes the amount of derivative energy perpendicular to the prominent local orientation.

The Harris corner detector [24] is often used in the literature. In fact, the color Harris operator H can easily

be written as a function of the eigenvalues of the structure tensor

Hf = gx ·gx gy ·gy − gx ·gy
2 − k (gx ·gx + gy ·gy)

2

= λ1λ2 − k (λ1 + λ2)
2 .

(1.32)
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Further, the structure tensor of Eq. 1.27 can also be seen as a local projection of the derivative energy on

two perpendicular axes [5], [7], [8], namely u1 =
(

1 0
)T

and u2 =
(

0 1
)T

,

Gu1,u2 =





(Gx,yu1) · (Gx,yu1) (Gx,yu1) · (Gx,yu2)

(Gx,yu1) · (Gx,yu2) (Gx,yu2) · (Gx,yu2)



 (1.33)

in which Gx,y =
(

gx gy

)

. From the Lie group of transformation several other choices of perpendicular

projections can be derived [5], [7]. They include feature extraction for circle, spiral and star-like structures.

The star and circle detector is given as an example. It is based on u1 = 1√
x2+y2

(

x y

)T

which

coincide with the derivative pattern of a circular patterns and u2 = 1√
x2+y2

(

−y x

)T

which denotes

the perpendicular vector field which coincides with the derivative pattern of star-like patterns. These vectors

can be used to compute the adapted structure tensor with Eq. 1.33. Only the elements on the diagonal have

non zero entries and are equal to

H =





x2

x2+y2 gx ·gx + 2xy
x2+y2 gx ·gy + y2

x2+y2 gy ·gy 0

0 x2

x2+y2 gy ·gy − 2xy
x2+y2 gx ·gy + y2

x2+y2 gx ·gx



 , (1.34)

here λ1 describes the amount of derivative energy contributing to circular structures and λ2 the derivative

energy which describes a star-like structure.

Curvature is another feature which can be derived from an adaption of the structure tensor. For vector

data the equation for the curvature is given by

κ =
w2gv ·gv − w2 ·gw ·gw −

√

(

w2 ·gw ·gw − w2gv ·gv

)2
+ 4w2 ·wgv ·gw

2

2w2 ·wgv ·gw

(1.35)

in which gv and gw are the derivatives in gauge coordinates.

Color Canny Edge Detection

We now introduce the Canny color edge detector based on eigenvalues. The algorithm consists of the

following steps:

1. Compute the spatial derivatives, fx, and combine them if desired into a quasi-invariant as discussed in

section 1.2.3.

2. Compute the maximum eigenvalue (Eq. 1.30) and its orientation (Eq. 1.31).

3. Apply non-maximum suppression on λ1 in the prominent direction.

To illustrate the performance, the results of Canny color edge detection for several photometric quasi-

invariants is shown in Fig. 1.1. The image is recorded in 3 RGB-colors with the aid of the SONY XC-003P
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Figure 1.1: (a) Input image with Canny edge detection based on successively, (b) luminance derivative, (c)

RGB derivatives, (d) the shadow-shading quasi-invariant, (e) the shadow-shading-specular quasi-invariant.

CCD color camera (3 chips) and the Matrox Magic Color frame grabber. Two light sources of average

day-light color are used to illuminate the objects in the scene. The digitization was done in 8 bits per color.

The results show that the luminance-based Canny, Fig. 1.1b, misses several edges which are correctly found

by the RGB-based method, Fig. 1.1c. Also the removal of spurious edges by photometric invariance is

demonstrated. In Fig. 1.1d the edge detection is robust to shadow and shading changes and only detects

material and specular edges. In Fig. 1.1e only the material edges are depicted.

Circular Object Detection

In this section, the combination of photometric invariant orientation and curvature estimation is used to

detect circles robust against varying imaging conditions such as shadows and illumination changes.

The following algorithm is introduced for the invariant detection of color circles [20]:

1. Compute the spatial derivatives, fx, and combine them if desired into a quasi-invariant as discussed in

section 1.2.3.

2. Compute the local orientation, Eq. 1.31, and curvature, Eq. 1.35.

3. Compute the hough space [25], H
(

R, x0, y0
)

, where R is the radius of the circle and x0 and y0

indicate the center of the circle. The computation of the orientation and curvature reduces the number

of votes per pixel to one. Namely, for a pixel at position x =
(

x1, y1
)

,

R = 1
κ

x0 = x1 + 1
κ

cos θ

y0 = y1 + 1
κ

sin θ.

(1.36)

Each pixel will vote by means of its derivative energy
√

fx ·fx.

4. Compute the maxima in the hough space. These maxima indicate the circle centers and the radii of

the circle.
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Figure 1.2: (a) Detected circles based on luminance, (b) detected circles based on shadow-shading-specular

quasi-invariant, (c) detected circles based on shadow-shading-specular quasi-invariant.

To illustrate the performance, the results of the circle detection are given in Fig. 1.2. Images have been

recorded by the Nikon Coolpix 950, a commercial digital camera of average quality. The images have size

267x200 pixels with JPEG compression. The digitization was done in 8 bits per color. It is shown that the

luminance-based circle detection is sensitive to photometric variations as nine circles are detected before

the five balls were extracted. For the circle detector based on the (shadow-shading-specular) quasi-invariant

the five most prominent peaks in the hough space (not shown here) correspond to the radii and center points

of the circles found. In Fig. 1.2.c, an outdoor example with a shadow partially covering the objects (tennis

balls) is given. The detector finds the right circular objects and hence performs well, even under severe

varying imaging conditions such as shading and shadow, and geometrical changes of the tennis balls.

1.4 Color Feature Detection: Fusion of Color Derivatives

In the previous section, various image feature detection methods have been discussed to extract locale im-

age structures such as edges, corners and circles. As there are many color invariant models available, the

inherent difficulty is how to automatically select the weighted subset of color models producing the best

result for a particular task. In this section, we outline how to select and weight color (invariant) models for

discriminatory and robust image feature detection.

To achieve proper color model selection and fusion, we discuss a method that exploits non-perfect cor-

relation between color models or feature detection algorithms derived from the principles of diversification.

As a consequence, an optimal balance is obtained between repeatability and distinctiveness. The result is a

weighting scheme which yields maximal feature discrimination [18], [19].

1.4.1 Problem Formulation

The measuring of a quantity u can be stated as:

u = E (u) ± σu (1.37)
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where E (u) is the best estimate for u (e.g. the average value) and σu represents the uncertainty or error in

the measurement of u (e.g. the standard deviation). Estimates of a quantity u, resulting from N different

methods, may be constructed using the following weighting scheme:

E(u) =
N

∑

i

wiE(ui), (1.38)

where E(ui) is the best estimate of a particular method i. Simply taking the weighted average of the different

methods allows features from very different domains to be combined.

For a function u(u1, u2, · · · , uN ) depending on N correlated variables, the propagated error σu is:

σu (u1, u2, · · · , uN ) =
N

∑

i=1

N
∑

j=1

∂u

∂ui

∂u

∂uj

cov (ui, uj) , (1.39)

where cov (ui, uj) denotes the covariance between two variables. From this equation it can be seen that

if the function u is non-linear, the resulting error, σu, depends strongly on the values of the variables

u1, u2, · · · , uN . Since equation (1.38) involves a linear combination of estimates, the error of the com-

bined estimate is only dependent on the covariances of the individual estimates. So through equation (1.39),

we have established that the proposed weighting scheme guarantees robustness, in contrast to possible, more

complex, combination schemes.

Now we left with the problem of determining the weights wi in a principled way. In the next section, we

will propose such an algorithm.

1.4.2 Feature Fusion

When using equation (1.38), the variance of the combined color models can be found through equation

(1.39):

σ2
u =

N
∑

i=1

N
∑

j=1

wiwj cov (ui, uj), (1.40)

or, equivalently,

σ2
u =

N
∑

j=1

w2
i σ

2
ui

+

N
∑

i=1

∑

j 6=i

wiwj cov (ui, uj), (1.41)

where wi denotes the weight assigned to color channel i, ui denotes the average output for channel i, σu

denotes the standard deviation of quantity u in channel i, and cov (ui, uj) corresponds to the covariance

between channel i and j.

From equation (1.41), it can be seen how diversification over various channels can reduce the overall

variance due to the covariance that may exist between channels. The Markowitz selection model [26] is a

mathematical method for finding weights that achieve an optimal diversification. The model will minimise

the variance for a given expected estimate for quantity u or will maximise the expected estimate for a given



14 Color Image Processing: Emerging Applications

variance σu. The model defines a set of optimal u and σu pairs. The constraints of this selection model are

given as follows:

minimise σu, (1.42)

for the formula described in equation (1.38). The weights are constrained by the following conditions:

N
∑

i=1

wi = 1, (1.43a)

−1 <= wi <= 1, i = 1, · · · , N. (1.43b)

The constraint in equations (1.43a) ensures that all channels are fully allocated and constraint (1.43b) limits

the search space for wi.

This model is quadratic with linear constraints and can be solved by linear programming ([27]). When

σu is varied parametrically, the solutions for this system will result in mean-variance pairs representing

different weightings of the feature channels. The pairs which maximise the expected u v.s. σu or minimise

the σu v.s. expected u, define the optimal frontier. They form a curve in the mean-variance plane and the

corresponding weights are optimal.

A point of particular interest on this curve is the point which has the maximal ratio between the expected

combined output E(u) and the expected variance σ2
u. This point has the weights for which the combined

feature space has offers the best trade-off between repeatability and distinctiveness.

In summary, the discussed selection model is used to arrive at a set of weights to combine different color

models into one feature. The expected value of this feature E(u) is the weighted average of its component

expected values. The standard deviation of this combined feature will be less than or equal to the weighted

average of the component standard deviations. When the component colors or features are not perfectly

correlated, the weighted average of the features will have a better variance to output ratio than the individual

components on their own. New features or colors can always safely be added, the ratio will never deteriorate,

because zero weights can be assigned to components that will not improve the ratio.

1.4.3 Corner Detection

The purpose is to detect corners by learning. Our aim is to arrive at an optimal balance between color

invariance (repeatability) and discriminative power (distinctiveness). In the context of combining feature

detectors, in particular in the case of color (invariant) edge detection, a default method to combine edges is

to use equal weights for the different color features. This naive approach is used by many feature detectors.

Instead of experimenting with different ways to combine algorithms, in this section, we use the principled

method, outlined in the previous section, on the basis of the benefits of diversification. Since our method is

based on learning, we need a set of training examples. The problem of corners is, however, that there are
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(a) (b) (c) (d)

Figure 1.3: (a) Lab image, (b) groundtruth for learning edges. Input image for the edge and corner detection,

on the left the edge is indicated for the learning algorithm. (c) The χ-squared error of the transformed image

and the predicted expected value, here the edges have a very low intensity, (d) the local signal-to-noise ratio

for the transformed image. The edges have a higher ratio.

(a) (b)

Figure 1.4: (a) Results of the Harris corner detector, (b) corners projected on input image. The results of the

Harris corner detector, trained on the lower right cube.

always few pixels at a corner, making it hard to create a training set. We circumvent this problem by training

on the edges, the first order derivatives, where many more pixels are located.

Since the structure tensor (equation 1.28) and the derived Harris operator (equation 1.32) are based on

spatial derivatives, we will train the weighting vector w on edges. This will allow for a much simpler

collection of training points. So the weights are trained with the spatial derivatives of the color channels as

input. The resulting weights are then put in the w weights vector of the Harris operator.

To illustrate the performance of the corner detector based on learning, the first experiment was done on

the image of section 1.3 which have recorded in 3 RGB-colors with the aid of the SONY XC-003P CCD

color camera. The weights were trained on the edges of the green cube (see figures 1.3.a and 1.3.b). The

edges were trained on the first order derivatives in all color spaces. The results of applying these weights to

the same image are shown in figures 1.3.c and 1.3.d. The edge is especially visible in signal-to-noise image.

Using the weights learned on the edges with the Harris operator, according to equation (1.32), the corners

of the green cube stand particularly out (see figure 1.4).

Another experiment is done on images taken from an outdoor object i.e. a traffic sign (see figure 1.5).

The weights were trained on one image and tested on images of the same object while varying the viewpoint.
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(a) (b)

Figure 1.5: The input image for the edge and corner detection. (a) the training image, (b) the trained edges.

(a) (b) (c)

Figure 1.6: (a) Corners for image 1, (b) corners for image 2, (c) corners for image 3. The results of the

Harris corner detector trained on red-blue edges.

Again the edges were defined by the first order derivative in gauge coordinates. The results of the Harris

operator are shown in figure 1.6. The corner detector performs well even under varying viewpoints and

illumination changes. Note that the learning method results in an optimal balance between repeatability and

distinctiveness.

1.5 Color Feature Detection: Boosting Color Saliency

So far, we have outlined how to obtain color invariant derivatives for image feature detection. Further, we

discussed how to learn a proper set of weights to yield proper color model selection and fusion of feature

detection algorithms.

In addition, it is known that color is important to express saliency [15], [17]. To this end, in this section,

we review on how color distinctiveness can be explicitly incorporated in the design of image feature detec-

tors [16], [17]. The method is based upon the analysis of the statistics of color derivatives. When studying

the statistics of color image derivatives points of equal frequency form regular structures [17]. Van de Weijer
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Figure 1.7: The histograms of the distribution of the transformed derivatives of the Corel image database in

respectively the (a) RGB coordinates, (b) the opponent coordinates and (c) the spherical coordinates. The

three planes correspond with the isosalient surfaces which contain (from dark to light) respectively 90%,

99%, 99.9% of the total number of pixels.

et. al. [17], proposes a color saliency boosting function which is based on transforming the color coordi-

nates and using the statistical properties of the image derivatives. The RGB color derivatives are correlated.

By transforming the RGB color coordinates to other systems, photometric events in images can be ignored

as discussed in section 1.2 where is was shown that the spatial derivatives are separated into photometrical

variant, and invariant parts. For the purpose of color saliency, the three different color spaces are evaluated

i.e. the spherical color space (equation 1.21), the opponent color space (equation 1.23), and the hsi color

space (equation 1.25). In these decorrelated color spaces only the photometric axes are influenced by these

common photometric variations.

The statistics of color images are shown for the Corel database [28], which consists of 40,000 images

(black and white images were excluded). In Fig. 1.7, the distributions (histograms) of the first order deriva-

tives, fx, are given for the various color coordinate systems.

When the distributions of the transformed image derivatives are observed from Fig. 1.7, regular struc-

tures are generated by points of equal frequency i.e. isosalient surfaces. These surfaces are formed by

connecting the points in the histogram that occur the same number of times. The shapes of the isosalient

surfaces correspond to to ellipses. The major axis of the ellipsoid coincides with the axis of maximum

variation in the histogram i.e. the intensity axes. Based on the observed statistics, a saliency measure can

be derived in which vectors with an equal information content have an equal effect on the saliency. This

is called the ”color saliency boosting function”. It is obtained by deriving a function that describes the

isosalient surfaces.

More precisely, the ellipsoids are equal to

(

αh1
x

)2
+

(

βh2
x

)2
+

(

γh3
x

)2
= |Λh (fx)|2 (1.44)
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fx |fx|
1

f
s̃
x S̃

c
x f

õ
x Õ

c
x f

h
x H

c
x

Λ11 0.577 1 0.851 0.856 0.850 0.851 0.858 1

Λ22 0.577 - 0.515 0.518 0.524 0.525 0.509 0

Λ33 0.577 - 0.099 0 0.065 0 0.066 0

Table 1.2: The diagonal entries of Λ for the Corel data set computed for Gaussian derivatives with σ = 1.

Figure 1.8: In columns respectively, (a) input image, (b) RGB-gradient based saliency map, (c) color

boosted saliency map, and (d) the results with red dots (lines) for gradient-based method and yellow dots

(lines) for salient points after color saliency boosting.

then the following holds

p (fx) = p
(

f
′

x

)

↔ |Λh (fx)| =
∣

∣

∣
ΛT h

(

f
′

x

)∣

∣

∣
, (1.45)

where Λ is a 3x3 diagonal matrix with Λ11 = α, Λ22 = β, and Λ33 = γ. Λ is restricted to Λ2
11+Λ2

22+Λ2
33 =

1. The desired saliency boosting function is obtained by

g (fx) = Λh (fx) . (1.46)

By a rotation of the color axes followed by a rescaling of the axis, the oriented isosalient ellipsoids are

transformed into spheres, and thus vectors of equal saliency a re transformed into vectors of equal length.

Before color saliency boosting can be applied, the Λ-parameters have to be initialized by fitting ellipses

to the histogram of the data set. The results for the various transformations are summarized in Table 1.2.

The relation between the axes in the various color spaces clearly confirms the dominance of the luminance

axis in the RGB-cube, since Λ33, the multiplication-factor of the luminance axis, is much smaller than

the color-axes multiplication factors, Λ11 and Λ22. After color saliency boosting, there is an increase in

information context, see [17] for more details.

To illustrate the performance of the color boosting method, Fig. 1.8 show the results before and after
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saliency boosting. Although focus point detection is already an extension from luminance to color, black-

and-white transition still dominate the result. Only after boosting the color saliency, the less interesting

black-and-white structures in the image are ignored and most of the red Chinese signs are found.

1.6 Color Feature Detection: Classification of Color Structures

In section 1.2, we showed that color models may contain a certain amount of invariance to the imaging

process. From the taxonomy of color invariant models, shown in table 1.1, we now discuss a classification

framework to detect and classify local image structures based on photometrical and geometrical information

[18]. The classification of local image structures (e.g. shadow vs. material edges) is important for many

image processing and computer vision tasks (e.g. object recognition, stereo vision, 3D reconstruction).

By combining the differential structure and reflectance invariance of color images, local image structures

are extracted and classified into one of the following types: (1) shadow-geometry edges, corners, and T-

junctions; (2) highlight edges, corners, and T-junctions (3) material edges, corners, and T-junctions. First,

for detection, the differential nature of the local image structures is derived. Then, color invariant properties

are taken into account to determine the reflectance characteristics of the detected local image structures. The

geometrical and photometrical properties of these salient points (structures) are represented as vectors in a

multi-dimensional feature space. Finally, a classifier is built to learn the specific characteristics of each class

of image structures.

1.6.1 Combining Shape and Color

By combining geometrical and photometrical information, we are able to specify the physical nature of

salient points. For example, to detect highlights we need to use both a highlight invariant color space,

and one (or more) highlight variant spaces. It has already been shown in table 1.1 that hue is invariant to

highlights. Intensity I and saturation S are not invariant. Further, a highlight will yield a certain image

shape: a local maximum (I) and a local minimum (S). These local structures are detected by differential

operators as discussed in section 1.2. Therefore, in the brightness image we are looking for a local maximum.

The saturation at a highlight is lower than its surroundings, yielding a local minimum. Finally, for hue the

values will be near zero at that location. In this way, a 5-dimensional feature vector is formed by combining

the color space HSI and the differential information each location in an image.

The same procedure holds for the detection of shadow-geometry/highlight/material edges, corners, and

T-junctions. The features used to detect shadow-geometry edges are first-order derivate applied on both the

RGB and the c1c2c3 color channels. Further the second-order derivative is only applied on the RGB color

image. To be precise, in this section, we use the curvature gauge to characterize local structures that are
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only characterized by their second order structure. It is a coordinate system on which the Hessian becomes

diagonal yielding the (p, q)-coordinate system. The two eigenvectors of the Hessian are κ1 and κ2 and are

defined by:

κ1 = fxx + fyy −
√

(fxx + fyy)2 + 4f2
xy, (1.47)

κ2 = fxx + fyy +
√

(fxx + fyy)2 + 4f2
xy. (1.48)

To obtain the appropriate density distribution of feature values in feature space, classifiers are built to

learn the density functions for shadow-geometry/highlight/material edges, corners, and T-junctions.

In this section, the learning-based classification approach is taken as proposed by Gevers [19]. This

approach is adaptive as the underlying characteristics of image feature classes are determined by training. In

fact, the probability density functions of the local image structures are learned by determining the probability

that an image patch under consideration is of a particular class (e.g. edge, corner or T-junctions). If two

image patches share similar characteristics (not only the same color, but also the same gradient size, and

curvature) both patches are represented by the same point in feature space. These points are represented by

a (n × d)-matrix, in which d depends on the number of feature dimensions and n on the number of training

samples.

Then, the density function p(x|ω) is computed where x represents the data of the pixel under consider-

ation, and ω is the class to be determined. From the data and training points, the parameters of the density

function p(x|ω) are estimated. We use a single Gaussian and multiple Gaussians (Mixture of Gaussians -

MoG). Besides this, the k-Nearest Neighbour method is used.

1.6.2 Experimental Results

In this section, the results are given to classify the physical nature of salient points by learning. A separate

set of tests is computed for each classifier (i.e. Gaussian, Mixture of Gaussians and k-Nearest Neighbour).

The images are recorded in 3 RGB-colors with the aid of the SONY XC-003P CCD color camera (3

chips) and the Matrox Magic Color frame grabber. Two light sources of average day-light color are used to

illuminate the objects in the scene. The digitization was done in 8 bits per color. Three examples of the five

images are shown in figure 1.9. For all experiments, σ = 2 is used for the Gaussian smoothing parameter of

the differential operators.

The classifiers are trained using all but one image. This last image is used as a test image. In this way,

the test image is not used in the training set.

In all experiments, a total of three Gaussian components is used for the MoG classifier. k = 3 for the

k-NN classifier.
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(a) (b) (c)

Figure 1.9: (a) Example image 1, (b) Example image 2, (c) Example image 3. The images are recorded in 3

RGB-colors with the aid of the SONY XC-003P CCD color camera (3 chips) and the Matrox Magic Color

frame grabber. Two light sources of average day-light color are used to illuminate the objects in the scene.
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Figure 1.10: (a) Test image, (b) Gaussian classifier, (c) Mixture of Gaussians, (e) k-nearest neighbour.

Based on the (training) efficiency and accuracy of the results, the Gaussian or MoG are most appropriate for

highlight detection.

1.6.3 Detection of Highlights

The features used for highlight detection are κ1 and κ2 applied on the HSB color channels yielding a

5-dimensional space for each image point.

Gaussian: The Gaussian method performs well to detect highlight, see figure 1.10.b. Most of the

highlights are detected. However, only a few false positives are found e.g. bar-shaped structures. This is

because the reflectance at these structures are composed of a portion of specular reflection.

Mixture of Gaussians: The MoG method gives slightly better results than the Gaussian method, see

figure 1.10.c. For this method, the highlighted bars, found by the Gaussian method, are discarded.

k-Nearest Neighbour: This method performs slightly worse as opposed the detection method based a

single Gaussian, see figure figure 1.10.d. The problem with the highlighted bars is still present.

Summary: The detection methods based on a single Gaussian as well as on the MoG are well suited for

highlight detection.
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Figure 1.11: (a) Test image, (b) Gaussian classifier, (c) Mixture of Gaussians, (e) k-nearest neighbour. For

geometry-shadow detection, the best results are obtained by the Gaussian method. MoG and k-Nearest

Neighbour perform a bit less.

1.6.4 Detection of Geometry/Shadow Edges

The features that are used to detect geometry/shadow edges are the first-order derivatives which are applied

on both the RGB and the c1c2c3 color models. Further, the second order derivative is applied on the RGB

color images.

Gaussian: The detection method, based on a single Gaussian, performs well, see figure figure 1.11.b.

Most of the geometry-shadow edges have been detected. Further, there are nearly no false positives present.

Besides that, the recall is very high.

Mixture of Gaussians: The method based on a Mixture of Gaussians has a similar performance as the

Gaussian method, see figure figure 1.11.c. For a few instances, however, material edges are detected.

k-Nearest Neighbour: The accuracy of the method is somewhat lower than the other two classifiers,

see figure figure 1.11.d. Still most of the geometry and shadow edges are detected correctly.

Summary For geometry-shadow detection, the best results are obtained by the Gaussian method. MoG

and k-Nearest Neighbour perform a bit less.

1.6.5 Detection of Corners

The first-order derivative (fw) and second-order derivative (fvv) of the RGB color space are used for cor-

ner learning and classification. To determine the thresholds for corner detection, various settings have been

examined. The results are shown in figure 1.12. The threshold providing the highest accuracy, and subse-

quently used in our experiments, is 0.75.

From table 1.3, it is observed that the k-Nearest Neighbour classifier provides the highest performance.

Examining the precision/recall graphs for the three classifiers reveals that this method provide good perfor-

mance.

Further, the MoG performs slightly better than the single Gaussian method.
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Figure 1.12: Precision/Recall graph for the classifiers of corners

Classifier Precision Recall

Gaussian 34,9% 56,6%

Mixture of Gaussians 77,8% 52,8%

k-Nearest Neighbour 83,9% 58,5%

Table 1.3: Classifiers and their performance for corner detection

Summary The k-Nearest Neighbour classifier provides the best performance to detect corners. Al-

though the recall of all three methods is similar, the precisions of the k-NN classifier is higher.

1.7 Conclusion

In this chapter, we have discussed methods and techniques in the field of color feature detection. In partic-

ular, the focus was on the following important issues: (1) color invariance, (2) combining derivatives, (3)

fusion of color models, (4) color saliency boosting, and (5) classifying image structures.

To this end, the dichromatic reflection model has been outlined first. The dichromatic reflection model

explains the RGB-values variations due to the image formation process. From the model, various color

models are obtained showing a certain amount of invariance. Then, color (invariant) derivatives have been

discussed. These derivatives include quasi-invariants which have proper noise and stability characteristics.

To combine color derivatives into a single outcome, the color tensor has been used instead of taking the

sum or Euclidean distance. Tensors are convenient to describe color derivative vectors. Based on the color

tensor, various image feature detection methods have been introduced to extract locale image structures such

as edges, corners and circles. The experimental results of Canny color edge detection for several photometric

quasi-invariants showed stable and accurate edge detection. Further, a proper model has been discussed to
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select and weight color (invariant) models for discriminatory and robust image feature detection. The use

of the fusion model is important as there are many color invariant models available. In addition, we used

color to express saliency. It has been shown that after color saliency boosting, (less interesting) black-

and-white structures in the image are ignored and more interesting color structures have been detected.

Finally, a classification framework has been outlined to detect and classify local image structures based

on photometrical and geometrical information. High classification accuracy is obtained by simple learning

strategies.

In conclusion, this chapter provides a survey on methods solving important issues in the field of color

feature detection. We hope that these solutions on low-level image feature detection will aid the continuing

challenging task of handling higher level computer vision task such as object recognition and tracking.
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